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Using Multithreshold Quadratic Sigmoidal 
Neurons to Improve Classification 

Capability of Multilayer Perceptrons 

Cheng-Chin Chiang and Hsin-Chia Fu 

Abstract-This letter proposes a new type of neurons called mul- 
tithreshold quadratic sigmoidal neurons to improve the classification 
capability of multilayer neural networks. In cooperation with single- 
threshold quadratic sigmoidal neurons, the multithreshold quadratic 
sigmoidal neurons can be used to improve the classification capability 
of multilayer neural networks by a factor of four compared to committee 
machines and by a factor of two compared to the conventional sigmoidal 
multilayer perceptrons. 

I. INTRODUCTION 
Recently, many researchers [ I ] ,  [4]-[6] have studied the recogni- 

tion capability of feedforward neural networks. In general, the main 
results obtained in these studies are the derivations on the lower or 
upper bounds on the number of hidden neurons required to learn 
the recognition of a given training set S containing tixed number of 
pattems. For examples, i t  has been proved 141. [5]  that a committee 
machine containing at most k - 1 hidden neurons can dichotomize 
an arbitrary dichotomy defined on any training set with X. pattems. 
Sontag [6] also proved that if the direct input-to-output connections 
or the continuous sigmoid activation function i s  used. then a network 
containing k hidden units can dichotomize an arbitrary dichotomy 
defined on any training set with at least 2k pattems. 

In [2], we proposed a new activation function called quadratic 
sigmoid function (QSF). Here. we refer to a neuron using the 
quadratic sigmoid activation function as the single-threshold quadratic 
sigmoidal neuron because there i s  an extra parameter which we 
named threshold in each neuron (to be described later). In this 
letter, an extended type of neurons called multithreshold quadratic 
sigmoidal neurons are proposed to improve the capability of multi- 
layer neural networks. By using multithreshold quadratic sigmoidal, 
we will prove that a single-hidden-layer neural network with one 
multithreshold quadratic sigmoidal output neuron and k + 1 single- 
threshold quadratic sigmoidal hidden neurons can dichotomize an 
arbitrary dichotomy defined on any training set with at least -1k + 1 
pattems. 

The rest of this letter i s  organized as follows. In Section 11, we 
formally define the multithreshold quadratic sigmoidal neurons and 
propose a hybrid single-hidden-layer network architecture composited 
by multithreshold quadratic sigmoidal neurons and single-threshold 
quadratic sigmoidal neurons. In Section 111, theoretical studies on 
the classification capability of the proposed network are presented. 
Finally, Section IV provides some conclusions and suggestions for 
future work on this research. 
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11. MULTITHRESHOLD QUADRATIC SIGMOIDAL NEURONS 
In [ 2 ] ,  we use single-threshold quadratic sigmoidal neurons for 

multilayer neural networks and apply i t  to continuous-valued function 
approximations. In comparison with conventional sigmoidal mul- 
tilayer networks, we obtained satisfactory results, such as faster 
leaming, smaller network size, and better generalization capability 
for our networks. In this letter, we extend the single-threshold 
quadratic sigmoidal neurons to another type of neurons called mul- 
tithreshold quadratic sigmoidal neurons to improve the capabil- 
ity. Each multithreshold quadratic sigmoidal neuron, say neuron 
i ,  contains tI weights ( w L , , .  1 5 j 5 t ) ) ,  one bias ( w 8 . [ ) ) ,  and 
t t  + 1 thresholds (O(,,), where t j  denotes the input degree of the 
neuron i .  Within each multithreshold quadratic sigmoidal neuron, 
the extended QSF i s  used as its activation function. Let vectors 
w ,  = ( c i , , . o . r i ' , , ~  :... ( 1 ' , , , , ) . 8 ,  = ( H , , o . H , , I . . . . . O  ,.,, ), and vector 
z represent the augmented input vector, i.e., (1. . r ~ .  X I . .  . . . . I . , ,  ). The 
extended QSF is then defined as 

Extended QSF: 

(1)  
1 

f ( n e t , . 8 , )  = 
1 +csp(ne t :  - g ( 8 , . z ) )  

where 

net, = W , Z  = f { ' > , n  + 2 w,,, . rJ.  and 
,=I) 

g ( t ) , . z )  = ~ t . n  + f i r . J ~ ~ j .  

