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This study developed a parallel two-dimensional direct simulation Monte Carlo (DSMC) method using a
cut-cell Cartesian grid for treating geometrically complex objects using a single graphics processing unit
(GPU). Transient adaptive sub-cell (TAS) and variable time-step (VTS) approaches were implemented to
reduce computation time without a loss in accuracy. The proposed method was validated using two
benchmarks: 2D hypersonic flow of nitrogen over a ramp and 2D hypersonic flow of argon around a cyl-
inder using various free-stream Knudsen numbers. We also detailed the influence of TAS and VTS on com-
putational accuracy and efficiency. Our results demonstrate the efficacy of using TAS in combination with
VTS in reducing computation times by more than 10�. Compared to the throughput of a single core Intel
CPU, the proposed approach using a single GPU enables a 13–35� increase in speed, which varies accord-
ing to the size of the problem and type of GPU used in the simulation. Finally, the transition from regular
reflection to Mach reflection for supersonic flow through a channel was simulated to demonstrate the
efficacy of the proposed approach in reproducing flow fields in challenging problems.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Since its invention by Bird [1] half a century ago, the direct sim-
ulation Monte Carlo (DSMC) method, which is based on particle
collision kinetics, has become a common tool for the simulation
of rarefied and non-equilibrium gas dynamics. It has been mathe-
matically proven that the DSMC method is equivalent to solving
the Boltzmann equation, should the number of simulation particles
become sufficiently large [2,3]. The reason for not directly solving
the integral–differential Boltzmann equation is the fact that it
includes seven independent variables (time, positions, and veloci-
ties), which make this problem nearly intractable, even using the
most powerful supercomputer. The problem is further exacerbated
by the complex collision integral. Nonetheless, DSMC computation
is far more demanding than solving the continuum Navier–Stokes
equation, particularly when dealing with flow in the transitional or
near-continuum regime. Thus, determining the means to reduce
computational complexity remains an important research topic
with numerous implications pertaining to rarefied gas dynamics.

In the past, it was common to apply physical domain decompo-
sition using multiple CPUs in a distributed-memory machine (e.g.,
PC cluster) for the parallel computing of DSMC [e.g., 4–6]. In
implementations using multiple instructions multiple data
(MIMD), each processor works within its own domain using the
standard DSMC method and communicates with other processors
using a message passing interface (MPI) when particles move
across the inter-processor boundaries. Graphics processing units
(GPUs) have become an alternative computational platform for
the parallel computing of scientific data, providing a high capabil-
ity/price ratio when used within the single instruction multiple
data (SIMD) paradigm. DSMC has a highly localized numerical
scheme, which is a basic requirement for efficient computation
on GPUs.

Very few studies have investigated DSMC simulation using GPU
computing [7–9]. Su et al. [7] proposed a parallel two-dimensional
DSMC method using a Cartesian structured grid on multiple GPUs
for the simulation of rarefied gas dynamics. Compared to a single
CPU core (Intel Xeon X5670, 2.93 GHz, 12 M Cache), they increased
the speed of computation by 15� using a single GPU (Nvidia
M2070, 6 GB DDR5 global memory) and by 185� using 16 GPUs
in the computation of a large-scale near-continuum flow problem.
These results demonstrated the impressive capability/price ratio of
this approach. Despite the efficiency of Cartesian grids in tracking
particles, treating flow problems using objects with a complex
geometry can be exceedingly difficult. One alternative approach
is to use an unstructured grid similar to that proposed by Wu
and Lian [10] and Boyd [11]. However, two problems can arise
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from the use of an unstructured grid. First, the efficiency of particle
tracking is lower than that of a structured grid. Second porting a
DSMC algorithm within a GPU environment using unstructured
data can be very challenging. To overcome these difficulties, this
study focuses on the cut-cell approach to treating geometrically
complex objects in a Cartesian grid.

The quality of DSMC simulation strongly depends upon collision
quality, which can be quantified using the ‘‘merit of collision’’,
defined as the ratio of averaged binary collision distance to the
local mean free path. Achieving a physically correct collision pro-
cess requires that the merit of collision be less than unity [12].
Transient adaptive sub-cell (TAS) [13,14] and variable time-step
(VTS) [15,16] approaches can be applied to improve collision qual-
ity and reduce the number of iterations required to reach a steady
state. Thus, this study sought to apply the TAS and VTS algorithms
in conjunction with the cut-cell approach for DSMC simulation
using GPU computing. Two benchmark problems (hypersonic
nitrogen flow past a ramp and hypersonic argon flow past a cylin-
der) were employed to evaluate the runtime efficiency associated
with the modelling of rarefied gas dynamics and geometrically
complex objects. The speedup of DSMC using various types of
GPU cards is also investigated and compared. The high fidelity of
the proposed single-GPU DSMC code was demonstrated by repro-
ducing the transition from a regular reflection to a Mach reflection
associated with supersonic flow through a channel.
2. Numerical method

