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Deriving accurate analytical formulas for pricing stock options with discrete dividend payouts is a
hard problem even for the simplest vanilla options. This is because the falls in the stock price process
due to discrete dividend payouts will significantly increase the mathematical difficulty in pricing the
option. On the other hand, much literature uses other dividend settings to simplify the difficulty, but
these settings may produce inconsistent pricing results. This paper derives accurate approximating
formulae for pricing a popular path-dependent option, the barrier stock option, with discrete dividend
payouts. The fall in stock price due to dividend payout at an exdividend date t is approximated by an
accumulated price decrement due to a continuous dividend yield up to time t . Thus, the stock price
process prior to time t and after time t can be separately modelled by two different lognormal-diffusive
stock processes which help us to easily derive analytical pricing formulae. Numerical experiments
suggest that our formulae provide more accurate and coherent pricing results than other approximation
formulae. Our formulae are also robust under extreme cases, like the high volatility (of the stock
price) case. Besides, our formulae also extend the applicability of the first-passage model (a type of
structural credit risk model) to measure how the firm’s payout influences its financial status and the
credit qualities of other outstanding debts.

Keywords: Barrier option; Derivative pricing; Discrete dividend; First-passage model

JEL Classification: G1, G13

1. Introduction

Developing a feasible option pricing model that captures the
phenomena of financial markets is an important issue in the
financial field. Black and Scholes (1973) derive option pricing
formulae for non-dividend-paying stocks. To deal with the
dividend payout problem, Merton (1973) extends the Black-
Scholes formulae by assuming that the stock pays a fixed
continuous dividend yield. However, most dividend payments
are paid discretely rather than continuously. Pricing the option
on the stock that pays a fixed dividend discretely seems to be
first investigated in Black (1975). In addition, Ehrhardt and
Brigham (2009) also argue that most stocks pay stable divi-
dends discretely to maintain the investors’ confidence.
Although this discrete-payment setting might be more realistic
than the continuous one, it gives rise to significant mathe-
matical difficulty in pricing the options. This is because the
underlying stock price process becomes much more compli-
cated due to the jumps caused by the discrete payments.

∗Corresponding author. Email: d88006@csie.ntu.edu.tw

Pricing stock options with discrete dividend payouts has
drawn a lot of attention in the literature. Frishling (2002) shows
that the underlying stock price processes are usually modelled
in the following three different ways. Model 1 suggests that
the stock price minus the present value of future dividends over
the life of the option follows a lognormal diffusion process (see
Roll 1977, Geske 1979). Model 2 suggests that the stock price
plus the forward values of the dividends paid from today up
to the option’s maturity follows a lognormal diffusion process
(see Heath and Jarrow 1988, Musiela and Rutkowski 1997).
Model 3 suggests that the stock price falls by the amount of the
dividend paid at the exdividend date, and follows the lognor-
mal diffusion process between two adjacent exdividend dates.
For pricing vanilla options, Frishling (2002) argues that these
three models are incompatible with each other and generate
very different prices. In addition, Frishling (2002), Bender and
Vorst (2001), and Bos and Vandermark (2002) argue that only
Model 3 can reflect the reality and generate consistent option
prices. Apart from the three aforementioned models, Chiras
and Manaster (1978) suggest that the discrete dividends can be
transformed into a fixed continuous dividend yield. The vanilla

© 2013 Taylor & Francis
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1368 T.-S. Dai and C.-Y. Chiu

stock option can then be analytically solved by the Merton
pricing formula (see Merton 1973). However, Dai and Lyuu
(2009) show that the pricing results of their approach can devi-
ate significantly from those generated by Model 3. On the other
hand, pricing vanilla options under Model 3 can be mathemati-
cally intractable since the downward jumps due to the dividend
payouts cause the stock price process to no longer follow a
lognormal diffusion process. Bender and Vorst (2001), Bos
and Vandermark (2002), Vellekoop and Nieuwenhuis (2006),
and Dai and Lyuu (2009) derive the approximated distribution
of the stock price at the maturity date and derive approximating
analytical pricing formulae. Besides, Dai (2009) constructs
a numerical pricing approach, namely, the ‘stair tree’, that
produces accurate pricing results by faithfully modelling the
evolution of the stock price process with downward jumps.

Similarly, pricing barrier stock options with the discrete divi-
dend payout with the aforementioned models other than Model
3 can produce unreasonable pricing results (see
Frishling 2002). A barrier option is a popular exotic option
whose payoff depends on whether the price path of the underly-
ing stock has reached a certain predetermined price level called
a barrier. Reiner and Rubinstein (1991) derive an analytical
pricing formula for the barrier option on the stock that pays a
fixed continuous dividend yield. In their model, the stock price
follows a lognormal diffusion process, and the joint density of
the extreme stock price over the option life and the stock price
at the option maturity date can therefore be derived by taking
advantage of the reflection principle and Girsanov’s theorem.
Unfortunately, their approach can not be directly extended
to price barrier stock options with discrete dividends. While
Zvan et al. (2000) and Gaudenzi and Zanette (2009) develop
numerical methods to price barrier options under Model 3, to
our knowledge, no announced papers derive analytical pricing
formulae for pricing barrier stock options with discrete divi-
dend payouts.

The major contribution of this paper is to derive approx-
imating analytical formulae under Model 3. The numerical
experiments in section 5 suggest that our formulae produce
accurate pricing results. Besides, our option pricing formulae
also extend the applicability of the first-passage model—a
credit risk model that simulates the evolution of the firm value
and that triggers the default event once the firm value reaches
the so-called ‘default boundary’. Therefore, the firm’s equity
can be treated as a barrier call option on the firm value, and other
outstanding debts can also be evaluated by taking advantage
of our approach. Much of the literature puts restrictions on
selling the firm’s assets to finance the loan repayments or
dividend payouts (see Geske 1977, Kim et al. 1993, Leland
1994, Longstaff and Schwartz 1995). However, the empirical
studies in Billett et al. (2007) suggest that up to 64.5% of their
debt issue samples have asset sale clauses; that is, most debts
allow the issuing firm to sell its assets to finance the debt re-
payments. Eom et al. (2004) also argue that 29 out of 31 bonds
in their sample have asset sale clauses. They claim that selling
assets to finance the repayment of one bond would damage the
values of other outstanding bonds. Therefore, evaluating the
impact of the asset sale clause on the debt value is important.
Lando (2004) argues that dealing with the asset sale clause
can be mathematically intractable since the jumps in the firm’s
value due to discrete payouts make the firm’s value process

complicated. Indeed, by substituting the issuing firm’s value
process and the discrete debt repayments for the stock price
process and the dividend payout in our pricing formulae, we
obtain new formulae to evaluate the credit risk for the debts that
have asset sale clauses. Our numerical experiments suggest
that the pricing results of our formulae match the empirical
finding in Linn and Stock (2005): When the junior debt matures
prior to the senior unsecured debt, the security of the senior
unsecured debt is threatened and the default spread (of senior
debt) may increase. On the other hand, another model that
limits the firm to maintaining a constant continuous payout
ratio—which is widely adopted by much of the literature such
as Kim et al. (1993) and Longstaff and Schwartz (1995)—
might fail to capture this finding.

Our pricing formulae are derived based on a piecewise stock
price process designed to approximate the stock price process
under Model 3. The stock price S(t) at time t given that no
dividend is paid out during the time interval [0, t] follows the
lognormal diffusion process:

S(t) = S(0)eμt+σ W (t), (1)

where μ ≡ r − 0.5σ 2, r denotes the annual risk-free interest
rate, σ denotes the volatility, and W (t) denotes the standard
Brownian motion. Under Model 3, the stock pays dividends c1,
c2, c3, . . . at exdividend dates t1, t2, t3, . . ., respectively, where
t1 < t2 < t3 . . .. At the exdividend date ti , the stock price falls
by the amount ci due to the dividend payout as suggested in
Black (1975) and Zvan et al. (2000). For convenience, define
the stock return at time t as S(t)

S(0)
. The process of the stock return

prior to the exdividend date t1 can be expressed by the drifting
Brownian motion: μt + σ W (t) as described in equation (1).
However, the stock price at any time t between the exdividend
dates t1 and t2 is

S(t) =
(

S(0)eμt1+σ W (t1) − c1

)
eμ(t−t1)+σ(W (t)−W (t1)), (2)

and the stock return is no longer a drifting Brownian motion.
To make the pricing problem tractable, the amount c1 by which
the stock price falls at the exdividend date t1 is approximated
by the accumulated price decrement caused by a continuous
dividend yield q1 paid from time 0 to time t1. That is,

S(t1) = S(0)eμt1+σ W (t1) − c1 ≡ S(0)e(μ−q1)t1+σ W (t1). (3)

Thus, we construct another lognormal diffusion process with
a continuous payout rate q1 paid from time 0 to time t1 to
approximate the stock price process between the time interval
[t1, t2] in equation (2) as follows:

S(t) = S(t1)e
μ(t−t1)+σ(W (t)−W (t1)) = S(0)eμt−q1t1+σ W (t),

(4)
where t ∈ [t1, t2]. Since q1 in equation (3) can be approxi-
mately solved by the first-order Taylor expansion as an affine
function of W (t1), the process of the stock return between
the exdividend dates t1 and t2, μt − q1t1 + σ W (t), can be
approximated by another drifting Brownian motion. Let the
option maturity T < t2 for simplicity. The joint distribution of
the extreme stock price over the time interval [0, t1) ([t1, T ])
and the stock price at time t1 (T ) can be solved for by applying
the reflection principle and Girsanov’s theorem to the drifting
Brownian motion μt + σ W (t) (another drifting Brownian
motion μt − q1t1 + σ W (t)). The pricing formulae can then
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Pricing barrier stock options with discrete dividends 1369

be derived by applying the risk-neutral valuation method to
these two joint distributions. Our approach can be extended
to the multiple-dividend case by repeating the aforementioned
steps to derive the approximated stock return process between
any two adjacent exdividend dates.

The remainder of this paper is organized as follows. Section
2 introduces the required financial and mathematical back-
ground knowledge. Section 3 derives mathematical properties
that are useful for later deriving the pricing formulae. Our
approximation pricing formulae are then derived in section 4.
The experimental results given in section 5 verify the accuracy
of our pricing formulae and demonstrate how our approach
extends the applicability of the first-passage model. Section 6
concludes the paper.

