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a b s t r a c t

To numerically determine the band structure of three-dimensional photonic crystals
with face-centered cubic lattices, we study how the associated large-scale generalized
eigenvalue problem (GEP) can be solved efficiently. The main computational challenge is
due to the complexity of the coefficient matrix and the fact that the desired eigenvalues
are interior. For solving the GEP by the shift-and-invert Lanczos method, we propose a
preconditioning for the associated linear system therein. Recently, a way to reformat the
GEP to the null space free eigenvalue problem (NFEP) is proposed. For solving the NFEP,
we analyze potential advantages and disadvantages of the null space free inverse Lanczos
method, the shift–invert residual Arnoldi method, and the Jacobi–Davidson method from
theoretical viewpoints. These four approaches are compared numerically to find out their
properties. The numerical results suggest that the shift–invert residual Arnoldi method
with an initialization scheme is the fastest and the most robust eigensolver for the target
eigenvalue problems. Our findings promise to play an essential role in simulating photonic
crystals.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Photonic crystals are made up of position-dependent dielectric materials with periodic structures. Depending on the
shapes and permittivities of the dielectric materials, photonic crystals produce band-gaps for various frequency regions.
Photonic crystals with specific band structures are of practical interest and have been extensively studied over the past few
decades [1–4]. In this paper, we consider a three-dimensional (3D) photonic crystal with a face-centered cubic (FCC) lattice
as shown in Fig. 1(a). Three-dimension FCC structure permits a full and complete photonic band gap rather than a pseudogap.
The light with designated frequencies from any directions can be trapped in this structure [5]. A manufacturing process of
3D photonic crystal associated with the FCC lattice to emerge into the complete photonic band gap in a realistic experiment
is proposed in [6]. Photonic crystals with an FCC lattice lead to a larger photonic band-gap for lower time-frequencies [7].
Such lattice structure results in many innovative applications [8,1,9,10].

To study a photonic crystal with FCC lattice numerically, we need to solve the Maxwell equations that determine the
shape of the Bloch wave equations of the time-harmonic electric fields and magnetic fields of photonic crystals. In order to
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Fig. 1. The figure shows (a) schema and (b) lattice vectors of a face-centered cubic (FCC) photonic crystal structure in a primitive cell.

solve the equations, we can substitute the magnetic field by the electric field and then discretize the equations to obtain
a large-scale generalized eigenvalue problem (GEP) Av = λBv. The matrix A is the discrete double curl operator and it
is Hermitian and positive semi-definite. B is the positive and diagonal matrix. It is important to note that the matrix B
influences the spectrum of the GEP and thus the band structure of the corresponding photonic crystals. In [7], several
different structures of photonic crystal are considered. The corresponding band structures have significant difference from
each other.

However, solving the GEP associated with the FCC lattice is challenging. Because the dimension of the null space of
A is one third of the dimension of A, it is hard to find the smallest positive eigenvalues that are of interest [7,11,12].
Another difficulty is due to the non-orthogonal FCC lattice vectors shown in Fig. 1(b). Photonic crystal with simple cubic
(SC) lattice is considered in [13]. Because the eigenvectors of the discrete double curl operator associated with the SC lattice
are mutually independent (due to the pairwise orthogonal SC lattice vectors), standard FFT can be applied to solve the
corresponding eigenvalue problems. However, such eigenvectors associated with the FCC lattice are mutually dependent
(due to the pairwise non-orthogonal FCC lattice vectors). Standard FFT techniques cannot be applied to these periodic
coupling eigenvectors. A recent theoretical study [12] overcomes these difficulties by deflating the zero eigenvalues and
proposing FFT-based matrix–vector multiplications via the eigendecomposition of A. While the preliminary numerical
results shown in [12] is promising, howdifferent eigensolvers perform in a computational scenario remains to be elucidated.
This article fills the gap by making the following contributions.
• To solve the GEP by the shift-and-invert Lanczos method, we proposed a preconditioning scheme for the shifted linear

system in the eigensolver.
• To solve the null space free eigenvalue problem, we analyze theoretically the advantages and potential disadvantages of

the inverse Lanczos method, the shift–invert residual Arnoldi method, and the Jacobi–Davidson method.
• We conduct extensive numerical experiments to explore the numerical properties in timing and iteration numbers of the

eigensolvers. The numerical results suggest that the shift–invert residual Arnoldi method with an initialization scheme
is the fastest and the most robust eigensolver for the target eigenvalue problems.

This paper is outlined as follows: in Section 2, we briefly describe the Maxwell equations and the eigendecomposition of
the degenerate coefficient matrix A. One set of orthogonal bases of the range space of A and one set of orthogonal bases of
the null space of A are introduced. The null space free eigenvalue problem is derived. In Section 3, we discuss four eigenvalue
solvers considered in this article. In Section 4, these eigenvalue problem solvers are compared numerically with respect to
the internal linear system and the outer GEP. We conclude the paper in Section 5.

Throughout this paper, we denote the transpose and the conjugate transpose of a matrix by the superscripts ⊤ and ∗,
respectively. For the matrix operations, we denote the Kronecker product of two matrices as ⊗. We denote the imaginary
number

√
−1 by ı and the identity matrix of order n by In. The conjugate of a complex scalar z ∈ C and a complex vector

z ∈ Cn are represented by z̄ and z̄, respectively.

