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Localization in a wireless sensor network (WSN) becomes important for many modern applications, like landslide detection,
precision agriculture, health care, and so forth. The more precise the position of an anchor node is, the more accurate the
localization of a sensor node can be measured. Since the Global Positioning System (GPS) device cannot work properly indoor,
some existing localization methods configure anchor nodes in a manual fashion. However, neither applying GPS modules nor
manually configuring anchor nodes is suitable for aWSN and especially artificial errors ofmanual configurationmay be propagated
and affect the results of localization. In this paper, we propose an alternative method to estimate anchor node locations in an indoor
environment. We collect the Received Signal Strength Indicator (RSSI) data from the anchor node when human is walking around
them. Meanwhile, we use a wearable IMU-camera device to assist the moving trajectory estimation. We implement a monocular
Visual Odometry with a human walking model to estimate moving trajectories. An Unscented Kalman Filter (UKF) is used to
estimate the anchor node location by fusing the RSSI data and moving trajectory. The experiment results show that the proposed
method has lower estimation error when locating anchors.

1. Introduction

Wireless communication and MEMS IC technology have
enabled the development of low-cost, low-power, and multi-
functional sensor nodes. A wireless sensor network (WSN)
containing large numbers of sensors can be applied to
monitoring and controlling homes, buildings, cities, rivers,
forest, and so forth. [1–3]. Self-localization capability is
necessary for WSN sensor nodes, especially when they are
deployed randomly or moved after deployment. To reduce
the implementation cost and energy consumption, special
sensor nodes, called anchor nodes, are installed with known
positions [4–11] to localize a group of sensor nodes in the
vicinity. The simplest way to determine the positions of
anchor nodes is to use Global Positioning System (GPS)
devices [4, 12–18] or is to be manually measured [8, 10, 11]
in advance. However, GPS devices fail to offer precision in
an indoor environment or GPS-denied area (poor signal
reception).Manualmeasurement is a tedious and error-prone
process that is unsuitable for indoor sensor networks. Hence,
other localization technologies to estimate the locations of
anchor nodes become very important.

There are two approaches of WSN localization technol-
ogy: (1) range-based and (2) range-free [19] approaches. A
range-based approach relies on the distance or the angle
information between anchor nodes to estimate locations by
using Trilateration, triangulation, or multilateration algo-
rithms. These locating schemes require additional devices to
measure the distance or the angle information from anchor
nodes. A range-free approach estimates locations using net-
work connectivity information from their direct neighbors.
However range-free approach suffers from heavy message
transmission cost to collect the connectivity information
and high computational cost to estimate locations of anchor
nodes [20–22].

The Trilateration algorithm can be used to compute the
anchor node locations based on pairs of moving Received
Signal Strength Indicator (RSSI). Hansson and Tufvesson
[23] provided a trajectory estimation method using the
inertial measurement unit (IMU) sensors in a smartphone
(accelerometer, gyroscope, and magnetometer) to obtain an
orientation tracker, a step detector, and a walking path
recorder of a user. However, the trajectory diverges easily
without dead reckoning due to the bias of IMU sensors.

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2014, Article ID 654063, 13 pages
http://dx.doi.org/10.1155/2014/654063

http://dx.doi.org/10.1155/2014/654063


2 International Journal of Distributed Sensor Networks

Pescaru and Curiac [24] use video and compass information
fusion scheme for anchor node localization.The video image
relies on the automated object recognition algorithm to find
the geographically located referential objects. The compass
can provide the orientation of the anchor node’s camera.
The fusion of these two sensors’ information can compute
the reference points bearing. However, the digital compass
module subjects to hard and soft-iron distortions. The paper
has no mention about the distortion effect to the experiment
results.