2. Preliminaries

2.1. Barrier options and the first passage model

Assume that a barrier stock option with a strike price K is
initiated at time 0 and matures at time T . The payoff of an
up-and-out option at maturity is as follows:

payoff =
{

(θ S(T ) − θ K )+ if Smax < B
0 if Smax ≥ B

,

where (A)+ denotes max(A, 0), Smax denotes the maximum
underlying stock price between time 0 and time T , B denotes
the barrier and θ equals 1 for call options and −1 for put
options. Similarly, the payoff of a down-and-out option at
maturity is as follows:

payoff =
{

(θ S(T ) − θ K )+ if Smin > B
0 if Smin ≤ B

,

where Smin denotes the minimum stock price between time 0
and time T . For simplicity, our paper will focus on an up-and-
out call option and the extensions to other barrier options are
straightforward.

The same mathematical settings can be used to model the
first passage model by redefining the symbol B as the default
boundary, T as the debt maturity, and K as the debt repayment
due at maturity. The firm value process S(t) is assumed to
follow equations (1)–(4), where σ denotes the volatility of
the firm value and ci denotes the loan repayment or dividend
payout at time ti . The firm defaults once its value falls below
the default boundary prior to the maturity date or it can not
meet the debt obligation at the maturity date. Thus, the equity
value can be evaluated as a down-and-out call option on the
firm value and each debt issued by the firm can be priced by
treating it as a contingent claim on the firm value.

2.2. Pricing barrier stock options without discrete dividends

The payoff of an up-and-out call depends on whether the un-
derlying stock price process has ever risen above the barrier
over the life of this option. The stock price process has risen
above the barrier during the time interval [0, τ ] if and only
if the maximum stock price during the time interval [0, τ ] is
greater than the barrier. The following theorem, derived from
the reflection principle and Girsanov’s theorem (see Shreve

2007), can be applied to describe the joint density of the stock
price at time τ and the maximum stock price during the time
interval [0, τ ].
Theorem 2.1 Let W̃ (t) = αt + W (t) be a Brownian motion
with a drift term αt and M̃(τ ) = max0≤t≤τ W̃ (t) be its maxi-
mum value over a certain time interval [0, τ ]. The joint density
function of (M̃(τ ), W̃ (τ )) is given by

fM̃(τ ),W̃ (τ )
(m, w)=

{
2(2m−w)

τ
√

2πτ
eαw− 1

2 α2τ− 1
2τ

(2m−w)2
if m ≥ w+

0 otherwise
.

(5)
The set of points (m, w) that make density values non-zero, also
known as the support of a density, is illustrated in
figure 1(a).

Reiner and Rubinstein (1991) derive analytical formulae for
barrier stock options without discrete dividends by Theorem
2.1. We derive some lemmas that can be used to derive their
pricing formulae. These lemmas can also be applied to derive
our barrier stock option pricing formulae with discrete dividend
payouts. Define the stock return in equation (1), μt + σ W (t)
as σ Ŵ (t), where the drifted Brownian motion Ŵ (t) is defined
as μt/σ + W (t). Define the maximum value of the Brownian
motion M̂(τ ) as max0≤t≤τ Ŵ (t). Thus, the value of an up-and-
out call option C can be derived as follows:

C = e−rT E

⎧⎨
⎩(S(T ) − K )+1{

max
0≤t≤T

S(t)<B

}
⎫⎬
⎭

= e−rT E
{
(S(0)eσ Ŵ (T ) − K )1{S(0)eσ Ŵ (T )≥K ,S(0)eσ M̂(T )<B}

}
= e−rT E

{
(S(0)eσ Ŵ (T ) − K )1{Ŵ (T )≥k,M̂(T )<b}

}
, (6)

where k and b in equation (6) stand for 1
σ

ln K
S(0)

and 1
σ

ln B
S(0)

,
respectively. By substituting equation (5) into equation (6) with
α = σ/μ, we have

C =
∫ ∞

k

∫ b

−∞
e−rT (S(0)eσw − K

)
fM̂(T ),Ŵ (T )

(m, w)dmdw

(7)

=
∫ b

k

∫ b

w+
e−rT (S(0)eσw − K

)
× 2(2m − w)

T
√

2πT
eαw− 1

2 α2T − 1
2T (2m−w)2

dmdw, (8)

where the domain of integral in equation (7), i.e. −∞ < m < b
and k ≤ w < ∞, is the support of the indicator function
in equation (6) as illustrated in figure 1(b). The domain of
integral in equation (8) is the intersection of the support of
the joint density function f M̂(T ),Ŵ (T )

(m, w) and the support
of indicator function 1{Ŵ (T )≥k,M̂(T )<b} as illustrated in figure
1(c).

In the double integral formula equation (8), since only
fM̂(T ),Ŵ (T )

(m, w) contains the variable m,
∫
w+

b fM̂(T ),Ŵ (T )
(m, w)dm can be evaluated first by the following

lemma†:

†Proofs of this lemma is available upon request.
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1370 T.-S. Dai and C.-Y. Chiu

(a) (b) (c)

Figure 1. The Integral Domain of equation (8). Notes: The shaded area in Panel (a) denotes the support of the density function fM̃(T ),W̃ (T )

in equation (5). The shaded area in Panel (b) denotes the in the money region of the up-and-out barrier call option in equation (7). It is also
the support of the indicator function of equation (6). The shaded area in Panel (c) denotes the intersection of the shaded areas in Panel (a) and
(b), which is the domain of integral in equation (8).

Lemma 2.2

∫ β

v+
2(2u − v)

�
√

2π�
eαv− 1

2 α2�− 1
2�

(2u−v)2
du

= 1√
2π�

eαv− 1
2 α2�− v2

2�

(
1 − e

2β(v−β)
�

)
.

By applying Lemma 2.2, equation (8) can be rewritten as

C = e−rT
∫ b

k

(
S(0)eσw − K

)
×
(∫ b

w+
2(2m − w)

T
√

2πT
eαw− 1

2 α2T − 1
2T (2m−w)2

dm

)
dw

= e−rT
∫ b

k

(
− K√

2πT
e− w2

2T +αw− T α2
2

+ K√
2πT

e− w2
2T +αw− T α2

2 + 2b(w−b)
T

+ S
′
(0)√

2πT
e− w2

2T +αw+σw− T α2
2

− S
′
(0)√

2πT
e− w2

2T +αw+σw− T α2
2 + 2b(w−b)

T

)
dw. (9)

In equation (9), each term of the integrand is of the form
Lea2w

2+a1w+a0 for some constants a0, a1, a2, and L . The fol-
lowing identity can convert the integrals of the aforementioned
form into the cumulative distribution function (CDF) of the
standard normal distribution by completing the square:

∫ l

−∞
ea2x2+a1x+a0 dx =

√
π

−a2
e
− a2

1−4a0a2
4a2 N

(
l − m

s

)
,

(10)
where a2 < 0 to ensure that the integral is finite, m = − a1

2a2
,

s = 1√−2a2
, and N (·) denotes the CDF of the standard normal

distribution. Thus, the Reiner and Rubinstein (1991) pricing
formula can be derived as a linear combination of tail probabil-
ity values, which can be evaluated by the CDF of the standard
normal distribution.

3. Derivations of useful mathematical properties

3.1. Approximate the stock price process under Model 3
piecewisely with lognormal diffusion processes

We derive a systematic approach for constructing a series of
lognormal diffusion processes to piecewisely approximate the
stock price process under Model 3. To be precise, we decom-
pose the stock price process into several parts by exdividend
dates. Each part of the stock price process is approximated by a
lognormal diffusion process that makes the stock return process
(for this part of the stock price process) a drifted Brownian
motion. Therefore, Theorem 2.1 can be applied to derive the
pricing formulae.

Note that the stock return process for the time interval [0, t1]
is already a drifted Brownian motion, μt+σ W (t), as illustrated
in equation (1). So we do not need to derive the approximated
process for this interval. On the other hand, the stock return
process between the time interval [t1, t2] (see equation (2)) is
not a drifted Brownian motion due to the discrete dividend
c1 paid at time t1. The stock price drop due to the dividend
payout is approximated by the accumulated price decrement
caused by a continuous dividend q1 paid from time 0 to time
t1 as illustrated in equation (3), so the resulting stock price
process after time t1 can be expressed as equation (4). To
make this modified price process a lognormal diffusion one,
q1 is approximately solved as a linear function of W (t1) from
equation (3) as follows:

S(0)eμt1+σ W (t1) − c1 ≈ S(0)eμt1+σ W (t1)(1 − q1t1) (11)

⇒ q1 ≈ c1e−μt1(1 − σ W (t1))

t1S(0)
, (12)

where the first-order Taylor expansion ex ≈ 1 + x is used in
equations (11) and (12). By substituting k1 ≡ c1e−μt1

S(0)
−1, q1 ≈

(k1−1)(1−σ W (t1))
t1

into equation (4), the stock price at any time
t ∈ [t1, t2] can be approximated by the lognormal diffusion
process expressed as follows:

S(t) ≈ S(0)e(μt−k1+1)+k1σ W (t1)+σ(W (t)−W (t1)). (13)

Thus, the stock return for the time interval [t1, t2] can be ex-
pressed as a drifted Brownian motion and Theorem 2.1 can
be applied to solve the joint density of the stock price at time
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Pricing barrier stock options with discrete dividends 1371

t2 and the maximum stock price for this time interval. The
aforementioned procedure can be repeated to find the log-
normal diffusion process that approximates the stock price
process between the exdividend dates t2 and t3. Again, the
discrete stock price jump due to the payout of the dividend c2
is approximated by the accumulated price decrement caused
by a continuous dividend yield q2 paid from time t1 to time t2;
that is,

S(t) =
(

S(t1)e
μ(t2−t1)+σ(W (t2)−W (t1)) − c2

)
× eμ(t−t2)+σ(W (t)−W (t2))

= S(0)e(μ−q1)t1+σ W (t1)

× e(μ−q2)(t2−t1)+σ(W (t2)−W (t1))eμ(t−t2)+σ(W (t)−W (t2)).

(14)

Note that q2 can be approximately solved by the first-order
Taylor expansion to obtain

q2 ≈ (k2 − 1) [1 − k1σ W (t1) − σ(W (t2) − W (t1))]

t2 − t1
, (15)

where k2 ≡ c2e−μt2+k1−1

S(0)
− 1. Therefore, the stock price at

time t ∈ [t2, t3] can be approximated by a lognormal diffusion
process by substituting equation (15) into equation (14) to
obtain

S(t) ≈ S(0)

× e(μt−k1−k2+2)+k1k2σ W (t1)+k2σ(W (t2)−W (t1))+σ(W (t)−W (t2)).