2.1. Standard DSMC method

The direct simulation Monte Carlo method solves the
Boltzmann equation based purely on particle collision kinetics sta-
tistically. One of the basic assumptions of the DSMC method is the
decoupling of the movement and collisions of particles. The details
of the DSMC method can be found in [1]. Briefly, the DSMC method
involves initialization, particle movement, indexing, collisions, and
sampling. In the initialization phase, the velocity of particles is
sampled from an equilibrium Maxwell–Boltzmann distribution
and the spatial position of the particles is randomly distributed
in each cell. In the particle movement phase, all particles move
according to their current phase-space states (3 positions and 3
velocities). The particles are relocated to their new spatial locations
either through free flight or interaction with various types of walls
(e.g., diffusive, specular, absorptive). Particles are removed when
their new locations lie outside the computational domain. In the
indexing phase, all particles are indexed with their resident cells
to facilitate the efficient selection of particles during the collision
phase. In the collision phase, two particles in each cell are ran-
domly selected and the determination of whether they collide is
probabilistic. In the event of a collision, the post-collision velocities
are calculated according to the type of collision, such as elastic col-
lision, translational–rotational energy transfer, translational–
vibrational energy transfer, and reactive energy transfer. Prior to
the selection of collision pairs in each cell during each time step,
it is necessary that the maximal number of collision pairs be
selected (e.g., No Time Counter, NTC [1]). In the sampling phase,
the post-collision velocities are sampled (or accumulated) in order
to calculate the macroscopic properties. With the exception of
initialization, all of these procedures are repeated until the sample
size is large enough.
2.2. Parallel DSMC on a single GPU

As shown in Fig. 1, this study adopted a nearly all-device (GPU)
computational approach, in which all major procedures of the
DSMC method, including particle movement, indexing, collision
and sampling, are performed within the GPU. CUDA [17] is used
to accelerate the DSMC-related simulation components as well as
to transfer data between the CPU (host) memory and the GPU
(device) global memory. Taking advantage of the forward architec-
ture requires adaption of the original DSMC method to enable effi-
cient all-device computation. This study adopted the algorithms
proposed by Su et al. [7] for this function. Those developments
briefly detailed in the following and the cut-cell approach, the
TAS, and the VTS algorithms are outlined in a later section.

In the initialization phase, this study used the CUDA API function
cudaGetDeviceCount() [18] to obtain the number of GPU devices
available and cudaSetDevice() [18] to assign a GPU for computation
(in the current study, only one GPU was employed). Input data and
initial states were loaded into the memory on the host (CPU). We
then used the CUDA API function cudaMemcpy() [18] to transfer
the data (particle and cell) from host to the global memory of the
device. The main procedures of the DSMC simulation (particle move-
ment, indexing, collisions, and sampling), were then performed on
the GPU. In the particle movement phase, Np/Nthread + 1 particles
were tracked using a thread, in which Np is the total number of sim-
ulated particles and Nthread is the number of threads employed in
the GPU device. Each thread reads/writes particle data from/to the
global memory of the GPU device. The particle indexing phase of
the computation is similar to the DSMC implementation in [1]. This
study employed the Software Development Kit (SDK) of CUDA, scan-
LargeArray [18] to scan the data elements of large arrays contained
within the global memory. This function was used to enable the effi-
cient indexing of particles. In the collision phase, we employed a dif-
ferent parallelization philosophy in which all particle collisions
within a cell are handled by a single thread, thereby allowing the
efficient recollection of data since all of the data is coalesced. The
speed of the sampling phase is increased by using the much faster
shared memory in the GPU [17] for the temporary storage of sam-
pling results. Upon the completion of sampling for several cells,
the sampled data is transferred from the shared global memory.

2.3. Cut-cell approach

The cut-cell approach includes three kinds of computational
cells for simulation, including fluid cells, solid cells, and cut cells,
as shown in Fig. 2a. Fluid cells and solid cells are treated as usual
in DSMC simulation; however, cut cells require special treatment.
Fig. 2b illustrates the three basic types of cut cells in the
two-dimensional domain, in which Types A, B, and C contain one,
two, and three grid points in the solid body, respectively. The effi-
cient implementation of the DSMC method requires an algorithm
for the identification of cut cell type. This study employed the
crossing number method [19], as outlined in the following.

If a solid body (or a polygon) is simple (i.e., no self-intersec-
tions), the crossing number method (also referred to as the
even–odd rule) can be used to determine whether a point is
included in the 2D solid body. This method assumes that a point
is inside the polygon if an odd number of crossings occur with
the edges of the polygon when a line is drawn from this point in
an arbitrary direction; otherwise, it lies outside the polygon. In
addition, the validity of this method was proven using the ‘‘Jordan
Curve Theorem’’, which states that a simple closed curve divides a
2D plane into exactly 2 connected components: one bounded
‘‘inside’’ and one unbounded ‘‘outside’’. In the current study, we
employed a more straightforward crossing number algorithm. This
enables the selection of one horizontal ray (parallel to x-axis) and
one vertical ray (parallel to y-axis), extending to the right and top
of the grid, respectively. The use of these rays enables one to calcu-
late the number and locations of the points intersecting with the
solid bodies.