The trajectory estimation [25–33] is commonly used in
simultaneous localization and mapping (SLAM) and Visual
Odometry (VO) researches [34]. In WSN, there is no need to
use a map from SLAM to locate human position. Alternative
VO [35] is the one that does not require infrastructure
support.TheVO is a vision-based technique which combines
camera and IMU devices to provide trajectory estimation
with scale. Corke et al. [32] showed that the camera and IMU
have complementary advantages in many cases. In order to
fuse the data from the camera and IMU, VO usually uses
Kalman filter basedmethod to predict and update themoving
trajectory. For a nonlinear system, extended Kalman filter
(EKF) and Unscented Kalman Filter (UKF) provide different
ways to approximate higher-order terms [34]. Some papers
[34, 36–40] analyze the accuracy and complexity between the
EKF and UKF. Although the UKF has higher computational
cost, [38, 39] show that the UKF has better accuracy than
EKF in some cases. The VO with IMU support is possible to
compute the scale without the need of a calibration pattern
for camera [25, 27, 30, 31, 33, 41–43]. Designing a reference
device that can be carried by human is themost attractive way
to localize anchor nodes particularly in indoor environment.
When it is applied on human, the signal-noise-ratio of the
IMU sensor is small since the walking speed is slow. In other
words, it is unlikely to obtain accurate velocity information
from the acceleration integration and the performance of the
scale estimation will be seriously affected.

In this paper, we propose a sensor fusion method to
locate anchors in an indoor environment by using a wearable
IMU-camera and a wireless sensor mounted on the center
of human’s waist for moving trajectory estimation. We can
receive images, angular velocities, acceleration, and RSSI data
from the IMU-camera and the wireless sensor. The proposed
VO, which includes human walking model [44, 45], uses
UKF to estimate the moving trajectory and human walking
speed [46]. By measuring the RSSI data, it is then possible to
localize the anchor nodes by a human walking around them.
To validate the proposed approach, we consider the sensor
noise and bias into our systemanddesign several experiments
to locate sensor nodes after obtaining the anchor positions by
the proposed method.

The rest of this paper is organized as follows. Section 2
presents the proposed method which includes scaled moving
trajectory estimation and anchor node localization estima-
tion. Section 3 presents the hardware design. Section 4 is
the experiment environment setup. Section 5 validates the
proposed approach with experimental evaluations. Finally,
the conclusion is drawn in Section 6.

2. Proposed Method

We assume that the sensor node and anchor node exist in
two parallel planes illustrated in Figure 1, and the experiment
environment setup is in Figure 2. A control server can receive
the image, IMU data, and RSSI data from the sensor node
which is composed of an IMU-camera and a RF sensor. The
IMU includes triaxes gyroscope and triaxes accelerometer.
The system design flowchart is shown in Figure 3. Consider-
ing the inconsistency of data sampling frequency, we adopt
the loosely coupled [25, 27, 42] architecture in our sensor
fusion method. The UKF based loosely coupled approach in
our design includes scaled moving trajectory and location
estimation of the anchor nodes. The first step uses image,
angular velocity, and acceleration data to realize VO and
human walking speed estimation. Then we combine the VO
and human walking speed to implement the scaled moving
trajectory estimation. The second step combines the attitude
of the scaled VO and calibrated RSSI data to simultaneously
estimate the IMU-camera moving trajectory and anchor
locations by applying UKF.

2.1. Scaled Moving Trajectory Estimation. We use a calibrated
IMU-camera to provide image, acceleration, and angular
velocity data for scaled VO. The proposed scaled moving
trajectory estimation includes (1)VOwhich combines image
and IMU data, (2) human walking speed estimation which
uses a kinematic model of human walking, and (3) scaled VO
which combines VO and human walking speed estimation as
shown in Figure 3.TheVO uses the IMU data and image data
to estimate the 3D locations of feature points and the IMU-
camera pose.The humanwalkingmodel uses the acceleration
data from the IMU-camera to estimate the moving speed.