(16)

Note that the aforementioned procedure can be repeatedly
applied to obtain lognormal diffusion processes for approx-
imating the stock price processes in time intervals [t3, t4],
[t4, t5], . . ., and so on. For simplicity, the following discussion
will focus on the time interval [0, t3]. The approximated stock
price process Ŝ(t) used to derive the pricing formulae later
is constructed by combining equations (1), (13) and (16) as
follows:

Ŝ(t) =

⎧⎪⎪⎨
⎪⎪⎩

S(0)eμt+σ W (t) 0 ≤ t < t1,
S(0)e(μt−k1+1)+k1σ W (t1)+σ(W (t)−W (t1)) t1 ≤ t < t2,
S(0)e(μt−k1−k2+2)+k1k2σ W (t1)+k2σ(W (t2)

−W (t1))+σ(W (t)−W (t2)) t2 ≤ t < t3.
(17)

To derive the pricing formulae with Theorem 2.1, the stock
return for any time interval listed in equation (17) should be
reexpressed in terms of a drifted Brownian motion. First, the
stock price process Ŝ(t) for the first time interval [0, t1) can be
reexpressed as

S(0)eσ Ŵ (t), (18)

where Ŵ (t) ≡ αt + W (t), and α ≡ μ/σ . The stock price pro-
cess Ŝ(t) for the second time interval [t1, t2) can be reexpressed
as follows:

Ŝ(t) = S
′
(0)ek1σ Ŵ (t1)+σ Ŵ1(t−t1), (19)

where the drifted Brownian motion Ŵ1(t − t1) is defined as
α(t − t1) + (W (t) − W (t1)), and S

′
(0) ≡ S(0)e(1−k1)(1+μt1).

Note that Ŵ (t1) is Ft1 measurable given that the collection
of σ -algebras Fτ , 0 ≤ τ ≤ T , is a filtration generated by
the Brownian motion W (τ ). Thus Theorem 2.1 can be used
to derive the conditional joint density of random variables

maxt1≤t≤t2

(
Ŵ1(t − t1)

)
and Ŵ1(t2 − t1) based on the infor-

mation of Ft1 . The stock price process Ŝ(t) for the third time
interval t ∈ [t2, t3) can be reexpressed as

Ŝ(t) = S
′′
(0)ek1k2σ Ŵ (t1)+k2σ Ŵ1(t2−t1)+σ Ŵ2(t−t2), (20)

where S
′′
(0) ≡ S(0)e(μt−k1−k2+2)−k1k2μt1−k2μ(t2−t1)−μ(t−t2),

and Ŵ2(t − t2) ≡ α(t − t2) + (W (t) − W (t2)). Note that both
Ŵ (t1) and Ŵ1(t2 − t1) are Ft2 measurable. Theorem 2.1 can
again be used to derive the conditional joint density of random
variables maxt2≤t≤t3

(
Ŵ2(t − t2)

)
and Ŵ2(t3−t2) based on the

information of Ft2 . By combining equations (18), (19) and (20),
the approximated stock price process Ŝ(t) can be rewritten as

Ŝ(t) =

⎧⎪⎨
⎪⎩

S(0)eσ Ŵ (t) 0 ≤ t < t1,

S
′
(0)ek1σ Ŵ (t1)+σ Ŵ1(t−t1) t1 ≤ t < t2,

S
′′
(0)ek1k2σ Ŵ (t1)+k2σ Ŵ1(t2−t1)+σ Ŵ2(t−t2) t2 ≤ t < t3.

(21)

3.2. Evaluate the integration of exponential functions

The pricing formulae in this paper can be expressed in terms of
a multiple integration of an exponential function, the exponent
term of which is a quadratic function of integrators. Theorem
3.1 shows that such an integration can be expressed as a CDF
of a multi-variate normal distribution by taking advantage of
some matrix and vector calculations. For convenience, for any
matrix �, we use |�|, �T and �−1 to denote the determinant,
the transpose, and the inverse of �. �i, j stands for the element
located in the i-th row and j-th column of �. For any vector
ν, we use νi to denote the i-th element of ν.

Theorem 3.1 Let x and B be an n×1 constant vector, C be
a constant, and A be an n × n symmetric invertible negative-
definite constant matrix. For any general quadratic formula
xT Ax + BT x + C, the n-variate integral for exT Ax+BT x+C∫ pn

−∞

∫ pn−1

−∞
· · ·
∫ p1

−∞
exT Ax+BT x+Cdx (22)

can be expressed in terms of a CDF of an n-dimensional stan-
dard normal distribution FY1,Y2,...,Yn with covariance matrix

 as follows:

eC
′
√

πn

| − A| FY1,Y2,...,Yn

×
(

p1 − m1

S1,1
,

p2 − m2

S2,2
, . . . ,

pn − mn

Sn,n
, 


)
, (23)

where the vector m = (m1, m2, . . . , mn) ≡ − 1
2 A−1B, C

′ ≡
C − 1

4 BT A−1B, 
 ≡ (−2SAS)−1, and S is a n × n diagonal
matrix defined as

Si, j ≡
{√

((−2A)−1)i,i if i = j
0 otherwise

.

Proof See Appendix A. �

4. Analytical formulae

We will first derive the approximating analytical pricing
formula for the up-and-out barrier call with a single discrete

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

8:
13

 2
4 

D
ec

em
be

r 
20

14
 



1372 T.-S. Dai and C.-Y. Chiu

dividend in section 4.1. This approach can be extended to
derive the pricing formula for the multi-dividend case as dis-
cussed in section 4.2.

4.1. The single-discrete-dividend case

Since only one dividend is paid during the life of the option,
the option maturity date T is later than the first exdividend date
t1 but earlier than the second exdividend date t2 (i.e. t1 < T <

t2). The call option value Ċ can be evaluated by applying the
risk-neutral valuation method to the approximated stock price
process Ŝ(t) defined in equation (21) as follows:

Ċ ≡ e−rT E
[
(Ŝ(T ) − K )1{Ė1∩Ė2∩Ė3

}] , (24)

where Ė1, Ė2 denote the events that the stock price process
does not hit the barrier B during the time intervals [0, t1) and
[t1, T ], respectively, and Ė3 denotes the event that the option is
in the money at the maturity date. Specifically, the three events
Ė1, Ė2and Ė3 are defined as follows:

Ė1 ≡
{

Ŝ(t) < B, ∀t ∈ [0, t1)
}

,

Ė2 ≡
{

Ŝ(t) < B, ∀t ∈ [t1, T ]
}

,

Ė3 ≡
{

Ŝ(T ) > K
}

. (25)

To evaluate the option value, we derive the joint density
of the maximum stock prices over the time interval [0, t1)
and [t1, T ] and the stock price at time t1 and T by Theorem
2.1. Define M̂(t1) ≡ max0≤t<t1 Ŵ (t) as the maximum value
of Ŵ (t) over the time interval [0, t1), and M̂1(T − t1) ≡
maxt1≤t≤T Ŵ1(t −t1) as the maximum value of Ŵ1(t −t1) over
the time interval [t1, T ]. Thus the three events Ė1, Ė2and Ė3
can be rewritten by substituting the definition of Ŝ(t) defined
in equation (21) into equation (25) to obtain

Ė1 =
{

S(0)eσ M̂(t1) < B
}

=
{

M̂(t1) < b
}

,

Ė2 =
{

S
′
(0)ek1σ Ŵ (t1)+σ M̂1(T −t1) < B

}
=
{

M̂1(T − t1) < b
′ − k1Ŵ (t1)

}
,

Ė3 =
{

S
′
(0)ek1σ Ŵ (t1)+σ Ŵ1(T −t1) > K

}
=
{

Ŵ1(T − t1) > k
′ − k1Ŵ (t1)

}
,

where b, b
′

and k
′

represent 1
σ

log B
S(0)

, 1
σ

log B
S′

(0)
and

1
σ

log K
S′

(0)
, respectively. The joint density functions

fM̂(t1),Ŵ (t1)
and f M̂1(T −t1),Ŵ1(T −t1)

can be derived from

Theorem 2.1 as follows:

ḟ M̂(t1),Ŵ (t1)
(m, w)

=
{

2(2m−w)

t1
√

2π t1
e
αw− 1

2 α2t1− 1
2t1

(2m−w)2

if m ≥ w+,

0 otherwise,
(26)

ḟ M̂1(T −t1),Ŵ1(T −t1)
(m1, w1)

=

⎧⎪⎨
⎪⎩

2(2m1−w1)

(T −t1)
√

2π(T −t1)

× e
αw1− 1

2 α2(T −t1)− 1
2(T −t1)

(2m1−w1)
2

if m1 ≥ w+
1 ,

0 otherwise.

(27)

For simplicity, we will use the symbols ḟ0 and ḟ1 to represent
fM̂(t1),Ŵ (t1)

and fM̂1(T −t1),Ŵ1(T −t1)
, respectively. Since the two

drifted Brownian motions Ŵ (t) for t ∈ [0, t1) and Ŵ1(t −
t1) for t ∈ [t1, T ] are independent due to the Markov property
of the Brownian motion, the joint density function of maximum
stock prices over [0, t1) and [t1, T ] and the stock prices at time
t1 and T can be calculated by directly multiplying ḟ0 by ḟ1. By
substituting this joint density function into equation (24), the
analytical pricing formula can be derived by the law of iterated
expectation as follows:

Ċ

= e−rT E

[
E

[
(Ŝ(T ) − K )1{Ė1∩Ė2∩Ė3

}∣∣∣∣Ŵ (t1), M̂(t1)

]]

= e−rT
∫ ∞

−∞

∫ b

−∞

∫ ∞

k′−k1w

∫ b
′−k1w

−∞
×
(

S
′
(0)ek1σw+σw1 −K

)
ḟ1(m1, w1) ḟ0(m, w)dm1dw1dmdw

(28)

= e−rT
∫ b

−∞

∫ b

w+

∫ b
′−k1w

k′−k1w

∫ b
′−k1w

w+
1

×
(

S
′
(0)ek1σw+σw1 − K

)
ḟ1(m1, w1) ḟ0(m, w)dm1dw1dmdw

(29)

where the domain of the integral in equation (29) is obtained
by mimicking the analysis in figure 1; it is derived by taking
the intersection of the supports of ḟ1(m1, w1) and ḟ0(m0, w0)

with the integral domain in equation (28). In the integrand
in equation (29), only ḟ0(m, w) contains the integrator m and
f1(m1, w1) contains the integrator m1. Therefore,∫ b
w+ ḟ0(m, w)dm and

∫ b
′−k1w

w+
1

ḟ1(m1, w1)dm1 can be

integrated separately by Lemma 2.2 as follows:

Ċ = e−rT
∫ b

−∞

∫ b
′−k1w

k′−k1w

(
S

′
(0)ek1σw+σw1 − K

)

×
(∫ b

′−k1w

w+
1

2(2m1 − w1)

(T − t1)
√

2π(T − t1)

× e
αw1− 1

2 α2(T −t1)− 1
2(T −t1)

(2m1−w1)
2

dm1

)

×
(∫ b

w+
2(2m − w)

t1
√

2π t1
e
αw− 1

2 α2t1− 1
2t1

(2m−w)2

dm

)
dw1dw.