2. Maxwell’s equations and the eigenvalue problems

2.1. Maxwell’s equations

The governing Maxwell’s equations of a photonic crystal can be written as
∇ × H = ıωεE,
∇ × E = −ıωµ0H,
∇ · (εE) = 0, ∇ · (H) = 0.

(1)

Here,H and E are themagnetic fields and electric fields, respectively;ω is the frequency;µ0 is themagnetic constant and ε is
the material dependent permittivity. Letting λ = µ0ω

2 and eliminating the magnetic field H in (1), we have the differential
eigenvalue problem

∇ × ∇ × E = λεE, (2a)
∇ · (εE) = 0. (2b)
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The degenerate elliptic operator∇ ×∇× in (2a) is self-adjoint and non-negative. Eq. (2a) is an elliptic interface problem and
Eq. (2b) serves as a constraint for the degenerate elliptic Eq. (2a). Furthermore, Eq. (2b) is redundant for nonzero eigenvalues
λ ≠ 0 as a consequence of the calculus identity ∇ · ∇× ≡ 0.

Based on the Bloch Theorem [14], the spectrum corresponding to the periodic structure in the full space is equivalent
to the union of all spectra corresponding to the quasi-periodic problems in one primitive cell. We thus aim to find the
Bloch eigenfunctions E for (2) satisfying the quasi-periodic condition E(x + aℓ) = eı2πk·aℓE(x), for ℓ = 1, 2, 3. Here, 2πk
is the Bloch wave vector in the first Brillouin zone [3] and aℓ’s are the lattice translation vectors that span the primitive
cell, which extends periodically to form the photonic crystals. The FCC lattice vectors are a1 =

a
√
2
[1, 0, 0]⊤, a2 =

a
√
2


1
2 ,

√
3
2 , 0

⊤

, a3 =
a

√
2


1
2 ,

1
2
√
3
,


2
3

⊤

, where a is the lattice constant. Any pairwise angles formed by a1, a2 and a3
measure π/3.

2.2. Discretization and the resulting eigenvalue problem

We use Yee’s scheme [15] to discretize the Maxwell’s equation (2) with the FCC lattice. The discretization results in a
large-scale GEP

Av = λBv, (3)

where A is Hermitian and positive semi-definite for the discrete double-curl operator ∇ × ∇× [12], and B is positive and
diagonal for the material-dependent dielectric constants [13]. Because of ∇ · ∇× ≡ 0, the matrix A has many zeros that are
not of interest. Derivation details of the discretization can be found in [16]. Based on these explicit matrix formulations, the
eigendecompositions are derived in [12] and are briefly summarized in Section 2.3. The eigendecomposition and problem
properties are used to develop the null-space free eigenvalue problem in the next section.

Let n1, n2, n3 be the numbers of grid points on the x-, y- and z-axis, respectively. We assume that these numbers are
the multiples of 6 and n = n1n2n3. The mesh length on the x-, y- and z-axis are denoted by δx, δy and δz , respectively. The
3n × 3n Hermitian matrix A in (3) is of the form

A = C∗C, (4)

where

C =

 0 −C3 C2
C3 0 −C1

−C2 C1 0


(5)

and

C1 = In2n3 ⊗ K1, C2 = In3 ⊗ K2, C3 = K3. (6)

See [12] for the definitions of the pseudo periodical matrices K1, K2, and K3.

2.3. Eigendecompositions

Wenow briefly summarize the theoretical results introduced in [12]. The definitions of the notations used in the theories
below can be found in [12]. Theorems 1 and 2 assert the Schur decompositions of Cℓ’s (for ℓ = 1, 2, 3) and A, respectively.

Theorem 1 (Schur Decomposition of Cℓ’s [12]). Let Cℓ (ℓ = 1, 2, 3) be defined in (6). Then, (i) C∗

i Cj = CjC∗

i , CiCj = CjCi, for
i, j = 1, 2, 3; (ii) Cℓ’s can be diagonalized by the same unitary matrix T :

C1T = TΛx, C2T = TΛy, and C3T = TΛz, (7)

where Λx, Λy, and Λz are diagonal matrices.

Theorem 2 (Schur Decomposition of A [12]). Let A and (Λx, Λy, Λz, T ) be defined in (4) and (7), respectively. Then we have

Q ∗AQ = diag

0, Λq, Λq


, (8)

where

Q = (I3 ⊗ T )


Λ0 Λ


≡ (I3 ⊗ T )


. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .


is unitary, Λq = Λ∗

xΛx + Λ∗
yΛy + Λ∗

zΛz, Λ0 is a 3 × 1 block diagonal matrix, and Λ is a 3 × 2 block diagonal matrix.
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2.4. The null space free eigenvalue problem

Theorem 2 establishes a key step to transform the GEP in (3) to the following null space free eigenvalue problem (NFEP)
Aru = λu (9)

where

Ar = Λ
1
2
r Q ∗

r B
−1QrΛ

1
2
r and u = Λ

−
1
2

r Q ∗

r Bv.
In addition,

Qr = (I3 ⊗ T ) Λ and Λr = diag

Λq, Λq


.