2.1.1. Visual Odometry. The proposed VO uses IMU-camera
which we made to measure the moving trajectory. There are
three coordinates in ourVOmethod.Wedefine the geometric
coordinate between the IMU frame {𝐼}, camera frame {𝐶},
and world frame {𝑊} shown in Figure 4. (𝑞

𝑊

𝐼
, 𝑝𝑊
𝐼
) and

(𝑞𝑊
𝐶
, 𝑝𝑊
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) represent the transformation of IMU and camera

frame in world frame, respectively. The quaternion and
position pair (𝑞𝐼

𝐶
, 𝑝
𝐼

𝐶
) means the transformation of camera

frame {𝐶} with respect to IMU frame {𝐼}. We set (𝑞𝐼
𝐶
, 𝑝𝐼
𝐶
) to

constant values because this transformation can be calibrated
beforehand. Assume that there exists no known pattern in
an environment, and the world frame is the frame where
the camera is set up. The IMU measurements of triaxis
acceleration and triaxis angular velocity are given by the
following equations:
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(1)

where 𝐶(𝑞) is the direction cosine matrix corresponding
to quaternion 𝑞, 𝑎𝑊denotes the linear acceleration of IMU
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Figure 2: The schematic diagram of location.

frame with respect to world frame, 𝑤𝐼 is angular velocity of
IMU in the IMU frame, 𝑛

𝑎
and 𝑛

𝑔
are white Gaussian noise,

𝑏
𝑎
and 𝑏
𝑔
are measurement biases, and 𝑔𝑊 is the gravitational

acceleration in world frame. The measurement biases 𝑏
𝑎
and

𝑏
𝑔
are modeled as Gaussian random walk process driven by

𝑛
𝑎
and 𝑛
𝑔
, respectively.

The single camera provides scale-free position and rota-
tion estimation with respect to world frame. We estimate the
camera pose by using the algorithm of the 1-point RANSAC
EKF-based monocular VO [28]. The camera is formulated
by a perspective projection model with constant angular
and linear velocity model. The state vector 𝑥 of the filter
is composed of camera state and estimated feature points
where 𝑝𝑊

𝐶
and 𝑞𝑊
𝐶
are the camera optical center position and

quaternion with respect to world frame, and V𝑊
𝐶

and 𝑤𝐶 are
linear and angular velocity of the camera in world frame and
camera frame, respectively. The estimation of feature point
(𝑦
𝑊

1
, . . . , 𝑦𝑊

𝑛
) can be parameterized in either inverse depth

coordinates 𝑦𝑊
𝑖,𝐼𝐷

[47] or Euclidean coordinates 𝑦𝑊
𝑖,𝐸
.

The monocular camera pose estimation of [28] has to
initialize the feature points which are immediately used in the
camera ego-motion estimation from the bearing references.
Civera et al. [47] use the inverse depth method for undelayed
initialization of the feature points. Hence the feature points
are initialized with a Gaussian prior depth estimation in
inverse depth coordinates. The depth estimation can be
refined by sequential observations of the feature points.
Consequently, when the projection equation becomes linear,
the representations of the feature points are converted to
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the Euclidean coordinates. The algorithm includes two steps:
prediction and update. The state vector 𝑥 is estimated by
the camera motion model in the prediction step, and the
state vector 𝑥 can then update the observation of feature
points in the next step. Between the prediction and update
steps, outliers of feature points are rejected by using 1-point
RANSAC.

2.1.2. Human Walking Speed Estimation. We use the kine-
matic walking model [44, 45] which considers the waist
rotation effect. It avoids integration error of the accelerometer
and provides the scale information. Assume that the leg
rotates around a point 𝐺 located below the ground during
the stance stage; see Figure 5. The estimation method of the
length of the right leg 𝐿’ in Figure 5 is presented in [44]. The
estimation is based on the accelerationmeasurement at COM
(center ofmass) over a complete stance cycle. Considering the
COM motion in the 𝑦-direction, the virtual center walking
model is extended to include the rotating motion of pelvis.
The location of COM relative to the virtual center 𝐺 can
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Figure 5: Movement of COM including the pelvis rotation (𝑊=
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be derived in a homogeneous coordinate representation. The
ranges of 𝛽 and 𝛾 are within ±0.17 rad in general walking.The
average COM velocity is then computed by integrating 𝑉COM
with respect to 𝛽 and 𝛾 over a stance period:
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∫
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(2)

By neglecting all the terms involving the angles 𝛽 and 𝛾, the
following relation can be established:
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.