(30)

The variables in the lower and the upper limits for the above
integral can be eliminated by the change of variables; that is,
we substitute x = w1 + k1w and y = w into equation (30) to
obtain†

Ċ = e−rT
∫ b

−∞

∫ b
′

k′

(
S

′
(0)eσ x − K

)
(31)

× 1√
2π(T − t1)

e
α(x−k1 y)− 1

2 α2(T −t1)− (x−k1 y)2

2(T −t1)

×
⎛
⎜⎝1 − e

2

(
b
′ −k1 y

)(
x−k1 y−

(
b
′ −k1 y

))
T −t1

⎞
⎟⎠

†Note that the Jacobian determinant ∂(w1,w)
∂(x,y)

= 1.
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Pricing barrier stock options with discrete dividends 1373

× 1√
2π t1

e
αy− 1

2 α2t1− y2

2t1

(
1 − e

2b(y−b)
t1

)
dxdy.

= e−rT
∫ b

−∞

∫ b
′

k′ I (1) + I (2) + I (3) + I (4)

+ I (5) + I (6) + I (7) + I (8)dxdy, (32)

where the integrand I (1) is defined as

I (1) ≡ − K

2π
√

(T − t1) t1

× e
− y2

2t1
+αy+α(x−yk1)− 1

2 α2(T −t1)− α2t1
2 − (x−yk1)

2

2(T −t1) ,

I (2) ≡ −I (1)e

2(x−b
′
)

(
b
′ −yk1

)
T −t1 , I (3) ≡ −I (1)e

2b(y−b)
t1 and

I (4) ≡ I (1)e

2

(
x−b

′)(
b
′ −yk1

)
T −t1

+ 2b(y−b)
t1 . These four terms are ob-

tained by multiplying the strike price K (in the first line) by the
terms in the following two lines of equation (31). I (5), I (6),
I (7) and I (8), which are obtained by multiplying S′(0)eσ x (in
the first line) by the terms in the following two lines of equation
(31) , are defined as

I (i) = − S′(0)

K
I (i − 4)eσ x , i = 5, . . . , 8. (33)

Since each exponent term of the integrands I (1), I (2), · · · ,

I (8) is a quadratic polynomial of integrators x and y, the
double integral of each integrand can be expressed in terms
of a bivariate normal CDF by the following Corollary:

Corollary 4.1 The double integral G with the following
format can be expressed in terms of the CDF of a bivariate
standard normal distribution FY1,Y2 as follows:

G(p, q, a1, a2, a3, a4, a5, a6)

≡
∫ q

−∞

∫ p

−∞
ea1x2+a2xy+a3 y2+a4x+a5 y+a6 dxdy

= 2π√
�

exp

(
a6 + a2a4a5 − a3a2

4 − a1a2
5

�

)

× FY1,Y2

⎛
⎝

√
�p + 2a3a4−a2a5√

�√−2a3
,

√
�q + 2a1a5−a2a4√

�√−2a1
, 


⎞
⎠ ,

(34)

where � ≡ 4a1a3 − a2
2 , and 
 ≡

(
1 a2

2
√

a1a3
a2

2
√

a1a3
1

)
.

Proof It can be easily derived from Theorem 3.1 and is proved
in Appendix B. �

With Corollary 4.1, the double integrals of I (1), I (2), · · · ,

I (8) can be converted into CDFs of bivariate normal distribu-
tions. For example, the integral of I (1) can be rewritten as

∫ b

−∞

∫ b
′

k′ I (1)dxdy =
∫ b

−∞

∫ b
′

k′ − K

2π
√

(T − t1) t1
e
− y2

2t1
+αy+α(x−yk1)− 1

2 α2(T −t1)− α2t1
2 − (x−yk1)

2

2(T −t1) dxdy

= − K

2π
√

(T − t1) t1

⎛
⎝∫ b

−∞

∫ b
′

−∞
e
− 1

2(T −t1)
x2+ k1

T −t1
xy−

(
k2
1

2(T −t1)
+ 1

2t1

)
y2+αx+(α−αk1)y− T α2

2
dxdy

−
∫ b

−∞

∫ k
′

−∞
e
− 1

2(T −t1)
x2+ k1

T −t1
xy−

(
k2
1

2(T −t1)
+ 1

2t1

)
y2+αx+(α−αk1)y− T α2

2
dxdy

⎞
⎠ . (35)

Define a1(1) ≡ − 1
2(T −t1)

, a2(1) ≡ k1
T −t1

, a3(1) ≡
−
(

k2
1

2(T −t1)
+ 1

2t1

)
, a4(1) ≡ α, a5(1) ≡ (α − αk1), a6(1) ≡

− T α2

2 as the coefficients of x2, xy, y2, x, y and the constant
term, respectively, of the exponential term of the integrand
I (1) in equation (35). By Corollary 4.1, equation (35) can be
rewritten in terms of bivariate normal CDFs as follows:

− K

2π
√

(T − t1) t1

2π√
�(1)

exp

(
a6(1) + a2(1)a4(1)a5(1) − a3(1)a4(1)2 − a1(1)a5(1)2

�(1)

)

×
⎡
⎣FY1,Y2

⎛
⎝

√
�(1)b

′ + 2a3(1)a4(1)−a2(1)a5(1)√
�(1)√−2a3(1)

,

√
�(1)b + 2a1(1)a5(1)−a2(1)a4(1)√

�(1)√−2a1(1)
,
(1)

⎞
⎠

−FY1,Y2

⎛
⎝

√
�(1)k

′ + 2a3(1)a4(1)−a2(1)a5(1)√
�(1)√−2a3(1)

,

√
�(1)b + 2a1(1)a5(1)−a2(1)a4(1)√

�(1)√−2a1(1)
,
(1)

⎞
⎠
⎤
⎦ ,

(36)

where �(1), 
(1) are obtained by substituting a1(1), a2(1),

· · · , a6(1) into Corollary 4.1 as follows:

�(1) ≡ 4a1(1)a3(1) − a2(1)2,


(1) ≡
(

1 a2(1)

2
√

a1(1)a3(1)
a2(1)

2
√

a1(1)a3(1)
1

)
.

For convenience, we rewrite equation (36) as follows:

D(1)[G(b
′
, b, a1(1), a2(1), a3(1), a4(1), a5(1), a6(1))

− G(k
′
, b, a1(1), a2(1), a3(1), a4(1), a5(1), a6(1))],

where D(1) ≡ − K
2π

√
(T −t1)t1

, and G is defined in equation
(34). Similarly, the double integrals for I (2), I (3), . . ., I (8) in
equation (32) can all be expressed as
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1374 T.-S. Dai and C.-Y. Chiu

∫ b

−∞

∫ b
′

k′ I (i)dxdy

= D(i)[G(b
′
, b, a1(i), a2(i), a3(i), a4(i), a5(i), a6(i))

− G(k
′
, b, a1(i), a2(i), a3(i), a4(i), a5(i), a6(i))],

where a1(i), a2(i), a3(i), a4(i), a5(i) and a6(i) denote the
coefficients of x2, xy, y2, x, y and the constant term of the
exponential term of I (i). Specifically, the parameters are given
by a1(i) = a1(1), a3(i) = a3(1), a2(i) = (−1)i+1a2(1) for
i = 2, 3, · · · , 8, and D(i), a4(i), a5(i) and a6(i) are given by
the following table:

i D(i) a4(i) a5(i) a6(i)

2
K

2π
√

(T − t1)t1

2b
′

T − t1
+ α α + k1

(
2b

′

T − t1
− α

)
− 4b

′ 2 + T 2α2 − T α2t1
2T − 2t1

3
K

2π
√

(T − t1)t1
α

2b

t1
+ α − αk1 − 2b2

t1
− T α2

2

4 − K

2π
√

(T − t1)t1

2b
′

T − t1
+ α

2b

t1
+ α + k1

(
2b

′

T − t1
− α

)
− 2b2

t1
− T α2

2
− 2b

′ 2

T − t1

5
S

′
(0)

2π
√

(T − t1)t1
α + σ α − αk1 − T α2

2

6 − S
′
(0)

2π
√

(T − t1)t1

2b
′

T − t1
+ α + σ α + k1

(
2b

′

T − t1
− α

)
− 4b

′ 2 + T 2α2 − T α2t1
2T − 2t1

7 − S
′
(0)

2π
√

(T − t1)t1
α + σ

2b

t1
+ α − αk1 − 2b2

t1
− T α2

2

8
S

′
(0)

2π
√

(T − t1)t1

2b
′

T − t1
+ α + σ

2b

t1
+ α + k1

(
2b

′

T − t1
− α

)
− 2b2

t1
− T α2

2
− 2b

′ 2

T − t1

Thus, the option pricing formula in equation (32) can be
rewritten as

Ċ

= e−rT
∫ b

−∞

∫ b
′

k′ I (1) + I (2) + · · · + I (8)dxdy = e−rT

×
8∑

i=1

[
D(i)[G(b

′
, b, a1(i), a2(i), a3(i), a4(i), a5(i), a6(i))

− G(k
′
, b, a1(i), a2(i), a3(i), a4(i), a5(i), a6(i))]

]
.

Note that if the upper barrier B tends to infinity, the up-
and-out call degenerates into a vanilla call option. Indeed,
both b

(
= 1

σ
log B

S(0)

)
and b

′ (= 1
σ

log B
S′

(0)

)
tend to infinity

as B → ∞, and our pricing formula degenerates into the
approximating formula for pricing vanilla stock call options
with one discrete dividend derived in Dai and Lyuu (2009).

4.2. Multi-discrete-dividend case

The above approach can be repeatedly applied to derive ap-
proximated pricing formulae for barrier stock options with
multiple discrete dividends. For simplicity, we derive the pric-
ing formula for the two-dividend case in this section. The
extensions for cases involving three or more dividends are
straightforward. Note that t1 < t2 < T < t3 in the two-
dividend case.