The transformation from the GEP to the NFEP has been shown in [12]. We assert the results with a simpler proof in the
following theorem.

Theorem 3. Let T and (Λq, Λ) be defined in Theorems 1 and 2. Then we have

span

B−1QrΛ

1
2
r


= {x | Ax = λBx, λ > 0} (10)

and

{λ | Ax = λBx, λ > 0} = {λ | Ary = λy} . (11)

Proof. From Theorem 2, it holds that A = QrΛrQ ∗
r . The fact implies that

B−1A
 

B−1QrΛ
1/2
r


=

B−1QrΛrQ ∗

r

 
B−1QrΛ

1/2
r


=

B−1QrΛ

1/2
r


Ar .

We thus obtain that span{B−1QrΛ
1/2
r } is an invariant subspace of B−1A associated with the eigenvalues of Ar . Since Ar is a

positive definite matrix with rank 2n, the results in (10) and (11) hold. �

Theorem 3 shows how we can transform the GEP (3) (with dimension 3n) to the NFEP (9) (with dimension 2n). In
particular, the zero eigenvalues of the GEP are deflated and the nonzero (positive) eigenvalues are kept without changing
in NFEP. Solving the NFEP (9), rather than the GEP (3), for the wanted eigenvalues has several advantages.
• The NFEP (9) contains 2n positive eigenvalues. These positive eigenvalues are also the eigenvalues of the GEP (3), while

the GEP has another n zero eigenvalues. Consequently, we can use an iterative eigensolver (e.g., the inverse Lanczos
method and Jacobi–Davidson method) to find the smallest positive eigenvalues of the NFEP without being affected by
the zero eigenvalues of (3).

• At each iteration for solving (9), we need to solve the linear system
Λ1/2

r Q ∗

r B
−1QrΛ

1/2
r − σ I


y = c (12)

for certain vectors y and c and a given shift σ . The matrix Q ∗
r B

−1Qr is well-conditioned because κ(Q ∗
r B

−1Qr) ≤ κ(B) [12]
and κ(B) = 13 in the target photonic crystal setting. This fact implies that the linear system (12) with σ = 0 can be
solved efficiently without preconditioning. More numerical details will be presented in Section 4.

2.5. Remarks about projection methods

From Theorem 2, we can see that the GEP (3) has n zero eigenvalues. It is natural to project the search space (or the search
vectors) to the space that is orthogonal to the null space in each iteration. So that we can remove the components within the
null space. However, such approach needs more and more computational cost to perform the orthogonal projections along
the iterations, because the dimension of the search space keeps growing.

Another projection method is proposed in [7]. This method applies inverse iteration to compute the target eigenpairs.
The main idea of the method is to rewrite the GEP (3) as a standard eigenvalue problemAṽ = λṽ forA = B−1/2AB−1/2 and
ṽ = B1/2v and let z be a null vector ofA. Then by the Hermitian property of A, it holds that 0 = ṽ∗Az = z∗(Aṽ) which
indicates thatAṽ is orthogonal to z. Consequently, we can multiply ṽ byA to eliminate the components of the null space
and thus keep the iterative solutions falling into the range space ofA. However, this method exhibits oscillatory behavior.
Instead of multiplying ṽ byA directly, a conjugate gradient projection method with multigrid acceleration is used in [7] to
compute the vectorw by minimizing the objective function ∥Aw − ṽ∥2, i.e., by solving the normal equation

(A∗A)w = (A∗ṽ). (13)
Unlike these projection methods, we can explicitly define the invariant subspace of Av = λBv corresponding to all

nonzero eigenvalues via Theorem 3. Therefore, the positive eigenvalues of Av = λBv can be found by solving the NFEP (9)
without any projection by using this invariant subspace, as the NFEP is a null space free eigenvalue problem. Comparing the
methods based on the NFEP with the projection method proposed in [7], we can see the following: (i) the coefficient matrix
of the linear systems in (12) is Hermitian positive definite and well-conditioned (as σ = 0 in our case). Consequently, (12)
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can be solved efficiently without preconditioning. In contrast, the coefficient matrixA∗A in (13) is not Hermitian positive
definite and it needs an preconditioner; (ii) the NFEP (9) can be solved by subspace iterative eigensolvers. These eigensolvers
usually converge faster than the inverse iteration method; (iii) the null space does not affect the convergence behavior of
the eigensolver for solving (9); however, the null space will downgrade the convergence of the projection method.

3. The eigenvalue solvers

In this section, we discuss how we can solve the GEP (3) or the NFEP (9) by using different eigenvalue solvers and their
advantages.

3.1. Shift-and-invert Lanczos method (SILM) for the GEP (3)

The Shift-and-invert Lanczos Method (SILM) can be used to find a few of the (interior) smallest positive eigenvalues of
the GEP (3). In the SILM, a standard Lanczos method is used to solve the shifted-and-inverted eigenvalue problem

Asv = µv, (14)
where As = (A − σB)−1B, µ = (λ − σ)−1, and σ is the shift. The most expensive part of the SILM is to solve the shifted
linear system

(A − σB)z = b, (15)
where b and z are intermediate vectors.