(3)

We can use (2) and (3) to form the basic formulae and
estimate the walking speed through UKF.

2.1.3. Scaled Visual Odometry. We implement the IMU-
camera with kinematic walking mode to provide human
walking speed and triaxis angular velocity in real metric
units as shown in Figure 3. The monocular VO only can
provide scale-free position and rotation estimation. In order
to provide the scale factor, the human walking speed is
assumed to be equal to the cameramoving speed.The current
scale factor can be retrieved from 𝜆 = V

𝑊𝑆
/|V𝑊
𝐶
| , where V

𝑊𝑆

is the human walking speed, and V𝑊
𝐶
is the unscaled velocity

of camera which is derived by differentiating the unscaled
position of the monocular VO algorithm. We use a UKF to
reduce the uncertainty of V

𝑊𝑆
and V𝑊

𝐶
and to estimate the

scale factor.TheUKF can fuse the gyro measurement and the
attitude of the monocular VO algorithm.The state vector is

x (𝑘) = [V𝑊𝑆 (𝑘) (𝑞𝑊𝐶 (𝑘)) (𝑏
𝑔 (𝑘)) 𝜆 (𝑘)]

T
. (4)

To adopt the loosely-coupled architecture, our state contains
speed, attitude, gyro bias, and scale factor. The state-space
formula, process model, andmeasurement model of UKF are
given by the following equations. The process model in UKF
includes

x (𝑘) = F (x (𝑘 − 1)) + w (𝑘) ,
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[
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(5)

the measurement model is

z (𝑘) = H (𝑥 (𝑘)) + k (𝑘) , (6)

where
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(7)

The w(𝑘) and k(𝑘) are uncorrelated zero-mean Gaussian
noise vectors, 𝑓(⋅) is the kinematic walking model, and ⊗
denotes quaternion multiplication.

Figure 6 shows the experiment result of the scaled Visual
Odometry.

2.2. Moving Trajectory and Anchor Location Estimation. In
order to estimate the anchor node location, we fuse the scaled
VO and calibrated RSSI data by using UKF. The calibrated
RSSI data includes the geometric distance information from
anchor node to each sensor node. To transform the RSSI
data to geometric distance, we need to calibrate the transform
parameters at first.The sensor fusion result can provide mov-
ing trajectory and anchor location simultaneously. Therefore
we detail the calibration and sensor fusion method in this
section.

2.2.1. RSSI Calibration. The distances between each node
are estimated via RSSI data. The RSSI data is based on the
physical fact of wireless communication and decreases with
increased distances. Log distance path loss model [48] is a
basic way of estimating path loss as a function of distance
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between the nodes. Using the initial path loss 𝑃𝐿(𝑑
0
)with the

environmental interference, we can obtain

𝑃𝐿 (𝑑) = 𝑃 + 10𝑛 log
10
𝑑 + 𝑋

𝜎
, (8)

where 𝑑 is the distance between transmitter and receiver,
𝑃𝐿(𝑑) is the pass loss of signal strength at distance 𝑑, 𝑃 is
the environmental interference, 𝑛 is the path loss exponent
(rate at which signal decays), and𝑋

𝜎
is a zero-meanGaussian

random variable with standard deviation 𝜎. From the realistic
collection of RSSI data, we found that the value of 𝑃𝐿(𝑑

0
) not

only is determined by the initial path loss, but also depends
on the environmental interference and node differences. So
we determine the value of 𝑃 via the calibration process while
the Gaussian noise is assumed negligible:

𝑑 = 10
(−RSSI−𝑃)/10𝑛

. (9)

The previous studies on radio propagation patterns [49–51]
show that nonisotropic path loss may come from various
transmitting medium and direction in different environ-
ments. Also, there exist physical differences between each
node on RSSI measurements. Therefore, there is a need to
obtain calibrating propagation coefficients (CPC) for each
node and for each environment. To find the CPC for each
device, we derive (9) as follows:

log
10
𝑑 =

−1

10𝑛
× RSSI = 𝑃

10𝑛
. (10)

Since it becomes a linear equation, the value of 𝑛 and𝑃 can be
calculated by linear regression. When we set 𝑟 to RSSI data,
𝑎 = −1/10𝑛, and 𝑏 = 𝑃/10𝑛, the linear equation is derived as
follows:

log
10
𝑑 = 𝑎 ⋅ 𝑟 + 𝑏. (11)
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1
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2
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2
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𝑛
), the matrix of the linear equation becomes
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...
1

]
]
]
]

]

, X = [𝑎
𝑏
] . (13)

Then the values of 𝑎 and 𝑏 are obtained by the least square
solution X = (AA)−1ATY. The coefficients 𝑎 and 𝑏 are called
the CPC for distance estimation. And the distance between
transmitter and receiver is calculated as inputting a RSSI data
to 𝑑 = (10(𝑎⋅RSSI+𝑏)).

2.2.2. Sensor Fusion. The sensor node can measure the RSSI
data for computing the distances from a sensor node to the
anchor nodes. Using the distance information to locate the
sensor node position is a range-only problem. We use UKF
to fuse the RSSI and VO trajectory result to estimate the
moving path of a sensor node. We assume that the rotation
and translation between the IMU-camera and RF are fixed.
The state vector includes sensor node position 𝑃

𝐶
(𝑘) and

anchor node location 𝑃an(𝑘):

xWSN (𝑘) = [(𝑃𝐶 (𝑘))
𝑇
(𝑃
𝑎1 (𝑘))

𝑇
⋅ ⋅ ⋅ (𝑃

𝑎𝑛 (𝑘))
𝑇
]
𝑇

. (14)

The process model and measurement model of UKF are as
follows. The process model includes

xWSN (𝑘) = FWSN (xWSN (𝑘 − 1)) + w (𝑘) ,

FWSN (𝑥 (𝑘 − 1)) =
[
[
[
[

[

𝑓VO (𝑥 (𝑘 − 1))
𝑃
𝑎1 (𝑘 − 1)

...
𝑃an (𝑘 − 1)

]
]
]
]

]

;
(15)

the measurement model is

ZWSN (𝑘) = HWSN (xWSN (𝑘)) + k (𝑘) , (16)

where

HWSN (xWSN (𝑘)) = √(𝑃𝐶 (𝑘) − 𝑃an (𝑘))
2
. (17)

The w (𝑘) and k (𝑘) are uncorrelated zero-mean Gaussian
noise vectors and 𝑓VO (⋅) is the VO function. HWSN (⋅) is a
function to compute the distances between the sensor node
and anchor nodes. We update the sensor node position and
anchor node location by using the deviation between theRSSI
measurement and the distance of theHWSN (⋅).

3. Hardware Design

We use wireless AP as our sensor node and anchor node.The
difference of wireless AP between sensor node and anchor
node is the signal passing procedure. Besides wireless AP, the
sensor node has an IMU-camera to provide sensor data for
the VO. The anchor node can broadcast the node ID so that
the RSSI can be collected by the sensor node together with the
node ID of an anchor node.The IMU-camera in sensor node
is implemented as a wearable device for a human to estimate
the walking speed and moving trajectory.