,=0 

In the original QSF for single-threshold quadratic sigmoidal neurons. 
the function g (@.z ) ,  i s  simply taken as g ( 8 , z )  = H , ,  i.e., 

( 2 )  

From ( I )  and (2 ) ,  we can see that both multithreshold quadratic 
sigmoidal neurons and single-threshold quadratic sigmoidal neurons 
contain quadratic terms (ne t? )  in their activation function. Thus, 
both multithreshold quadratic sigmoidal neurons and single-threshold 
quadratic sigmoidal neurons can exhibit second-order characteristics 
as conventional second-order neural networks [3] to some extent. 
The second-order property i s  very helpful for a network in solving 
nonlinearly separable problems such as XOR, and parity problems. 

With the multithreshold quadratic sigmoidal neurons, a multilayer 
neural network with more powerful recognition capability can be 
constructed. In this paper. we will consider only the single-hidden- 
layer hybrid network architecture which contains one multithreshold 
quadratic sigmoidal neuron in the output layer and many single- 
threshold quadratic sigmoidal neurons in the hidden layer. Through- 
out this letter, we will assume that the input layer, hidden layer. and 
output layer are the zeroth, first, and second layer, respectively. Thus. 
a superscript ( I )  ( l  = 1 . 2 )  on any parameter i s  used to denote the 
layer number. 

111. CLASSIFICATION CAPABILITY OF THE PROPOSED 
HYBRID NEURAL NETWORK ARCHITECTURE 

Before presenting the capability study of the proposed neural 
network, another activation function called the quadratic Heaviside 
function has to be introduced first. The quadratic Heaviside function 
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is an extension of conventional Heaviside function and is defined as 

Quadratic Heaviside: 

Let ' H ( . r )  denote the conventional Heaviside function. i.e.. ' H ( . I . )  = 1) 
for . I .  < 0 and ' H (  . I . )  = 1 for .I' 2 I). then 

(4)  

where q(w<z. 0 , )  = H ,  - (w{zj2. Thus, the following lemma can be 
easily derived. 

Lemma 1:  For any positive constant k .  

'H , , ( ' f l J ,Z .  0 , )  = ' H ( q [ W , z .  H ,  j j  

'H,,(m,z.H,) = 'H, , (kw,z.k ' )H, j .  fora11z E %" 

Let a(.,.) be the sigmoidal function, i.e., c r ( . r )  = 1 / ( 1  + c q ) ! - , t r ) ) .  

We also can prove the following lemma. 
Lemma 2: Given an error tolerance f > I). then 

Proof: For .I' < I). m ( . r l  must be less or equal to F.  i.e.. 
1/( 1 + c q ) !  - . I . ) )  5 6. Thus. it is easy to derive that . I '  5 
- l o g ( ( 1  - f ) / F ) .  On the other hand. for . I '  2 O . c r ( . r j  must be 
larger than or equal to 1 - 6. i.e.. 1/( 1 + c q ) ( - - . ~ . j )  2 1 - 6 .  

Thus, we derive .r 2 log( [l - t - ) / F ) .  Therefore, we conclude that 
0 

Similar to the multithreshold quadratic sigmoidal neurons, we can 
also define the extended quadratic Heaviside function for another 
type of neurons called multithreshold quadratic heaviside neurons as 
follows: 

for 1 . 1 . 1  2 Ilog((1 - f j / F ) j .  I U [ . I . )  - H!.rjl 5 6 .  

Extended Quadratic Heaviside: 

where 

< / ( 8 < . Z )  = 0 ,  I) + H ,  , . I . , .  