To solve the linear system (15), we propose a preconditioning schememotivated by the eigendecomposition A = QΛQ ∗

in (8). Here, the matrix Q is unitary and B is a diagonal matrix. By using the eigendecomposition and averaging the diagonal
entries of B, we have the preconditioner

M = A − τ I = QΛQ ∗
− τ I = Q (Λ − τ I)Q ∗, (16)

where τ = σε0 and ε0 is the average of the diagonal entries of B. The following facts illustrate why M can be an efficient
preconditioner.
• While there is an efficient way [12] to compute the matrix–vector multiplications Q ∗d and Qe for M−1d = [Q (Λ −

τ I)−1Q ∗
]d, we can further accelerate the computation of M−1d. Our idea is to use the Schur decompositions of Cℓ’s in

Theorem 1 to solve the linear system

(A − τ I)y = d (17)

as the following.
From (5), it holds that

A = I3 ⊗

G∗G


− GG∗,

where G = [C⊤

1 , C⊤

2 , C⊤

3 ]
⊤ and Eq. (17) can be reformulated as

I3 ⊗

G∗G


− τ I


y = d + GG∗y. (18)

Multiplying (17) by GG∗ and applying the fact CG = 0, we have GG∗y = −τ−1GG∗d and Eq. (18) becomes
I3 ⊗


G∗G


− τ I


y = d − τ−1GG∗d. (19)

Applying the Schur decompositions of Cℓ’s in Theorem 1, the solution y in (19) can be computed by
I3 ⊗ Λq − τ I


ỹ =


I − τ−1


Λx
Λy
Λz

 
Λ∗

x Λ∗

y Λ∗

z


(I3 ⊗ T )∗ d ≡ d̃

and

y = (I3 ⊗ T ) ỹ.
As Λq, Λx, Λy, and Λz are all diagonal matrices, the main computational cost for solving y is the matrix–vector
multiplications T ∗p and Tq. As shown in [12], these two matrix–vector multiplications can be computed efficiently by
the FFT-based schemes and therefore the preconditioning linear system (17) can be solved efficiently.

• We can rewrite the linear system (15) as

AMz = b̃, (20)

where AM = M−1 (A − σB) = I +σM−1 (ε0I − B) and b̃ = M−1b. If we solve the linear system (15) with preconditioner
M by an iterativemethod, we need to compute thematrix–vector multiplication involving A and solve linear system (17)
at each iteration. Alternatively, if we solve the rewritten system (20) by an iterative method, we only need to compute
t + σM−1(ε0I − B)t at each iteration for a given vector t. This alternative approach is cheaper, because we only need to
solve (17) and there is no need to compute the matrix–vector multiplication involving A.
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The aforementioned preconditioning schemes are different from existed approaches in the following sense.
• Both of the preconditioners proposed in [13] for the SC lattice and the preconditioner suggested in (16) for the FCC lattice

have the form A − τ I . However, they are derived from completely different ways. In the SC lattice, the pairwise angles
formed by the lattice vectors areπ/2. So we can rewrite the eigenvalue problem (2a) containing the double curl operator
∇ × ∇ in another form that contains the Laplace operator ∇

2. Consequently, the linear system due to the discretization
of the Laplace operator can be solved by FFT efficiently. However, this derivation cannot be applied to the FCC lattice
because of the particular FCC periodicity formulation. Instead, the derivation of the preconditioner here is based on the
explicit eigendecompositions of Cℓ and A given in Theorem 1 and (8), respectively. Without this eigendecomposition, we
would not be able to find the aforementioned way to solve the preconditioner linear system (17).

• The approach based on the preconditioned linear system (20) can be viewed as an improvement of the scheme proposed
in [13] with a saving of matrix–vector multiplication involving A.

3.2. Null space free Lanczos method (NFLM) for the NFEP (9)

The SILM needs a pre-determined shift σ as shown in Eq. (14). However, it is not easy to choose a suitable shift value to
gain efficiency of overall computation a priori. Alternatively, as discussed in Section 2.4, we can use inverse Lanczos method
(no shift is needed) to solve the NFEP (9), because the NFEP has no zero eigenvalue. We call the approach as the Null-space
Free Lanczos Method (NFLM) and it is used to find the wanted eigenvalues of the GEP (3).

3.3. Shift–invert residual Arnoldi method (SIRA) and Jacobi–Davidson method (JD) for the NFEP (9)

We consider other methods, namely the shift–invert residual Arnoldi method and the Jacobi–Davidson method, to solve
the NFEP (9).