6 International Journal of Distributed Sensor Networks

3.1. Access Point. The hardware device in Figure 7 includes
a MCU (MSP430FS5438) and a RF chip (CC2500EMK).
The wireless network protocol is SimpliciTI [52], which is a
TI (Texas Instruments) proprietary low-power RF network
protocol. The transmitting node is set to be a sensor node,
and 11 fixed nodes are set to be anchor nodes. And the nodes
are placed on the ground during the experiments.

3.2. IMU-Camera. To combine a CMOS camera and a 6-
axis IMU, we design a FPGA to integrate communication
and other peripherals. The FPGA code is programmed to
synchronize the IMU measurement by using the camera
frame sync signal. The frame rate of the camera is 64 fps and
the IMU sampling rate is 640Hz. For each frame, we can get
10 IMU samples and each IMU sample includes gyroscope
and accelerometer data. Table 1 lists the types of the IMU and
camera used in our experiments. The camera is calibrated
through a standard procedure using MATLAB toolbox. The
IMU and camera calibration method are according to the
visual-inertial SLAM [30]. Our schematic of the embedded
device is shown in Figure 8, and the picture of the device
is shown in Figure 9. The walking distance is about 16.8
meters and the ground truth of walking speed is obtained
by (16.8m/n)⋅64 fps, where 𝑛 is the number of moving
images. Data is acquired in real-time, real environment, and
processed offline.

4. Experiment Environment

Our experiment includes real VO estimation results and
virtualWSNRSSImeasurement which include bias and noise
effects. The VO results fuse the IMU-camera measurement
data and human walking model. According to the RSSI
measuring frequency, we downsample the estimated real VO
routing path. Each sampling point has a real VO estimated
position and virtual anchor node RSSI measurement. We
analyze three methods: (1) IMU with UKF sensor data
fusion method, (2) IMU-camera with human walking speed
estimation, and (3) IMU-camera with human walking speed
estimation and UKF sensor data fusion method, to estimate
routing path for reversely locating anchor nodes in WSN.
The UKF fuses the RSSI measurement and moving trajec-
tory which includes human walking speed estimation. The
experiment results show the accuracy of the reversely locating
anchor nodes in RSSI bias and noise effects.

4.1. Configuration. We set the simulation area 8m × 5.5m.
The anchor nodes are placed in the lowest density, which
ensures each measurement involves three anchors coverage.
Since the RSSI data fluctuated seriously over 5 meters, we
assume the maximum transmitting range of the wireless
signal is 5 meters. Due to the transmitting range, we deployed
11 anchor nodes in the area and the distance between each
anchor node is 3.75 meters. If the other wireless networking
technologies are substituted in, such as Bluetooth or ZigBee,
the transmitting range can be set to 10 meters or longer and
the less anchor nodes can be used in the same area. In the
simulation, the anchor nodes and training nodes are assumed

11 cm

8.
7

cm

Figure 7: Access point device.

Adaptor board

Xilinx FPGA module

Xilinx 
FPGA

CMOS 
image 
sensorFlash

Interface RAM 6-axis
IMU

Voltage 
converter

USB

Battery

Figure 8: The schematic diagram of the embedded device devel-
oped.

Table 1: The specifications of the camera and IMU.

Item Description
Camera Aptina MT9V034, color, resolution 752 × 480, 1/3 inch
IMU Analog Devices ADIS16364, 3-axis acc, 3-axis gyro

to be placed in two parallel planes: anchor nodes are placed at
the ceiling, and training nodes and sensor nodes are hung in
front of the chest of users.The height between the ceiling and
the chest of users is assumed to be 1.5 meters (all users are at
the same height).

4.2. Node Inconsistency. To make our experiment closer to a
real situation, we introduce bias and noise of RSSI mea-
surement into our experiments. A Gaussian random variable
𝑋
𝜎
is defined in the simulation. The mean of the Gaussian

randomvariable is defined as zero, and the standard deviation
𝜎 is defined to increase with the value of RSSI. The equation
of 𝜎 value is

𝜎 = 0.0375 ⋅ RSSI, (18)

where the value of 0.0375 is the largest ratio of 𝜎/RSSI from
the real data. Therefore, the RSSI noise value is below 0.0375
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Figure 9: The embedded device developed in this work and
mounting position.

in our experiment. We measure the RSSI signal of our RF
test boards in real environment. According to the test results,
the maximummeasurement drifting error is 0.537m without
calibration and 0.370m with calibration.