To evaluate the option, we need to derive the joint density
function of the maximum stock prices over the time intervals
[0, t1), [t1, t2) and [t2, T ] and the stock price at the maturity
date T . Define M̂1(t2 − t1) ≡ maxt1≤t<t2 Ŵ1(t − t1) as the
maximum value of Ŵ1(t) over the time interval [t1, t2) and
M̂2(T − t2) ≡ maxt2≤t≤T Ŵ2(t − t2) as the maximum value of
Ŵ2(t) over the time interval [t2, T ]. The joint density function
of M̂1(t2 − t1) and Ŵ1(t2 − t1), and the joint density function
of M̂2(T − t2) and Ŵ2(T − t2) can be derived by applying
Theorem 2.1 as follows:

fM̂1(t2−t1),Ŵ1(t2−t1)
(m1, w1)

=

⎧⎪⎨
⎪⎩

2(2m1−w1)

(t2−t1)
√

2π(t2−t1)

×e
αw1− 1

2 α2(t2−t1)− 1
2(t2−t1)

(2m1−w1)
2

if m1 ≥ w+
1 ,

0 otherwise, (37)

fM̂2(T −t2),Ŵ2(T −t2)
(m2, w2)

=

⎧⎪⎨
⎪⎩

2(2m2−w2)

(T −t2)
√

2π(T −t2)

×e
αw2− 1

2 α2(T −t2)− 1
2(T −t2)

(2m2−w2)
2

if m2 ≥ w+
2 ,

0 otherwise.

For simplicity, we use f̈0, f̈1 and f̈2 to represent the density
functions f M̂(t1),Ŵ (t1)

(see equation (26)), f M̂1(t2−t1),Ŵ1(t2−t1)
and f M̂2(T −t2),Ŵ2(T −t2)

, respectively. Note that the drifted Brow-

nian motions Ŵ (t) for t ∈ [0, t1), Ŵ1(t − t1) for t ∈ [t1, t2)
and Ŵ2(t − t2) for t ∈ [t2, t3] are independent due to the
Markov property of the Brownian motion; therefore, the joint
density function of maximum stock prices over [0, t1), [t1, t2)
and [t2, T ] and the stock prices at time t1, t2 and T can be
calculated by directly multiplying f̈0 by f̈1 and f̈2.

The option value can be evaluated by the risk-neutral vari-
ation method as follows:

C̈ ≡ e−rT E
[
(Ŝ(T ) − K )1{Ë1∩Ë2∩Ë3∩Ë4

}] , (38)

where Ë1, Ë2 and Ë3 represent the events that the stock price
process does not hit the barrier B during the time intervals
[0, t1), [t1, t2) and [t2, T ], respectively, and Ë4 denotes the
event that the stock price at maturity is greater than the strike
price. Specifically, Ë1, Ë2, Ë3 and Ë4 are defined as

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

8:
13

 2
4 

D
ec

em
be

r 
20

14
 



Pricing barrier stock options with discrete dividends 1375

Ë1 =
{

S(0)eσ M̂(t1) < B
}

=
{

M̂(t1) < b
}

,

Ë2 =
{

S
′
(0)ek1σ Ŵ (t1)+σ M̂1(t2−t1) < B

}
=
{

M̂1(t2 − t1) < b
′ − k1Ŵ (t1)

}
,

Ë3 =
{

S
′′
(0)ek1k2σ Ŵ (t1)+k2σ Ŵ1(t2−t1)+σ M̂2(T −t2) < B

}
=
{

M̂2(T − t2) < b
′′ − k1k2Ŵ (t1) − k2Ŵ1(t2 − t1)

}
,

Ë4 =
{

S
′′
(0)ek1k2σ Ŵ (t1)+k2σ Ŵ1(t2−t1)+σ Ŵ2(T −t2) < K

}
=
{

Ŵ2(T − t2) < k
′′ − k1k2Ŵ (t1) − k2Ŵ1(t2 − t1)

}
,

where k
′′ ≡ 1

σ
log K

S′′
(0)

, and b
′′ ≡ 1

σ
log B

S′′
(0)

, respectively.
Thus, we can compute the pricing formula in equation (38) by
applying the law of iterated expectation as follows:

C̈ (39)

= e−rT E
[

E
[

E
[
(Ŝ(T ) − K )1{Ë1∩Ë2∩Ë3∩Ë4

}∣∣∣∣Ŵ (t1), M̂(t1), Ŵ1(t2 − t1), M̂1(t2 − t1)

] ∣∣∣∣Ŵ (t1), M̂(t1)

]]

= e−rT
∫ ∞

−∞

∫ b

−∞

∫ ∞

−∞

∫ b
′−k1w

−∞

∫ ∞

k′′−k1k2w−k2w1

×
∫ b

′′−k1k2w−k2w1

−∞

(
S

′′
(0)ek1k2σw+k2σw1+σw2 − K

)
× f̈2(m2, w2)· f̈1(m1, w1)· f̈0(m, w)dm2dw2dm1dw1dmdw

(40)

= e−rT
∫ b

−∞

∫ b

w+

∫ b
′−k1w

−∞

∫ b
′−k1w

w+
1

∫ b
′′−k1k2w−k2w1

k′′−k1k2w−k2w1

×
∫ b

′′−k1k2w−k2w1

w+
2

(
S

′′
(0)ek1k2σw+k2σw1+σw2 − K

)
× f̈2(m2, w2)· f̈1(m1, w1)· f̈0(m, w)dm2dw2dm1dw1dmdw,

(41)

where the domain of the integral in equation (41) is obtained by
taking the intersection of the supports of f̈2(m2, w2),
f̈1(m1, w1) and f̈0(m, w) with the integral domain in equa-
tion (40). Since only f̈2(m2, w2) contains the integrator m2,
f̈1(m1, w1) contains m1, and f̈0(m, w) contains m in the inte-
grand in equation (41),

∫
f̈0(m, w)dm,

∫
f̈1(m1, w1)dm1 and∫

f̈2(m2, w2)dm2 can be simplified by applying Lemma 2.2
as follows:

C̈ = e−rT
∫ b

−∞

∫ b
′−k1w

−∞

∫ b
′′−k1k2w−k2w1

k′′−k1k2w−k2w1(
S

′′
(0)ek1k2σw+k2σw1+σw2 − K

)

×
(∫ b

′′−k1k2w−k2w1

w+
2

2(2m2 − w2)

(T − t2)
√

2π(T − t2)

e
αw2− 1

2 α2(T −t2)− 1
2(T −t2)

(2m2−w2)
2

dm2

)

×
(∫ b

′−k1w

w+
1

2(2m1 − w1)

(t2 − t1)
√

2π(t2 − t1)

e
αw1− 1

2 α2(t2−t1)− 1
2(t2−t1)

(2m1−w1)
2

dm1

)

×
(∫ b

w+
2(2m − w)

t1
√

2π t1

e
αw− 1

2 α2t1− 1
2t1

(2m−w)2

dm

)
dw2dw1dw.

To eliminate the variables in the lower and the upper limits for
the integrals on w1 and w2, the equations x = w2 + k2w1 +
k1k2w, y = w1 + k1w and z = w are substituted into the
aforementioned formula to obtain†

C̈ = e−rT
∫ b

−∞

∫ b
′

−∞

∫ b
′′

k′′

(
S

′′
(0)eσ x − K

)

× 1√
2π(T − t2)

e
α(x−k2 y)− 1

2 α2(T −t2)− (x−k2 y)2

2(T −t2)

×
⎛
⎜⎝1 − e

2

(
b
′′ −k2 y

)(
x−k2 y−

(
b
′′ −k2 y

))
(T −t2)

⎞
⎟⎠

× 1√
2π(t2 − t1)

e
α(y−k1z)− 1

2 α2(t2−t1)− (y−k1z)2

2(t2−t1)

×
⎛
⎜⎝1 − e

2

(
b
′ −k1z

)(
y−k1z−

(
b
′ −k1z

))
(t2−t1)

⎞
⎟⎠

× 1√
2π t1

e
αz− 1

2 α2t1− z2
2t1

(
1 − e

2b(z−b)
t1

)
dxdydz

= e−rT
∫ b

−∞

∫ b
′

−∞

∫ b
′′

k′′

16∑
i=1

J (i)dxdydz, (42)

where J (1), J (2), · · · , J (8) are defined in table 1, and
J (9), J (10), · · · , J (16) are defined as

J (i) = − S′′(0)

K
J (i − 8)exσ , i = 9, . . . , 16.

Since the exponent term of each of the integrands J (1),
J (2), · · · , J (16) is a quadratic form of the integrators x , y and
z, the triple integral of each integrand can be expressed in terms
of a trivariate normal CDF by the following corollary:

Corollary 4.2 The triple integral with the following for-
mat can be expressed in terms of a CDF of a trivariate standard
normal distribution FY1,Y2,Y3 as follows:

p, q, r, a1, a2, · · · , a10) ≡
∫ r

−∞

∫ q

−∞

∫ p

−∞
ea1x2+a2 y2+a3z2+a4xy+a5 yz+a6xz+a7x+a8 y+a9z+a10dxdydz

= eC
′
√

π3

| − A| FY1,Y2,Y3

(
p1 − m1

S1,1
,

p2 − m2

S2,2
,

p3 − m3

S3,3
, 


)
,

(43)

where

A =
⎛
⎜⎝

a1
a4
2

a6
2

a4
2 a2

a5
2

a6
2

a5
2 a3

⎞
⎟⎠ , B =

⎛
⎝a7

a8
a9

⎞
⎠ , S =

⎛
⎝S1,1 0 0

0 S2,2 0
0 0 S3,3

⎞
⎠ ,

S j, j =
√

((−2A)−1) j, j , m = − 1
2 A−1 B, C

′= a10− 1
4 BTA−1 B,

and 
 = (−2SAS)−1.

†Note that the Jacobian determinant ∂(w2,w1,w)
∂(x,y,z) is 1.
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1376 T.-S. Dai and C.-Y. Chiu

Table 1. The definitions of J (1), J (2), . . ., J (8).