The residual Arnoldi method (RA) has been proposed to solve the eigenvalue problem Ax = λx and it is mathematically
equivalent to the Arnoldi method in exact arithmetic [17,18]. To obtain the next Krylov basis vm+1 in the RA, the residual
r = Ay − θy is orthogonalized against to an orthonormal basis of the m-dimensional Krylov subspace Vm = [v1, . . . , vm].
Here, (θ, y) is the Ritz pair of A with respect to Vm and the m-dimensional Krylov subspace is constructed by the Arnoldi
process. The RA can be extended to solve the eigenvalue problem (A − σ I)−1x = (λ − σ)x and this variant of RA is named
as the Shift–Invert Residual Arnoldi method (SIRA). The SIRA is designed to find a few of eigenpairs that are close to the
shift value σ for the eigenvalue problem Ax = λx [19,17,18]. To compute the basis vector in each iteration of the SIRA, the
method first solves the linear system

(A − σ I) u = r (21)
for the residual vector r = Ay−θy. The basis vector vm+1 is then computed by orthogonalizing u against Vm. In practical, the
SIRA is usually realized as the inexact SIRA, in which the linear system (21) is solved approximately [17,18]. Jia and Li [19]
have proved that the inexact SIRA mimics the exact SIRA well when the relative error of the approximate solution of (21) is
modestly small (around [10−4, 10−3

]) at each iteration.
Jacobi–Davidson method (JD), on the other hand, is also an inexact eigenvalue solver [20]. In each of the JD iteration, the

correction equation
I − uu∗


(A − θ I)


I − uu∗


t = −r (22)

is solved approximately by an iterative solver. In a one step local analysis [19], the SIRA and JD are shown to be
mathematically equivalent if the two problems (21) and (22) are solved exactly. Based on the local analysis, a new version
of the inexact SIRA that shares the same framework with the JD has been proposed in [19]. While there are various ways to
describe and implement the SIRA and JD algorithms, we use the version given in Algorithm 1 to solve the NFEP Aru = λu
in (9). As demonstrated in the algorithm, the only difference between the two methods is that the SIRA solves the linear
system (23) and the JD solves the correction equation (24) (both approximately).

We highlight some properties of the SIRA as follows.
• Eigenvalue deflation is embedded implicitly for the SIRA. In the outer iteration of Algorithm 1 (line 13), the vector tk is

orthogonalized against Vx. Because the columns of Vx are the convergent eigenvectors and pairwise orthogonal (as Ar is
Hermitian), the convergent eigenvalues are thus automatically deflated from the subspace span{Vk+1}.

• There is no need to perform shift in the SIRA and we can set σ = 0 in (23). In the jth iteration of Algorithm 1, the first
smallest (j − 1) eigenvalues are found and deflated. The jth smallest positive eigenvalue thus becomes the smallest
positive eigenvalue in the jth iteration, as Ar is positive definite. Consequently, the shift value σ can be set to zero. The
coefficient matrix of the linear system in (23) becomes Ar and it is Hermitian positive definite. We can thus use the
conjugate gradient method to solve (23). This is an advantage for taking σ = 0, otherwise the matrix (Ar − σ I) may be
indefinite for some positive σ ’s.

• The resulting linear system is well-conditioned. By setting σ = 0, the linear system (23) has the form Ar tk = rk. The
condition number of Ar is less than or equal to the ratio εi/εo [12]. In particular, the ratio equals to 13 in our numerical
experiments. That is, the conditionnumber ofAr is as small as 13 and this small conditionnumber property is independent
to the matrix size. The fact also suggests that the convergence of the conjugate gradient method is fast.
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Algorithm 1 The Shift–Invert Residual Arnoldi method and the Jacobi–Davidson method for solving Arx = λx.
Input: Hermitian coefficient matrix Ar , the number of desired eigenvalues ℓ, an initial vector V1, target σ , tolerances ε and

number of Ritz vectorsm.
Output: The desired eigenpairs (λj, xj) for j = 1, . . . , ℓ.
1: Set Vx = [ ], k = 1 and r0 = e1.
2: for j = 1, . . . , ℓ do
3: Compute Wk = ArVk and Mk = V∗

kWk.
4: while ( ∥rk−1∥2 ≥ ε ) do
5: Compute the eigenpairs (θi, si) of Mks = θswith ∥si∥2 = 1 and σ < θ1 ≤ θ2 ≤ · · · .
6: Compute uk = Vks1 and rk = (Ar − θ1I)uk.
7: if (∥rk∥2 < ε), set λj = θ1, xj = uk, k := k + 1. Go to line 4.
8: if (use Shift–Invert Residual Arnoldi method) then
9: Solve (approximately) a tk from

(Ar − σ I)tk = rk. (23)
10: else if (use Jacobi–Davidson method) then
11: Solve (approximately) a tk⊥uk from

I − uku∗

k


(Ar − θ1I)


I − uku∗

k


tk = −rk. (24)

12: end if
13: Orthogonalize tk against [Vx Vk]; set vk+1 = tk/∥tk∥.

14: Compute wk+1 = Arvk+1, Mk+1 =


Mk V∗

kwk+1
v∗

k+1Wk v∗

k+1wk+1


.

15: Expand Vk+1 = [Vk, vk+1] and Wk+1 = [Wk, wk+1]. Set k := k + 1.
16: end while
17: Set Vx = [Vx, xj], Vm−1 = Vk−1[s2, · · · , sm], k = m − 1 and rk−1 = e1.
18: end for

• There is a goodway to choose the initial searching subspace. We need to solve a sequence of eigenvalue problems associated
with various k’s to plot the band structure diagram. For two eigenvalue problems associated with slightly different k’s,
we can solve one eigenvalue problem first and then use the convergent eigenvectors as the initial guesses of the other
eigenvalue problem to improve the convergence.