5. Experiment Results

We analyze the accuracy of the reversely locating anchor
nodes in different conditions by using different moving tra-
jectory estimation methods. Our experiment results include
three different moving trajectory estimation methods based
on VO as listed in Table 2. The first moving trajectory
estimation method, Exp#1, is VO with UKF method. This
method is commonly used in inertial navigation system.
The second method, Exp#2, is VO with human walking
speed estimation. The walking speed estimation can provide
accuracy real scale for VO. The third method, Exp#3, is the
VO with human walking speed estimation and UKF sensor
data fusion method. The filter based methods in the Exp#1
and Exp#3 do not use Trilateration method but update state
parameters recursively in finding the anchor node locations.
We also consider the bias and noise effect of RSSI to the
anchor node location accuracy. The average error, maximum
error, and standard deviation are listed in the error analysis
table. The bold font in the table means the minimal value in
these three methods.

5.1. RSSI Bias Effect. We set the mean of the noise probability
density function (PDF) to 0 and 0.5, and the noise is 0.01.
The RSSI biases in Figures 10 and 11 are 0 and 0.5. The RSSI
data collection frequency is two times per second. The red
line is the moving trajectory estimation result and the green
line is the ground truth of the trajectory. The black circle is
the real location of an anchor node, and the pink triangle is
the estimated anchor node location. The black dotted line is
the ground truth of the moving trajectory. In Figure 10(a),
the Exp#1 has the scale error which comes from the IMU
data process. The trajectory estimation error and RSSI mea-
surement error are directly influencing the accuracy of the
anchor node location. Therefore the estimations of moving
trajectory and anchor location are far from the ground
truth. We introduce the Exp#2 method and the estimation
result in Figure 10(b). The moving trajectory estimation of

Table 2: Experiment methods.

Name Description
Exp#1 VO with UKF sensor data fusion

Exp#2 VO with human walking speed estimation and
Trilateration algorithm

Exp#3 VO with human walking speed estimation and UKF
sensor data fusion

Exp#2 is not affected by the RSSI bias, because the trajectory
estimation does not include the RSSI data. However the
RSSI bias still affects the anchor location estimation results
due to the Trilateration method. In contrast, the proposed
Exp#3 uses UKF based loosely coupled method to fuse the
scaled VO and RSSI measurement data in Figure 10(c). We
use the observation error covariance of UKF to adjust the
RSSI measurement error influence on moving trajectory
estimation results. Tables 3 and 4 show the anchor location
error comparison between Figures 10 and 11. We can find
that the Exp#3 has lower estimation error than the other
methods whatever the average error, maximum error, and
standard deviation test results are. Between Exp#1 and Exp#3,
the improvements of average error rate are 56% and 32% in
Tables 3 and 4. Between Exp#2 and Exp#3, the average error
improvements are 62% and 52% in Tables 3 and 4.