)=I, 

In the following. we will start the capability study from nonfeedfor- 
ward single-hidden-layer networks which contain quadratic Heavibide 
neurons in hidden layer and one multithreshold Heaviside neuron in 
the output layer and use direct input-to-output connections. Then, we 
extend the results to the feedforward networks which contain many 
single-threshold quadratic sigmoidal neurons in the hidden layer and 
one multithreshold quadratic sigmoidal neuron in the output layer. 

Suppose that a training set S consists of distinct vectors U I  . . . . . U / , .  

where U ,  E )R". Since the set 

-4 = R "  - U,*, { . \ I . Y '  ( U ,  - U ,  j = I)..\ E 'R"} 

which cannot be empty. we can always find a vector 71 in .4 such 
that the new training set 

s' = = ? J U < .  15 i 5 1, )  

contains no duplicated elements. Assume that a network containing h 
neurons in its tint hidden layer can dichotomize a dichotomy which is 
induced from S onto S'. Let the weights of these I r  hidden neruons 
be w 1 .  1 1 ' 2 . '  . . w / , (  t i ' #  E e) .  Then. it  is obvious that the network 
also can dichotomize the original dichotomy on S if we replace the 
weights of these I )  hidden neurons by I ( ' I T I .  / I  ?v.. . . . 1 1 ' 1 , ~ ~ .  

< . . . < !I,,. 
where y, E S ' ,  and take any dichotomy (S-. S+ j on the original 
training set S. This will induce a partition on the set of y > ' s  into two 
subsets, corresponding to values V U , .  1 1 ,  E SA and vuL,.  1 1 ,  E S- , We 
shall assume that !/I is of the first subset since we always can find a 
vector v for this purpose. Now. we can prove the following theorem. 

Without loss of generality, let us assume that !/I < 

Theorem /: Given a training set 

s =  { ~ / , . ~ / ' . " ' . ! / l A + , l ! / ~  E R . 1  < i < 4 k ' + l } .  

A single-hidden-layer network with direct input-to-output connections 
and containing at most A. quadratic Heaviside hidden neurons and one 
multithreshold quadratic Heaviside output neuron can dichotomize an 
arbitrary dichotomy defined on S. 

Proof: Let us use the notation " I ,  < I," for intervals to mean 
that .I '  < y for all .I' E I , .  and all E I , .  Let 

for i 5 i 5 4k I ,  < I , + ] .  

be closed subintervals of 'R. 
Denote 

I+ = I2,Cl. I -  - - " I2,. 

If we can construct a network with the stated architecture such that 
the constructed network outputs "1" for .I' E I' and outputs "0" for 
.I' E I - ,  then the proof can be completed. Assume that 

O I I  < I ,  < < I2 < - 1 1  < I <  

< - , A  < I1 < I; < I ;  < ( 1 1  < . . .  
< ( t ,  < I l l+,  < 1, < I,,--L < -j, < I&+:< 

< -,: < I h + I  < 1: < Il,,+,l,l < ( ) , + I  < " '  

< ( t A - 1  < I . $ ( A - l I + l  < j A - 1  < h ( A - I ] + 2  

< - , A - l  < II(A-I~-I < - : - I  < I d ( A - l l + L  

< j i - 1  < I,A+l < O A .  

Let w,  = ( / I , ,  0 .  t i ' (  1 ) denote the bias and weight of the ith quadratic 
Heaviside hidden neuron, and 0;" denote the threshold of the ith 
quadratic Heaviside hidden neuron. Also let U = ( U O .  i f  I . .  . . I I L  ), and 
8 = (Hi'). H \ 2 ) .  . . . ) denote the hidden-to-output connection 
weight vector and the threshold vector of the multithreshold quadratic 
Heaviside neuron, respectively. Besides. use c l ( €  'R) to denote the 
direct input-to-output connection weight. Thus, the output of this 
network can be formulated by 

r: 1 0 = f 110 + 1' . .r + i f ,  / I (  I I ' (  (1 + I I ' , . I  . I , .  H, ). 8 (6) 

where .I' E R is the input, f() denotes the extended quadratic 
Heaviside function (see ( S ) ) ,  and l t (  1 denotes the quadratic Heaviside 
function (see (3) ) .  Now, let us set the parameters of this network as 

( ,=I 

- , > - I  +" , : - I  

H;,2i  = *llax{o;.~,;}. 