Define ζ as
√

8π3(T − t2)(t2 − t1)t1, and η as − z2

2t1
+ αz + α (y − zk1) + α (x − yk2) − α2t1

2 − 1
2α2 (T − t2) − 1

2α2 (t2 − t1)−
(x−yk2)

2

2(T −t2)
− (y−zk1)

2

2(t2−t1)

J (1) = − K
ζ eη, J (2) = K

ζ e
η+ 2b(z−b)

t1 ,

J (3) = K
ζ e

η+
2

(
x−b

′′)(
b
′′ −yk2

)
T −t2 , J (4) = − K

ζ e
η+ 2b(z−b)

t1
+

2

(
x−b

′′)(
b
′′ −yk2

)
T −t2 ,

J (5) = K
ζ e

η+
2

(
y−b

′)(
b
′ −zk1

)
t2−t1 , J (6) = − K

ζ e
η+ 2b(z−b)

t1
+

2

(
y−b

′)(
b
′ −zk1

)
t2−t1 ,

J (7) = − K
ζ e

η+
2

(
x−b

′′)(
b
′′ −yk2

)
T −t2

+
2

(
y−b

′)(
b
′ −zk1

)
t2−t1 , J (8) = K

ζ e
η+ 2b(z−b)

t1
+

2

(
x−b

′′)(
b
′′ −yk2

)
T −t2

+
2

(
y−b

′)(
b
′ −zk1

)
t2−t1 ,

Proof This corollary can be easily derived from
Theorem 3.1. �

Let a1(i), a2(i), a3(i), a4(i), a5(i), a6(i), a7(i), a8(i), a9(i)
and a10(i) be the coefficients of x2, y2, z2, xy, yz, xz, x , y,
z and the constant term, respectively, of the exponential term
of the integrand J (i) in table 1. These coefficients are listed in
Appendix C. The triple integrals of J (i) in equation (42) can be
expressed in terms of CDFs of trivariate normal distributions
by applying Corollary 4.2 as follows:∫ b

−∞

∫ b
′

−∞

∫ b
′′

k′′ J (i)dxdydz = E(i)[H(b
′′
, b

′
, b, a1(i), a2(i),

· · · , a10(i)) − H(k
′′
, b

′
, b, a1(i), a2(i), · · · , a10(i))], (44)

where the function H is defined in equation (43), and the
function E(i) is defined as follows:

E(2) = E(3) = E(5) = E(8) = K√
8π3(T − t2)(t2 − t1)t1

,

E(1) = E(4) = E(6) = E(7) = −E(2),

E(9) = E(12) = E(14) = E(15) = S
′′
(0)√

8π3(T − t2)(t2 − t1)t1
,

E(10) = E(11) = E(13) = E(16) = −E(9),

By substituting equation (44) into equation (42), the option
price formula for the two-dividend case is derived as follows:

C̈ = e−rT
∫ b

−∞

∫ b
′

−∞

∫ b
′′

k′′ J (1) + J (2) + · · · + J (16)dxdydz

= e−rT
16∑

i=1

[
E(i)[H(b

′′
, b

′
, b, a1(i), a2(i), · · · , a10(i))

− H(k
′′
, b

′
, b, a1(i), a2(i), · · · , a10(i))]

]
.

5. Numerical results

Unlike most numerical pricing approaches that might generate
unstable pricing results or hedging parameters (i.e. the Greek
letters) as mentioned in Figlewski and Gao (1999) and Dai and
Lyuu (2010), our approximate pricing formulae can generate
stable pricing results and hedging parameters as illustrated in
figure 2. In panel (a), an up-and-out call option value increases
with the increment of the initial stock price when the stock price

is low. However, the increment of the initial stock price also
increases the probability for the option to knock out (i.e. the
stock price path goes upward to reach the barrier). Therefore,
when the initial stock price is higher than a certain level, say 52
in this numerical example, the option value decreases with the
increment of the initial stock price. This phenomenon can be
confirmed by checking the delta, i.e. the rate of change of the
option price with the price of the underlying stock, as illustrated
in panel (b). The delta smoothly decreases with the increment
of the initial stock price and becomes negative when the stock
price exceeds 52.

To examine the superiority of our pricing formulae, we will
compare the accuracy among our approximation pricing for-
mulae and other approximation formulae in the following ta-
bles. Ours denote the values generated by the approximation
pricing formulae proposed in this paper. We also follow the
Chiras and Manaster (1978) assumption by approximating the
discrete dividends paid over the life of the option with the
equivalent continuous dividend yield q being derived as fol-
lows:

S(0)e−qT = S(0) −
n∑

i=1

ci e
−r ti ,

where n denotes the number of dividends paid during the life
of the option. Then the discrete-dividend barrier option can be
approximately priced by the barrier option pricing formula with
a continuous dividend yield proposed by Reiner and Rubinstein
(1991), and the pricing results generated by this approach are
listed under the ContDiv columns. Besides, we can follow
Model 1 (see Roll 1977) by assuming that the process of the net-
of-dividend stock price SN (t) follows a lognormal diffusion
process. In addition, the initial net-of-dividend stock price is
defined as

SN (0) ≡ S(0) −
n∑

i=1

ci e
−r ti .

Thus the discrete-dividend barrier option can be approximately
priced by the Reiner and Rubinstein (1991) formula with the
initial stock price being replaced by SN (0). The prices gener-
ated by this approach are listed under the Model1 columns.†

†Frishling (2002) argues that Model 1 could incorrectly render a
down-and-out barrier option worthless because the net-of-dividend
stock price may reach the barrier for a large present value of future
dividend payments.
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Pricing barrier stock options with discrete dividends 1377

(a) (b)

Figure 2. Option value and delta. Notes: The x-axes in both panels denote the initial stock price. The y-axes in panel (a) and (b) denote the
up-and-out call price and the delta, respectively. The risk-free rate is 3%, the volatility is 20%, the strike price is 50, the barrier is 65 and the
time to maturity is 1 year. A discrete dividend 1 is paid at 0.5 year.

Table 2 illustrates how the changes in the initial stock prices
influence the option values and the accuracy of the aforemen-
tioned three pricing formulae. Similar to figure 2(a), the option
value first increases and then decreases with the increment of
the initial stock price. Similar to the phenomenon observed in
Frishling (2002) for pricing vanilla options, different dividend-
approximation models would generate very different prices.
Here, we use a Monte Carlo simulation (denoted as MC) with
1 000 000 trials and a binomial lattice† (denoted as L) as
proxy benchmarks. Recall that Frishling (2002), Bender and
Vorst (2001), and Bos and Vandermark (2002) argue that only
Model 3 can reflect the reality and generate consistent option
prices. Thus, we use the Monte Carlo simulation as the first
benchmark since it can faithfully model the downward jumps
of the underlying stock price defined in Model 3. However,
Baldi et al. (1999) argue that it might be difficult to obtain
very precise results with the Monte Carlo simulation. Thus,
we add the binomial lattice as another benchmark. It can be
observed that the benchmark values produced by these two
methods are close and coherent. By using the Monte Carlo sim-
ulation as the benchmark, it can be observed that our formula is
more accurate than the other two formulae since the maximum
absolute error (MAE) 0.0089 and the root-mean-squared error
(RMSE) 0.0054 are lower than those for the other two formulae.
In addition, the pricing errors of Model1 are much more
significant than the errors of the other two formulae. Model1
produces very inaccurate results (the percentage of error =
0.1765
0.1932 ≈ 90%) when the initial stock price is high, say, 64.
Using the binomial lattice as the benchmark also produces the
same result. The MAE and the RMSE for ContDiv are 0.0169
and 0.01076, respectively‡. These two values for Model1 are
0.1832 and 0.1163, respectively. They are much higher than the
MAE 0.0013 and theRMSE 0.0010 for Ours. For simplicity, we
will only use the Monte Carlo simulation with 1 000 000 trials
as the benchmark (denoted by Benchmark) in the following
experiments.

Table 3 compares the pricing results under different amounts
of discrete dividend payout. It can be observed that the pric-
ing errors of both ContDiv and Model1 increase with the
amount of the dividend payout, while the pricing errors of
Ours are much smaller. MAE and RMSE of Ours are also

†We thank the anonymous reviewer for providing the benchmark
values generated by the binomial lattice with 20 000 steps.
‡The pricing errors, MAE, and RMSE for ContDiv and Model1 are
not listed in table 2 for simplicity.

Figure 3. Evaluating vulnerable bonds. Notes: The issuing firm
value is 5000, the volatility of the firm value is 25%, an exogenously
given default boundary is 2400, the firm repays a debt amounting
to $150 at year 1.5, and the risk-free rate is 2%. The x-axis denotes
the maturity of another unsecured debt with a face value of 3000
and the y-axis denotes the price of that debt. The pricing results for
the unsecured debt generated by our formulae are marked by solid
squares. Solid triangles denote the pricing results generated under the
constant continuous payout ratio assumption.

smaller than those of ContDiv and Model1. Table 4 illus-
trates the pricing results under different stock price volatilities.
Note that the value of an up-and-out call decreases with the
increment in the stock price volatility since a higher volatil-
ity implies a higher ‘knock out’ probability. It can also be
observed that MAE and RMSE of Ours are all smaller than
10−2, while MAE and RMSE of both ContDiv and Model1
are much higher. Table 5 analyses the impacts of changing
the exdividend date on the option value. By observing the
Benchmark column, the benchmark value decreases as the
first exdividend date t1 increases. Our formula successfully
captures this phenomenon, while the other two approaches fail.

Next, we extend our comparison to the two-dividend case.
The underlying stock is assumed to pay two dividends at year
0.5 and year 1 and the time to maturity is set to 1.5 years.
Tables 6 and 7 illustrate the impacts of changing the initial
stock price and the amount of dividend payments on the option
value. Again, MAE and RMSE of Ours are also smaller than
those of ContDiv and Model1. Thus, we conclude that our
pricing formulae can provide more accurate and consistent
pricing results than other models.

Our option pricing model can be applied to extend the ap-
plicability of the first-passage model. A hypothetical example
to analyse the impact of selling the firm’s asset to finance the
repayment of one junior debt on the value of another unse-
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1378 T.-S. Dai and C.-Y. Chiu

Table 2. Comparing the effect of changing initial stock prices on pricing barrier calls with a single discrete dividend.

S(0) MC L Ours error(MC) error(L) ContDiv error(MC) Model1 error(MC)

46 1.1265 1.1247 1.1260 0.0005 0.0013 1.1124 0.0141 1.1336 0.0071
48 1.3456 1.3416 1.3427 0.0029 0.0011 1.3317 0.0139 1.3641 0.0184
50 1.5054 1.5015 1.5026 0.0028 0.0011 1.4952 0.0102 1.5417 0.0363
52 1.5829 1.5785 1.5796 0.0033 0.0011 1.5767 0.0062 1.6401 0.0572
54 1.5661 1.5561 1.5571 0.0089 0.0010 1.5598 0.0063 1.6422 0.0762
56 1.4389 1.4299 1.4310 0.0079 0.0011 1.4395 0.0005 1.5423 0.1034
58 1.2112 1.2083 1.2093 0.0019 0.0010 1.2228 0.0116 1.3463 0.1352
60 0.9164 0.9097 0.9106 0.0059 0.0009 0.9266 0.0102 1.0700 0.1536
62 0.5667 0.5597 0.5602 0.0065 0.0005 0.5745 0.0078 0.7358 0.1691
64 0.1932 0.1865 0.1868 0.0065 0.0003 0.1932 0.0000 0.3697 0.1765

MAE 0.0089 0.0013 0.0141 0.1765
RMSE 0.0054 0.0010 0.0093 0.1109

Notes: All other numerical settings are the same as those in figure 2 except that the initial stock prices are listed in the first column. MC and L denote the Monte
Carlo simulation and the lattice method, respectively. ‘error(MC)’ (or ‘error(L)’) denote the absolute pricing error between each pricing formula and
the Monte Carlo simulation (or the lattice method). MAE denotes the maximum absolute error and RMSE denotes the root-mean-squared error.