As the SIRA and JD have the same framework, the JD also shares the good properties in embedded eigenvalue deflation
and the initialization scheme. However, the difficulties to solve the linear system (23) in the SIRA and the correction equation
(24) in the JD are quite different. For the SIRA, the linear system (23) can be efficiently solved by an iterative method
without any preconditioner as κ(Ar) = 13 in our numerical setting. For example, it takes only 37 iterations to solve a
3,456,000 × 3,456,000 testing problem by the CG method with stopping tolerance 6.4 × 10−15. However, it is not easy to
find an efficient preconditioner for the correction equation (24) in the JD directly. Therefore, we rewrite (24) as

(Ar − θ1I) tk = −rk + ηuk

and compute

tk = t1 + ηt2 with η = −
u∗

k t1
u∗

k t2
.

Here, t1 and t2 are approximate solutions of

(Ar − θ1I) t = −rk (25)

and

(Ar − θ1I) t = uk, (26)

respectively. This scheme requires solutions of two linear systems (25) and (26) in each iteration, while only one linear
system is solved in the SIRA.

3.4. A short summary

We summarize the characteristics of the GEP, NFEP, and the eigensolvers in Table 1. Furthermore, we summarize the
characteristics of the eigensolvers NFLM, SIRA, and JD for solving the NFEP (9) in Table 2. We conclude this section by
the following remark. The key computational kernel of the eigenvalue solvers discussed above are the matrix–vector
multiplications T ∗p and Tq for vectors p and q. An efficient algorithm for computing these matrix–vector multiplications
has been proposed in [12] and we use the algorithm here.
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Table 1
Characteristics for solving the GEP (3) by the SILM and the NFEP (9) by the NFLM.

GEP (3) NFEP (9)

Eigensolver SILM NFLM
Dimension 3n × 3n 2n × 2n
Shift σ in (14) No
Linear system AMz = b̃ in (20) (Q ∗

r B
−1Qr )y = Λ

−1/2
r c in

(12)
Preconditioner M = A − τ I Not necessarya

MVmult.b Two for solving
My = d(17)

One for Q ∗
r and Qr in Ar

a The corresponding coefficient matrix (Q ∗
r B

−1Qr ) is well-conditioned.
b FFT-based matrix–vector multiplications T ∗p and Tq.

Table 2
Characteristics of the eigensolvers NFLM, SIRA, and JD for solving the NFEP (9).

Eigensolver NFLM SIRA JD

Shift No No θ1 in (25) and
(26)

Linear system (12)a (23)a(σ = 0) (25) and (26)
LS accuracy High Inexact Inexact
Preconditioner Not necessary Not necessary Not necessary
MV mult.b for Q ∗

r and Qr for Q ∗
r and Qr for Ar − θ1I

a The corresponding coefficient matrix is (Q ∗
r B

−1Qr ) and it is well-conditioned.
b FFT-based matrix–vector multiplications T ∗p and Tq.

Fig. 2. The computed band structure diagram.

4. Numerical comparisons

To study the convergence behavior of the eigensolvers in terms of timing and iteration numbers, we consider the setup
described in [7]. The lattice consists of dielectric spheres with a connecting spheroid as shown in Fig. 1(a). The radius r of
the spheres is r = 0.12a and the connecting spheroid has a minor axis length s = 0.11a, where a is the lattice constant.
Inside the structure is the dielectricmaterial with permittivity contrast εi/εo = 13. Consequently, the entries of the diagonal
matrix B in (3) are either 1 or 13, which depends on the location of the grid points. The computed band structure diagram
is shown in Fig. 2. The x-axis (and the dashed lines) indicates the points X,U, L,G, X,W , and K that connect the boundary
of the first Brillouin zone. In each of the segments, i.e. XU,UL, . . . ,WK , fifteen uniformly distributed sampling vectors k are
chosen. The frequency ω =

√
λ

2π is shown on the y-axis, where λ is the eigenvalue of the GEP (3).
All computations in this section are carried out in MATLAB 2011b. In the SILM, NFLM, SIRA, and JD, we need to compute

the matrix–vector multiplications T ∗p and Tq by FFT. For the forward FFT associated with T ∗p is computed by fft in
MATLAB. For the backward FFT associated with Tq is computed by ifft. The MATLAB commands tic and toc are used
to measure the elapsed time, and the IEEE double-precision floating-point arithmetic with ϵ ≈ 10−16 is used. We choose
n1 = n2 = n3 = 120, and n = n1n2n3 = 1, 728, 000. Consequently, the matrix sizes of A and Ar in (3) and (9) are 5,184,000
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Fig. 3. The elapsed times and iteration numbers for solving the linear systems (20) and (12) by using CGS (in the SILM) and CG (in the NFLM) methods,
respectively. For the mesh sizes, we take n1 = n2 = n3 = mj with mj = 96 + 24j for j = 0, 1, . . . , 13. The dimension n = m3

j ranges from 884,736 to
67,917,312.

(or 3n) and 3,456,000 (or 2n), respectively. For the hardware configuration, we use a HP workstation that is equipped with
two Intel Quad-Core Xeon X5687 3.6 GHz CPUs, 48 GB of main memory, and the RedHat Linux operating system.