11" = 0. f l ,  = - > 

/ '  = 1 . 

Based on these settings, given an input .I' in the interval ( 1,-1. I:-l ), 
according to (3), i t  is easy to prove that only the ith hidden neuron 
will output "1" and other hidden neurons output "0." Thus, q(8, z) = 

- - , ( -1) /2) ' .  According to (6) and ( S ) ,  the output of the 
network becomes 

0 = f ( . r  + / I < .  8) 
1 
O if j ( - l  < .I' < or < .I' < I:-1. 

if ;,,-I 5 .I' 5 
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Therefore, if .I' E I,,+$ then the nethork outputs " I . "  i f  . I  E I,,+? and an error tolerance E > 0, then 
or 1 E 14,+ I ,  the network outputs "0 '' 

For .I in Iz ,+I,  according to (3). we can see that no hidden neuron 
w ~ l l  output " I . "  Thus, g(8,z) = Hj,' = iiiax{r\$. I ) ; } .  Then, the 
output of the network becomes 

0 = f( 1.8) 

where 
- 

1 

- {  1 i f - @ s . r <  @. 
Therefore, we can prove that for all . I '  in I ~ ( + I  ( 1  5 i < A . ) ,  the 
network outputs "1 ."  Finally, we can conclude that for .I' E 1'. the 

0 otherwise. 

network outputs " I "  and for .r E I - .  the network outputs "0." 0 
In the following, we extend the results to the feedforward networks 

which use single-threshold quadratic sigmoidal hidden neuron5 and 
multithreshold quadratic sigmoidal output neuron. Before the exten- 
sion, it is necessary to introduce the following auxiliary lemmas 
first. 

Lemma 3: Let @ (  iuy. H )  denote a quadratic sigmoid function. 
where w = ( WII. I I ' I  ) and y (1. . I . ) .  Given a compact domain 
C C B - { (  fi - w I ) ) / w l  } and an error tolerance F > 0% then 

I@(X'UJy.X'H) - 'H, / (? l~y.H)l  5 f .  

where t i l  = iiiiii({lH - ( r r ' ( j  + w1.r)'Il.r E C } ) .  
Proof: The quadratic sigmoid function @(iuy. H )  can be re- 

garded as a variant of sigmoid function, i.e., @ ( u ~ y . H )  = ( T ( H  - 
( w o + w 1 . r ) ' ) ,  where ( T ( . I , )  denotes the conventional sigmoid function. 
Thus, according to Lemma 2, we obtain that 

I g ( X ' H  - (X7f'o + A t f , l . r ) 2 )  - 'H(X'H - ( X f / , t ,  + XIt.1.r) ' )) l  

Let 1 1 )  = iiiin({(H - ( W O  + w ~ x \ ' l l . r  E C } ) .  Since .I' cannot be 
( fi - wo ) / w l ,  thus I I I  > 0. Therefore. the above equation can be 
rewritten as 

Lemma 4:  Let @(wy. H )  denote a quadratic sigmoid function. 
Suppose that vector y = (1 . r )  and w, = ( c . 0 )  such that 
Ll@(w, y. H ) /ane t  = 1' # 0, where net = wy = 11'0 + 11'1 . r .  