Table 3. Comparing the effect of changing the amount of the dividend payout on pricing barrier calls with a single discrete dividend.

c1 Benchmark Ours error ContDiv error Model1 error

0.3 1.5759 1.5730 0.0029 1.5705 0.0054 1.5857 0.0098
0.6 1.5438 1.5435 0.0003 1.5387 0.0051 1.5680 0.0242
0.9 1.5202 1.5129 0.0073 1.5062 0.0140 1.5486 0.0283
1.2 1.4868 1.4815 0.0053 1.4729 0.0139 1.5273 0.0405
1.5 1.4478 1.4493 0.0015 1.4390 0.0088 1.5044 0.0566
1.8 1.4147 1.4163 0.0017 1.4045 0.0102 1.4798 0.0652
2.1 1.3843 1.3828 0.0015 1.3694 0.0150 1.4538 0.0695
2.4 1.3459 1.3488 0.0030 1.3338 0.0121 1.4262 0.0804

MAE 0.0073 0.0150 0.0804
RMSE 0.0036 0.0112 0.0523

Notes: All settings are the same as the settings in Table 2 except that the initial stock price is set as 50 and that the dividend c1 is listed in the first column.
Benchmark denotes the benchmark value generated by the Monte Carlo simulation. error denotes the absolute pricing error between each pricing formula
and the Monte Carlo simulation.

Table 4. Comparing the effect of changing the stock price volatility on pricing barrier calls with a single discrete dividend.

Volatility Benchmark Ours error ContDiv error Model1 error

0.1 2.0707 2.0756 0.0049 2.0552 0.0154 2.0612 0.0094
0.2 1.5054 1.5026 0.0028 1.4952 0.0102 1.5417 0.0363
0.3 0.7215 0.7167 0.0047 0.7172 0.0043 0.7534 0.0320
0.4 0.3625 0.3611 0.0014 0.3627 0.0002 0.3846 0.0221
0.5 0.2035 0.1998 0.0037 0.2013 0.0022 0.2144 0.0109
0.6 0.1205 0.1197 0.0007 0.1209 0.0004 0.1292 0.0087
0.7 0.0767 0.0764 0.0003 0.0773 0.0006 0.0827 0.0060
0.8 0.0526 0.0511 0.0014 0.0518 0.0007 0.0556 0.0030
0.9 0.0366 0.0356 0.0010 0.0361 0.0005 0.0388 0.0021
1.0 0.0255 0.0255 0.0000 0.0260 0.0005 0.0279 0.0024

MAE 0.0079 0.0929 0.1389
RMSE 0.0042 0.0430 0.0625

Notes: All numerical settings are the same as those settings in table 2 except that the initial stock price is 50 and that the volatility of the stock price is listed in
the first column.

cured senior debt that has an asset sale clause† is illustrated
in figure 3. The firm is assumed to repay the former debt by
the amount $150 at year 1.5, and we vary the maturity of the

†In section 1, we show that allowing the sale of the issuer’s asset
to finance the loan repayments is much more common than putting
restrictions on the asset sale as discussed in Eom et al. (2004) and
Billett et al. (2007).

latter debt to analyse the effect of repaying the former debt
on the value of the latter debt. Similar arguments have been
studied empirically in Linn and Stock (2005). They find strong
support for the following hypothesis: When the junior debt
matures prior to the senior unsecured debt, the security of the
senior unsecured debt is threatened and the default spread (of
the senior debt) increases. One possible explanation is that the
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Pricing barrier stock options with discrete dividends 1379

Table 5. Comparing the effect of changing the exdividend date on pricing barrier calls with a single discrete dividend.

t1 Benchmark Ours error ContDiv error Model1 error

0.1 1.5425 1.5378 0.0047 1.4938 0.0486 1.5408 0.0016
0.2 1.5347 1.5335 0.0012 1.4942 0.0405 1.5410 0.0063
0.3 1.5291 1.5262 0.0029 1.4945 0.0346 1.5412 0.0121
0.4 1.5236 1.5160 0.0076 1.4948 0.0287 1.5415 0.0179
0.5 1.5054 1.5026 0.0028 1.4952 0.0102 1.5417 0.0363
0.6 1.4903 1.4861 0.0042 1.4955 0.0053 1.5419 0.0516
0.7 1.4737 1.4658 0.0079 1.4958 0.0222 1.5421 0.0684
0.8 1.4391 1.4399 0.0007 1.4962 0.0571 1.5423 0.1032
0.9 1.4036 1.4029 0.0007 1.4965 0.0929 1.5425 0.1389

MAE 0.0050 0.0154 0.0363
RMSE 0.0027 0.0061 0.0178

Notes: All numerical settings are the same as those settings in table 2, except that the initial stock price is 50 and the exdividend date is listed in the first column.

Table 6. Comparing the effect of changing initial stock prices on pricing barrier calls with two dividends.

S(0) Benchmark Ours error ContDiv error Model1 error

46 0.9156 0.9122 0.0034 0.9003 0.0153 0.9493 0.0338
48 1.0033 1.0028 0.0005 0.9964 0.0069 1.0619 0.0586
50 1.0538 1.0493 0.0045 1.0481 0.0058 1.1322 0.0783
52 1.0484 1.0438 0.0046 1.0479 0.0005 1.1519 0.1035
54 0.9880 0.9843 0.0037 0.9934 0.0055 1.1178 0.1298
56 0.8771 0.8737 0.0035 0.8872 0.0101 1.0316 0.1545
58 0.7241 0.7192 0.0049 0.7357 0.0116 0.8990 0.1749
60 0.5364 0.5315 0.0049 0.5485 0.0122 0.7287 0.1924
62 0.3249 0.3233 0.0016 0.3371 0.0122 0.5317 0.2068
64 0.1104 0.1077 0.0032 0.1131 0.0027 0.3192 0.2088

MAE 0.0049 0.0153 0.2088
RMSE 0.0038 0.0094 0.1470

Notes: All settings are the same as the settings in table 2 except that the underlying stock is assumed to pay a 1 dollar dividend at year 0.5 and year 1, and the
time to maturity is 1.5 years.

Table 7. Comparing the effect of changing the amounts of dividends on pricing barrier calls with two dividends.

c1 = c2 Benchmark Ours error ContDiv error Model1 error

0.3 1.1305 1.1238 0.0067 1.1232 0.0073 1.1514 0.0210
0.6 1.0948 1.0933 0.0015 1.0923 0.0025 1.1462 0.0514
0.9 1.0585 1.0606 0.0021 1.0594 0.0010 1.1364 0.0780
1.2 1.0279 1.0269 0.0010 1.0248 0.0031 1.1222 0.0943
1.5 0.9864 0.9897 0.0033 0.9885 0.0021 1.1038 0.1174
1.8 0.9552 0.9535 0.0018 0.9508 0.0045 1.0812 0.1260
2.1 0.9147 0.9156 0.0009 0.9118 0.0030 1.0548 0.1401
2.4 0.8769 0.8772 0.0003 0.8715 0.0055 1.0247 0.1478

MAE 0.0068 0.0073 0.1478
RMSE 0.0029 0.0041 0.1056

Notes: All settings are the same as the settings in table 6, except that the initial stock price is 50, and the underlying stock is assumed to pay dividend c1 at year
0.5 and dividend c2 at year 1. The amounts of the dividend payout are listed in the first column.

repayment of the former debt may weaken the financial status
of the issuing firm and increase the credit risk of the latter
debt, if the former debt matures prior to the latter one. The
prices of the latter debt generated by our formulae (marked in
solid squares in figure 3) do catch this feature by generating
a significant price drop from 2893.77 (with a time to matu-
rity of 1.5 years) to 2885.52 (with a time to maturity of 1.52
years). On the other hand, many structural credit risk models
(like Kim et al. (1993) and Longstaff and Schwartz (1995))
use a constant continuous payout ratio instead of a discrete

payment. In this experiment, the continuous payout ratio used
to approximate the discrete payout at year 1.5 is estimated by
the formula proposed in Geske and Shastri (1985). Under the
continuous payout setting, the pricing results for the latter debt
(marked in solid triangles) simply decrease smoothly with the
increment in the latter debt maturity to reflect the change of
time value and can not precisely reflect the risk that the latter
debt holders might suffer due to the repayment of the former
debt.
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1380 T.-S. Dai and C.-Y. Chiu

6. Conclusions

Most stock dividends are paid discretely rather than continu-
ously. However, no satisfactory analytical formulae for pricing
barrier stock options with discrete dividends are announced.
This paper provides accurate analytical formulae for pricing
barrier stock options with discrete dividend payouts. Numeri-
cal results are given to confirm the superiority of our formulae
over other analytical formulae. Our formulae can also extend
the applicability of the first passage model, a popular credit risk
model. The falls of the stock price due to the discrete dividend
payouts are analogous to selling the firm’s assets to finance the
debt or dividend payments. Thus, our formulae can estimate
how the firm’s repayments influence its financial status and the
credit qualities of other outstanding debts.
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Appendix A: Reexpress the integration of exponential
functions in terms of the CDF of a multi-variate normal
distribution

The pricing formulae in this paper can be expressed in terms of
multiple integrations of an exponential function, the exponent term
of which is a quadratic function of integrators x1, x2, · · · . These
multiple integrations can be reexpressed in terms of CDFs of multi-
variate normal distributions that can be easily solved by mathematical
softwares such as Matlab or Mathematica. Theorem 3.1 shows how
to rewrite the general multivariate integration with n integrators:
x1, x2, · · · , xn into the CDF of a multivariate standard normal distri-
bution. For convenience, let x ≡ (x1, x2, · · · , xn)T denote a column
vector of n integrators. The proof for the Theorem is given as follows.