4.1. The linear systems in the SILM and NFLM

In Sections 4.1 and 4.2, we compare the SILM and NFLM for solving the GEP (3) and the NFEP (9), respectively. Numerical
results reflect the characteristics of the GEP, NFEP, and the eigensolvers shown in Table 1.

We conduct numerical experiments to evaluate the linear system solvers. Fig. 3 shows the timing and iteration results
for solving the linear systems (20) and (12). The results are obtained by the following settings. For the SILM, the MATLAB
function eigs is used to solve the shifted-and-inverted eigenvalue problem (14) and the cgs (conjugate gradient squared)
is used to solve the linear system AMz = b̃ in (20) without preconditioning, as the preconditioner M has already been
incorporated. For the NFLM, the eigs is used to solve the NFEP (9) without shifting. The MATLAB function pcg is used to
solve the linear system (Q ∗

r B
−1Qr)y = Λ

−1/2
r c defined in (12) without preconditioning. The stopping criteria for (20) and

(12) are both equal to 6.4 × 10−15.
Fig. 3(a) shows that CG (in the NFLM) takes less time to solve (12). The reasons are twofold: FFT-based matrix–vector

multiplications and dimensions as shown in Table 1.
• While the iteration number of the CGS (in the SILM) is smaller; however, twomatrix–vector multiplications are required

in each CGS iteration. The total number of matrix–vector multiplications for the CGS is thus larger than that of the CG (in
the NFLM).

• The dimensions of the coefficient matrices in the SILM and NFLM are 3n and 2n, respectively. Therefore, except for the
matrix–vector multiplications, the computational cost for the other operators in the CG method is less than that of the
CGS method in each iteration.

Fig. 3(b) shows that the CGS (in the SILM) and CG (in the NFLM) take around 21 and 37 iterations to converge, respectively.
For the problems with dimensions ranging from 884,736 to 67,917,312, the results suggest that the preconditioner in the
SILM is quite effective. The results are parallel to our argument that the linear system in the NFLM is well-conditioned.

4.2. Solving the GEP and NFEP

Weuse the SILM andNFLM to compute the five smallest positive eigenvalues of the GEP (3) and theNFEP (9), respectively.
Some details of the numerical experiments are given below. As indicated in Table 1, we need to choose the shift σ for the
SILM and we use the following heuristic. In the SILM, the shift σ = 2 when the smallest positive eigenvalue is greater than
4; otherwise, it is taken as 0.01. While the shift σ affects the SILM significantly, the heuristic strategy for choosing the shift
is based on our numerical experience. This strategy is not always the best choice; however, the results are reasonably close
to the best choice in our experience. Based on the residual estimation bound [21], we set the stopping tolerances of the

MATLAB function eigs in solving (3) and (9) to be 10−4
× ϵ and 10−4

× ϵ/(2


δ−2
x + δ−2

y + δ−2
z ), respectively. For each

wave vector k, we set the maximal dimension of the Krylov subspace (i.e. the restarting number) p = 21 to compute the
five smallest positive eigenvalues.

Fig. 4 shows the iteration numbers and elapsed time for solving the eigenvalue problems corresponding to each of the
k’s with matrix dimension 3,456,000. Fig. 4(a) shows that the NFLM takes similar or less iteration numbers. For the timing
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(a) Iteration numbers. (b) CPU times.

Fig. 4. Iteration numbers and elapsed times of the SILM and NFLM associated with various wave vectors k for solving the GEP (3) (with matrix dimension
5,184,000) and the NFEP (9) (with matrix dimension 3,456,000), respectively.

results, they are affected by the iteration numbers and the linear system solvers as discussed in Section 4.1.We have seen the
iteration number results in Fig. 4(a). For the linear system solvers, Fig. 3(a) shows that CG in the NFLM takes less time to solve
the linear system. Consequently, as shown in Fig. 4(b), the NFLM outperforms the SILM in timing for all tested eigenvalue
problems.

Comparing Figs. 2 and 4, we can see that the band structure (or the corresponding eigenvalue spectrum) is closely related
to the timing and the resulting iteration number. Both of the SILM and NFLM require more time and more iterations to
converge to the eigenvalues that are closer to zero for k ≈ G. However, it is worth noting that the band structure has greater
effects on the SILM, as the zero eigenvalues are deflated in the NFLM.

4.3. Solving the NFEP by the NFLM, SIRA, and JD

In this subsection, our numerical experiments focus on the comparisons of the eigensolvers NFLM, JD, and SIRA for solving
theNFEP (9) (with dimension 3,456,000) and for finding the full band structure. The numerical results in timing and iteration
numbers are closely related to the characteristics of these eigensolvers listed in Table 2.

The numerical results are obtained by using the following settings. The MATLAB function minres is used to solve (25)
and (26) in each iteration of the JD method, as the coefficient matrices are Hermitian. In the minres, we set the stopping
tolerance as 10−3. The heuristic strategies in [13] are used to determine themaximal iteration number for minres. We take
the shift value σ = 0 in the SIRA so that the MATLAB function pcg (without preconditioning) can be applied to solve (23).
The stopping criterion for pcg is taken as 5 × 10−4.