Let C c % be a compact domain. There exists a weight vector 
w,\ = ( C  - (./A. l / A ) ,  such that 

+ C' + ./'. for all .r E c. 
Proof: For the purpose of convenience, let f(1ic.t. 8 )  denote the 

quadratic sigmoid function, where iict = wy = U ' O  + w l r .  Thus, 
@(w,y .Hj  = f ( c . 0 ) .  Since a@(w,y.Hj/Dnrt  = / I  # 0, thus 

.I' - (' 
f ( C +  ,\.H) - f ( C . 0 )  

+ If # 0. 
,I' - C' 

liiii 
x - x __ 

x 
Rearranging the terms in the above equation, we obtain that 

In other words, there exists a weight vector wx = ( c  - (./A. l / A ) .  
such that 

+ c -+ . r .  for all . I '  E C. 0 

With the above auxiliary lemmas, the following theorem can be 

Theorem 2: Given a training set 
proved. 

By Lemma 1, we obtain that s = { ( / I .  (/L. . . . . ~ ? r + i  I I,/) E R. 1 5 / 5 4k + l }  

a single-hidden-layer network containing at most k + 1 single- 
threshold quadratic sigmoidal hidden neurons and one multithreshold 
quadratic sigmoidal output neuron can dichotomize an arbitrary 
dichotomy defined on S. 

Proof: Consider each quadratic Heaviside hidden neuron i of 
the network constructed in Theorem 1. Since 

where T U  = iiiiii( { IH - (wo + wl . I . ) '  1 1 . 1 .  E C.) ). 

quadratic sigmoid function and an extended quadratic Heaviside 

( H o . 8 1 . .  . . . H , ,  ), and y = ( 1. !/I. ( 1 2 . '  . . . ! I ! ,  1. Given a compact set 

Corollary I :  Let @(wy, f3 )  and !!(uJY,~?,)  denote an extended /m- ( - J-,  + j ,-l 

2 
- 

- I f ' )  ii 
- 

function, respectively, where VJ = ( ( I , , , .  , . . . . . w , ,  ). c?, = I t ' ,  I 1 
- - $:-I. 

and we have assumed that ,j:-l is not contained in any interval I ,  
for 1 5 i 5 4k + 1 in Theorem 1. thus according to Lemma 3, each 
term of quadratic Heaviside function ( I ) (  w,.o + I ~ , , I . I ' .  0 ,  ) )  in (6) can 
be replaced by a single-threshold quadratic sigmoidal neuron with 
activation function @(Xwy. X 2 H )  for large enough A. Let 1 1 ,  denote 
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the output of the ith hidden neuron. In the proof of Theorem I .  we 
have seen that for any input in 

U L , { l l , t  U l l , + r  U r l , + , } .  

one and only one hidden neuron will output " I . "  Thus. based on 
the settings in Theorem 1, the term g(f3,y) - (wy)' for tnul-  
tithreshold quadratic Heaviside output neuron i \  equal to H ; ' '  + 
0:"- ( . I . +  ( r e ) ? ( i  # 0 ) .  where y = ( l . . r ~ . I / l . h - . . . . . I r ~ ) .  and 
w = ( ( I O .  ( 7 .  ( I  I .  I / , .  . . . . ( I I  ) .  Since 

and 

In addition, we have also assumed that and - , .  I are not 
contained in any interval 1, for 1 5 I 5 1I. + 1 in Theorem 
I ,  i.e., .I' # and .I' # - , ( - I .  Thus. H)" +e;;?' - ( . I .  + (10' 
cannot be zero. Similarly. for any input in TI ,+ ,  . no hidden neuron 
outputs "I . "  Hence. the term g( f3 ,y )  - (wy)" = H: : '  - . I . ' ,  where 

any interval I (  for 1 5 i 5 4k + 1 in Theorem I .  H:;" - . r2  
cannot be zero. Thus. we conclude taht g ( f3 ,y )  - (uJY~'? # 0 
for .I' in I ,  (1  5 i 5 4k + 1)  based on the settings in Theorem 
I .  Hence, by Corollary 1. we can use a multithreshold quadratic 
sigmoidal neuron to replace the multithreshold quadratic Heaviside 
output neuron of the network constructed in  Theorem 1. For the linear 
term, P . .I' = 1 . .r = .I,. in (6). according to Lemma 4. we can use 
another single-threshold quadratic sigmoidal neuron to approximation 
this linear function. Therefore, in summary. we can use X.  + 1 single- 
threshold quadratic sigmoidal hidden neurons and one multithreshold 
quadratic sigmoidal output neuron to implement the function of the 