Proof The multivariate integral in equation (22) can be reexpressed
in terms of the CDF of a standard normal distribution by reexpressing
the exponent term xT Ax +BT x +C in terms of the exponent term of
a multivariate standard normal distribution using the completing the
square technique as follows:

xT Ax + BT x + C = −1

2
yT 
−1y + C

′
, (45)

where C
′

denotes a scaler that does not depend on x, y denotes a
vector and 
 denotes a covariance matrix. The above equation and
the values of C

′
, y and 
 can be derived by the following lemma:

Lemma A.1 Under the premises that A is a symmetric invertible
n × n matrix, and x, B are both n × 1 vectors, we have

xT Ax + BT x

=
(

x + 1

2
A−1B

)T
A
(

x + 1

2
A−1B

)
− 1

4
BT A−1B. (46)
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Pricing barrier stock options with discrete dividends 1381

Proof By expanding the right-hand side of equation (46), we have(
x + 1

2
A−1B

)T
A
(

x + 1

2
A−1B

)
− 1

4
BT A−1B

= xT Ax + 1

2
BT

(
A−1

)T
Ax + 1

2
xT AA−1B

+ 1

4
BT

(
A−1

)T
AA−1B − 1

4
BT A−1B (47)

= xT Ax + 1

2
BT x + 1

2
xT B + 1

4
BT A−1B − 1

4
BT A−1B (48)

= xT Ax + BT x = the left-hand side of equation (46), (49)

where the equation
(

A−1
)T = A−1 due to the symmetry of A is

substituted into equation (47). Since BT x is a scalar, we have BT x =(
BT x

)T = xT B. equation (48) is obtained by substituting the afore-
mentioned equalities into
equation (47). �

By applying Lemma A.1 to equation (45), we obtain

xT Ax + xT B + C = (x − m)T A(x − m) + C
′
, (50)

where m ≡ − 1
2 A−1B, and C

′ ≡ C − 1
4 BT A−1B. By equating the

right-hand sides of equation (45) and equation (50), we have

(x − m)T A(x − m) + C
′ = −1

2
yT 
−1y + C

′
. (51)

It can be observed that y should have the form

y = S−1(x − m), (52)

where S denotes a diagonal matrix. To solve S, we first subtract C
′

from both sides of equation (51) to yield

(x − m)T A(x − m) = −1

2
yT 
−1y (53)

= −1

2

(
S−1(x − m)

)T

−1

(
S−1(x − m)

)
(54)

= −1

2
(x − m)T S−1
−1S−1(x − m)

= −1

2
(x − m)T (S
S)−1(x − m), (55)

where equation (52) is substituted into the right-hand side of equation

(53).
(

S−1
)T

is equal to S−1 due to the symmetry of S and this
equation is substituted into equation (54). By comparing the left-hand
side of equation (53) and equation (55), we have − 1

2 (S
S)−1 = A,
which can be rewritten as S
S = (−2A)−1. Recall that S is a diagonal
matrix. All diagonal elements of 
 are 1 since 
 is a covariance
matrix of multivariate standard normal random variables. Thus, we
have (S
S)i,i = S2

i,i , which leads us to obtain

Si, j ≡
{√

((−2A)−1)i,i if i = j
0 otherwise

,

and 
 ≡ (−2SAS)−1.
Now we can express equation (22) in terms of C

′
, m, S and 


defined above. By applying the change of variable defined in equation
(52), equation (22) can be rewritten as∫ xn=pn

xn=−∞

∫ xn−1=pn−1

xn−1=−∞
· · ·
∫ x1=p1

x1=−∞
exT Ax+BT x+Cdx

=
∫ xn=pn

xn=−∞

∫ xn−1=pn−1

xn−1=−∞
· · ·
∫ x1=p1

x1=−∞
e− 1

2 yT 
−1y+C
′ ∣∣∣∣∂x

∂y

∣∣∣∣ dy.

(56)

Since the elements in vector y can be represented as(
x1−m1

S1,1
,

x2−m2
S2,2

, · · · ,
xn−mn

Sn,n

)T
, the Jacobian determinant can be

straightforwardly computed to obtain
∣∣∣ ∂x
∂y

∣∣∣ = ∏n
i=1 Si,i = |S|. Thus,

equation (56) can be further rewritten as the following closed form
formula:

eC
′
|S|
∫ pn−mn

Sn,n

−∞

∫ pn−1−mn−1
Sn−1,n−1

−∞
· · ·
∫ p1−m1

S1,1

−∞
e− 1

2 yT 
−1ydy

= eC
′
|S|√|
|√(2π)n

∫ pn−mn
Sn,n

−∞

∫ pn−1−mn−1
Sn−1,n−1

−∞
· · ·

∫ p1−m1
S1,1

−∞
1√|
|(2π)n

e− 1
2 yT 
−1ydy (57)

= eC
′
√

πn

| − A| FY1,Y2,··· ,Yn

(
p1 − m1

S1,1
,

p2 − m2

S2,2
, · · · ,

pn − mn

Sn,n
, 


)
,

where |S|√|
| = √|S
S| =
√

| − 2A|−1, and | − 2A| = 2n | − A|
are substituted into equation (57). �

Appendix B: Proof of Corollary 3.1

Corollary 4.1 can be derived from Theorem 3.1 by setting n = 2 as
follows:

First, to make a1x2 +a2xy+a3 y2 +a4x +a5 y+a6 equal xT Ax+
xT B + C, we set

A ≡
(

a1
a2
2a2

2 a3

)
, B ≡

(
a4
a5

)
, C ≡ a6.

By substituting the above equations into Theorem 3.1, we have

m = −1

2
A−1B = − 1

4a1a3 − a2
2

(
2a3a4 − a2a5
2a1a5 − a2a4

)
,

C
′ = C − 1

4
BT A−1B = a6 + a2a4a5 − a3a2

4 − a1a2
5

4a1a3 − a2
2

,

S1,1 =
√

((−2A)−1)1,1 =
√ −2a3

4a1a3 − a2
2

,

S2,2 =
√

((−2A)−1)2,2 =
√ −2a1

4a1a3 − a2
2

,


 = (−2SAS)−1 =
(

1 a2
2
√

a1a3
a2

2
√

a1a3
1

)
,

| − A| = 4a1a3 − a2
2

4
.

By substituting the above into equation (23), we obtain∫ q

−∞

∫ p

−∞
ea1x2+a2xy+a3 y2+a4x+a5 y+a6 dxdy

= eC
′
√

π2

| − A| FY1,Y2

(
p − m(1)

S1,1
,

q − m(2)

S2,2
, 


)

= 2π√
�

exp

(
a6 + a2a4a5 − a3a2

4 − a1a2
5

�

)

FY1,Y2

⎛
⎝

√
�p + 2a3a4−a2a5√

�√−2a3
,

√
�q + 2a1a5−a2a4√

�√−2a1
, 


⎞
⎠ ,

where � = 4a1a3 − a2
2.
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i a7(i) a8(i) a9(i) a10(i)

1 α α − αk2 α − αk1 − T α2

2

2 α α − αk2
2b
t1

+ α − αk1 − 2b2

t1
− T α2

2

3 2b
′′

T −t2
+ α α + k2

(
2b

′′
T −t2

− α

)
α − αk1 − 4b

′′ 2+T 2α2−T α2t2
2T −2t2

4 2b
′′

T −t2
+ α α + k2

(
2b

′′
T −t2

− α

)
2b
t1

+ α − αk1

4(t2−T )b2+t1

(
−4b

′′ 2−T 2α2+T α2t2

)
2t1(T −t2)

5 α 2b
′

t2−t1
+ α − αk2 α + k1

(
2b

′
t2−t1

− α

)
4b

′ 2−T α2t1+T α2t2
2t1−2t2

6 α 2b
′

t2−t1
+ α − αk2

2b
t1

+ α + k1

(
2b

′
t2−t1

− α

) 4t2b2−T α2t2
1 +t1

(
−4b2+4b

′ 2+T α2t2

)
2t1(t1−t2)

7 2b
′′

T −t2
+ α 2b

′
t2−t1

+ α + k2

(
2b

′′
T −t2

− α

)
α + k1

(
2b

′
t2−t1

− α

)
2b

′ 2

t1−t2
− T α2

2 − 2b
′′ 2

T −t2

8 2b
′′

T −t2
+ α 2b

′
t2−t1

+ α + k2

(
2b

′′
T −t2

− α

)
2b
t1

+ α + k1

(
2b

′
t2−t1

− α

)
− 2b2

t1
− T α2

2 − 2b
′′ 2

T −t2
+ 2b

′ 2

t1−t2

9 α + σ α − αk2 α − αk1 − T α2

2

10 α + σ α − αk2
2b
t1

+ α − αk1 − 2b2

t1
− T α2

2

11 2b
′′

T −t2
+ α + σ α + k2

(
2b

′′
T −t2

− α

)
α − αk1 − 4b

′′ 2+T 2α2−T α2t2
2T −2t2

12 2b
′′

T −t2
+ α + σ α + k2

(
2b

′′
T −t2

− α

)
2b
t1

+ α − αk1

4(t2−T )b2+t1

(
−4b

′′ 2−T 2α2+T α2t2

)
2t1(T −t2)

13 α + σ 2b
′

t2−t1
+ α − αk2 α + k1

(
2b

′
t2−t1

− α

)
4b

′ 2−T α2t1+T α2t2
2t1−2t2

14 α + σ 2b
′

t2−t1
+ α − αk2

2b
t1

+ α + k1

(
2b

′
t2−t1

− α

) 4t2b2−T α2t2
1 +t1

(
−4b2+4b

′ 2+T α2t2

)
2t1(t1−t2)

15 2b
′′

T −t2
+ α + σ 2b

′
t2−t1

+ α + k2

(
2b

′′
T −t2

− α

)
α + k1

(
2b

′
t2−t1

− α

)
2b

′ 2

t1−t2
− T α2

2 − 2b
′′ 2

T −t2

16 2b
′′

T −t2
+ α + σ 2b

′
t2−t1

+ α + k2

(
2b

′′
T −t2

− α

)
2b
t1

+ α + k1

(
2b

′
t2−t1

− α

)
− 2b2

t1
− T α2

2 − 2b
′′

S2

T −t2
+ 2b

′ 2

t1−t2

Appendix C: Coefficients of the exponential terms of J(i)

The coefficients a1(i), a2(i), a3(i), a4(i), a5(i) and a6(i) are defined
by the following formulae.

a1(i) = − 1

2 (T − t2)
,

a2(i) = −
(

k2
2

2 (T − t2)
+ 1

2(t2 − t1)

)
,

a3(i) = −
(

k2
1

2 (t2 − t1)
+ 1

2t1

)
,

a6(i) = 0,

a4(i) =
{

k2
T −t2

if i = 1, 2, 5, 6, 9, 10, 13, 14

− k2
T −t2

otherwise
,

a5(i) =
{

k2
t2−t1

if i = 1, 2, 3, 4, 9, 10, 11, 12

− k2
t2−t1

otherwise
,

The remaining parameters are given by the following table:
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