To compute the full band structure, it involves a sequence of eigenvalue problems that the successive eigenvalue
problems are associated with slightly different wave vector k. We thus have two options to choose the initial vector for
the NFLM and the initial subspaces for the SIRA and JD. First, we can simply use a random vector or a random subspace for
each eigenvalue problem. Second, for the single initial vector in the NFLM, we can use the smallest convergent eigenvector
obtained from the previous eigenvalue problem EPi−1 as the initial guess of the current problem EPi. Similarly, we use five
convergent eigenvectors of the previous eigenvalue problem as the initial subspace in the SIRA and JD. While there are two
options for each method, we do not have to compare all of them according to the following facts.

• The effect of the initial vector is limited to the NFLM in our numerical experience. This is because only one single vector is
initialized by the convergent eigenvector. Since the NFLM performs similarly for the two initialization options, we simply
use the random vector here for the NFLM.

• For the JD, we only consider using the previous convergent eigenvectors in the initialization. This is not only because the
initialization scheme does improve the convergence of the JD in our numerical experience [22]. It is also because the JD
needs to solve two linear systems in each iteration, while the NFLM and SIRA solves only one linear system (see Table 2),
and the use of random initial guesses will have no comparison to the NFLM and SIRA.

• For the initial guesses of the SIRA, we consider the two cases that either a random initial vector (denoted as SIRA-rnd) or
the aforementioned initial subspace (denoted as SIRA-prv) is used.

Fig. 5 shows the timing results for the NFLM, SIRA-rnd, SIRA-prv, and JD. Observing the figure, have the following
highlights.

• The NFLM outperforms the JD for most benchmark problems, even though the JD is accelerated by the initialization
scheme. This is because two linear systems (25) and (26) are solved in each iteration of the JD, while only one linear
system is solved in the NFLM.
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Fig. 5. Elapsed times of the NFLM, SIRA, and JD associated with various wave vectors k. The matrix size of Ar in (9) is 3,456,000.

Table 3
Relations between the inner and outer loops in the NFLM and SIRA.

Eigensolver NFLM SIRA-rnd SIRA-prv

Median ite no in inner loop 37 10 10
Median ite no in outer loop 53 176 122
Product of the iteration numbers 1961 1760 1220

• The NFLM and SIRA-rnd perform somewhat similarly. The behavior can be understood from Table 2, because both
methods need no shift, solve one linear systems, need no preconditioners, and use the FFT-based matrix–vector
multiplications.

• The elapsed time for the SIRA-prv is significantly reduced from the time for the SIRA-rnd. Consequently, the SIRA-prv
converges faster than the NFLM in the sequence of the eigenvalue problems.

Table 2 actually suggests a clue to understand the convergence behavior of the NFLM and SIRA from the viewpoint of
the outer and inner loops. In the inner loops, the NFLM needs to solve the linear system (12) iteratively in a higher accuracy
to form the Krylov subspace. In contrast, the SIRA has the luxury to converge even the solution of the linear system (23)
is inexact. To study the interplay between the inner and outer loops, we list the median numbers of the iteration numbers
in Table 3. The products of the iteration numbers shown in the table suggest an indicator why the NFLM and SIRA-rnd
perform similarly (the product values are similar) and why the SIRA-prv is the fastest one among these three eigensolvers
(the product value 1,220 is much less than others). Table 3 has shown a preliminary observation regarding the interplay
between outer and inner loops in the NFLM and SIRA. However, it remains an interesting open question regarding how
we can determine the accuracy requirement of the inner loop in the SIRA to achieve the minimal total run-time without
downgrading the eigenpair accuracy.

5. Conclusions

Solving the eigenvalue problem arising from Yee’s discretization of the three-dimensional photonic crystal with a face-
centered cubic lattice is a computational challenge. We compare four eigensolvers to solve the eigenvalue problem. The
shift-and-invert Lanczos method (SILM) is used to solve the original 3n × 3n indefinite eigenvalue problem. Based on
the theoretical framework proposed in [12], the null-space free Lanczos method (NFLM) is used to solve the reduced
2n × 2n positive definite eigenvalue problem. We further consider the shift–invert residual Arnoldi method (SIRA)
and Jacobi–Davidson method (JD) for solving the reduced eigenvalue problems. We have illustrated the advantages and
disadvantages of the methods by providing the insights of the methods both theoretically and numerically. Among these
four eigensolvers, the SIRA-prv outperforms othermethods. The SIRA-prv is themost efficient solver because: (i) themethod
solves the 2n×2n null-space free eigenvalue problem (9)without shift nor inversion; (ii) the associated linear system (23) is
well-conditioned and only approximate solution is necessary; and (iii) the key computations can be performed by FFT-based
matrix–vector multiplications.

All the eigensolvers are implemented by MATLAB to illustrate their numerical properties. Based on these numerical
experiments, we have identified the most efficient eigensolver. Advanced implementations based on multi-core
technologies such as graphic processing unit (GPU) or parallel computers can further shorten the computational time. The
solver will then be capable of solving larger problems regarding the numerical simulation of three-dimensional photonic
crystals in less time.
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