U 
In Sontag's work 161, he had proved that the upper bound o n  

the number of hidden neurons required by a feedforward sigmoidal 
network for dichotomizing a training set with ?k  training patterns is 
k .  For the multithreshold quadratic sigmoidal networks, according to 
Theorem 2, only at most [L,/21 multithreshold quadratic sigmoidal 
hidden neurons are enough. Let us compare the multithreshold 
quadratic sigmoidal networks with the conventional sigmoidal net- 
works in terms of the number of free parameters. Suppose that the 
input dimension is 1 1 .  Given a training set with 4A. + 1 training 
patterns, then the multithreshold quadratic sigmoidal network requires 
at most ( k  + 1)(  r t  + 2 )  + 2 [ k  + 1)  free parameters. However. the 
sigmoidal network requires at most 2X.i t r  + 1)  + i 2 k  + 1 ) free 
parameters. Thus, for problems with large input dimensions ( t l  is 
large), the upper bound on the number of required free parameters 
for multithreshold quadratic sigmoidal networks is only one half of 
that of sigmoidal networks. For a training set with a large number 
of patterns ( k  i s  large). the ratio between the upper bounds on the 
numbers of required free parameters for multithreshold quadratic 
sigmoidal networks and sigmoidal networks is [ r r  + 4 ) / ( 2 t /  + 4 ) .  
Thus, the improved ratio (say 6) for the multithreshold quadratic 
sigmoidal networks is G/5 5 t: < 2.  

OjiJ?' - - i i i a x { n ~ . o ~ } .  Since both ( I O  and oi, are not contained in 

nonfeedforward network constructed by Theorem 1 .  

IV. CONCLUDING REMARKS .AND Fr n KF WORKS 
In this letter, a new type of neurons called multithreshold quadratic 

sigmoidal neurons are proposed to improve the classification ot 
capability of multilayer neural networks. Using a multithreshold 

quadratic sigmoidal neuron in the output layer and A, + 1 single- 
threshold quadratic sigmoidal neurons in the hidden layer, a single- 
hidden-layer neural network can be constructed to dichotomize ar- 
bitrary dichotomy defined on any training set with at least 4k + 1 
training patterns. Thus, in comparison with the committed machines 
(feedforward and Heaviside activation function) 1.51, we can claim 
that the multithreshold quadratic sigmoidal neurons have improved 
the recognition capability of single-hidden-layer neural networks by a 
factor of 4. In fact. a version of a backprop-like learning algorithm for 
multithreshold quadratic sigmoidal neural networks also can be easily 
derived based on the gradient descent method. Research into two 
interesting topics on the multithreshold quadratic sigmoidal neural 
networks is underway: 

Capability studies on more complicated architectures, such 
as nonfeedforward networks, networks with more layers, or 
networks with multithreshold quadratic sigmoidal neurons in 
hidden layers. 
Practical application studies on multithreshold quadratic sig- 
moidal neural networks. 
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A Learning Law for Density Estimation 

Dharmendra S. Modha and Yeshayahu Fainman 

Abstruct-Probability density functions are estimated by an exponential 
family of densities based on multilayer feedforward networks. The role 
of the multilayer feedforward networks, in the proposed estimator, is 
to approximate the logarithm of the probability density functions. The 
method of maximum likelihood is used, as the main contribution, to derive 
an unsupervised backpropagation learning law to estimate the probability 
density functions. Computer simulation results demonstrating the use of 
the derived learning law are presented. 

I. INTRODUCTION 
The joint probability density function of an observation vector 

that is assumed to follow a random process. embodies all the 
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