5.2. RSSI Noise Effect. The noise effects to our experiment
results are shown in Figures 12 and 13. The noise variances in
Figures 12 and 13 are 0.01m and 0.03m, and the RSSI bias is
0.2.The inaccurate scale estimation in Figures 12(a) and 13(a)
causes the moving trajectory and anchor location estimation
error. The accuracy of the moving trajectory has influence
on the reversely anchor locations. In Figures 12(b) and 13(b),
although the RSSI noise does not influence the moving path
estimation, the error still influences the reversely anchor node
locations estimation in Trilateration method. We can find
that the noise has great effect to the Trilateration methods
though the trajectory estimation is close to the ground truth
than Exp#1. In contrast, the Exp#3 can tolerate the noise,
because the UKF has the error model to overcome the noise
of RSSI as shown in Figures 12(c) and 13(c). Tables 5 and 6
show the anchor node location error estimation comparison
between Figures 12 and 13. The Exp#3 still has the lowest
estimation error on moving trajectory and anchor locations.
The improvement rates of average error are 48% and 33%
between Exp#1 and Exp#3 in Tables 5 and 6. Between Exp#2
and Exp#3, the improvement rates of average error are 54%
and 60% in Tables 5 and 6. According to the above analyses,
the UKF based loosely coupled approach can reduce the
measurement errors. We find that the Exp#3 can provide
better performance than Exp#1 and Exp#2 when RSSI bias
and noise change.

6. Conclusion

We propose a reversely anchor node location method by
using UKF to fuse the RSSI data and attitude of monocular
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Figure 10: Bias effect to the trajectory and anchor locations estimation (noise = 0.01m, bias = 0m).

Table 3: Anchor location error analysis in bias = 0.

Noise = 0.01, bias = 0
Average error

(m)
Maximum error

(m)
Standard deviation

(m)
Exp#1 0.799988 1.758251 0.529837
Exp#2 0.930093 1.872607 0.567956
Exp#3 0.348797 0.6272 0.140751

Table 4: Anchor location error analysis in bias = 0.5.

Noise = 0.01, bias = 0.5
Average error

(m)
Maximum error

(m)
Standard deviation

(m)
Exp#1 0.668939 1.444156 0.395775
Exp#2 0.949549 1.75371 0.537513
Exp#3 0.454085 0.757007 0.160065
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Figure 11: Bias effect to the trajectory and anchor locations estimation (noise = 0.01m, bias = 0.5m).

Table 5: Anchor location error analysis of noise = 0.01.

Noise = 0.01, bias = 0.2
Average error

(m)
Maximum error

(m)
Standard deviation

(m)
Exp#1 0.722855 1.585127 0.417133
Exp#2 0.818407 2.160803 0.580779
Exp#3 0.376835 0.633232 0.151946

Table 6: Anchor location error analysis of noise = 0.03.

Noise = 0.03, bias = 0.2
Average error

(m)
Maximum error

(m)
Standard deviation

(m)
Exp#1 0.917042 1.75057 0.473738
Exp#2 1.534465 4.773963 1.300286
Exp#3 0.610773 1.304864 0.377891
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Figure 12: Noise effect to the trajectory and anchor locations estimation (noise = 0.01m, bias = 0.2m).

VO with real scale. The scale factor of monocular VO relies
on a kinematic walking model to estimate the walking speed.
Instead of double integration of acceleration, the scale factor
from the walking speed estimation uses only the acceleration
information of the body. The loosely coupled approach fuses
the RSSI data and attitude of VO to provide an accurate
motion trajectory and anchor node locations simultaneously.
We test our VO algorithm in real environment and add
reasonable bias and noise to RSSI data in ourWSN simulation

environment. The experiments show that inaccurate scale
estimation of Exp#1 influences the estimation of the anchor
locations. The Exp#2 uses IMU-camera with human walking
speed estimation method to perform scaled VO algorithm.
The moving trajectory is close to the ground truth than
Exp#1. Note that the RSSI measurement noise and bias does
not affect the path estimation; it only affects the location
accuracy of anchor nodes when using Trilateration method.
The best estimation method of the moving trajectory and
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Figure 13: Noise effect to the trajectory and anchor locations estimation (noise = 0.03m, bias = 0.2m).

anchor locations is Exp#3 which is scaled VO with UKF
based loosely coupled method. The Exp#3 can endure the
bias and noise effect of RSSI because of the noise model in
UKF and has better performance and measurement error
tolerance than the other methods. The experiment results
show that the proposed method, Exp#3, has lower estimation
error when locating anchors. The error of locating anchors
can be improved around 30%∼60%.
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