Fig. 1. Flowchart of DSMC running on a single GPU.
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In actual applications, solid bodies in the flow domain are cut
out of a background Cartesian grid with their boundaries repre-
sented using various types of cut cell. All of the cut cells must be
identified and the volume of the corresponding fluid cells (area
for the 2D case) must be calculated as follows:

1. The crossing number method is used to find the intersection
points and determine whether the grid points in the vicinity
of the solid bodies (potential cut cells) are inside the solid
bodies. This procedure is detailed in Appendix A. In this step,
the type of cut-cell is determined according to the number of
grid points in the solid body (green1 points), as shown in Fig. 2b.

2. Arrange the points intersecting the line segment, cell edges,
and arbitrary grid points outside the solid body in a
counter-clockwise fashion. Then calculate the slope of the
1 For interpretation of color in Fig. 2, the reader is referred to the web version of
this article.
line segment, which is consistent with and will be used by
the particle tracking algorithm when considering the
particle–wall interaction.

3. Calculate the fluid volumes of the cut cells.

A special treatment is required to handle particle interactions
using the solid boundaries in the cut cells during DSMC simulation.
When a particle collides with the wall, the reflected velocity is
obtained according to the type of surface. At the same time, the
coordinate transformation (depending upon the slope of the wall)
must be linked directly to the slope of the boundary.
2.4. Variable time-step algorithm

In a typical supersonic/hypersonic flow problem, density often
varies dramatically in the spatial domain. For the standard DMSC
method using a Cartesian structured grid, a constant time-step
(thus, a constant particle weight) is used throughout the



Fig. 2. Schematic diagram of computational cells: (a) cell types and (b) cut-cell
types.
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computation, resulting in wasted computational resources (a
greater number of particles and longer times), particularly in the
free-stream region. In addition, large statistical uncertainties
regarding the properties of the sample may exist in the tiny cut-cells
near the curved solid boundary due to the small number of particles
within the cells. The variable time-step algorithm was proposed to
overcome these problems by enforcing the conservation of flux
(mass, momentum, and kinetic energy) for each moving particle
when it crosses the interface between two neighboring cells [16].
This enforcement leads to the following form,

W1N1U1

ADt1
¼W2N2U2

ADt2
ð1Þ

where W, N, U (=m, mv, mv2/2 or other internal energy) and Dt are
the particle weight, the number of simulated particles, the con-
served flux quantities and the time-step size, respectively, with
the subscripts used to identify the cell (1: source cell; 2: destination
cell). A represents the area of the cell interface between two neigh-
boring cells. It is obvious that there are some degrees of freedom in
selecting these parameters, which satisfy Eq. (1). The best choice is
to set N2 = 1 (without particle cloning) and U1 = U2 (without chang-
ing the mass, momentum and energy of the moving particle) across
the cell interface, such that W1/Dt1 = W2/Dt2 holds.

Using DSMC simulation in conjunction with VTS, we first used a
constant time step with a small number of simulated particles (�1
particle per cell or even fewer) for a preliminary run over a short
period of time. From this, we obtained a good estimate of the flow
field, particularly with regard to density distribution. Based on the
estimated density distribution, we then calculated a new local time
step in each cell i as follows:

Dti ¼
1
2

ki

V i þ Cmpi

ð2Þ

where ki ¼ 1=
ffiffiffi
2
p

nir is the local mean free path and
Cmpi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTi=m

p
is the most probable speed of the particles.

In formal DSMC simulation with a much larger number of par-
ticles (>10 particles per cell in the free stream), we scaled the local
particle weight of cell i as follows:

Wi ¼W1
Dti

Dt1
ð3Þ
where subscript ‘‘1’’ represents the free-stream condition. Once the
time steps are assigned to all computational cells, the particles
entering a new cell should be adapted to the size of the time step
in the new destination cell when crossing the cell interface. In
practice, the remaining time for a simulated particle in cell j should
be rescaled according to the ratio of time-step sizes between the
original (i) and destination (j) cells as follows:

Dtremaining;j ¼ ðDti � Dtmoved;iÞ
Dtj

Dti
ð4Þ

where Dtmoved,i represents the time ‘‘moved’’ in cell i. The main
advantage of implementing VTS is to improve the uniformity in par-
ticle distribution to enable the use of fewer particles with essen-
tially the same statistical uncertainties across the computational
domain. For example, in a tiny cut cell, one can reduce the time step
(or particle weight) to increase the number of particles to improve
the statistical sampling of the macroscopic data. Not only does this
precisely satisfy the conservation of flux (mass, momentum, and
energy) when a simulated particle moves across cell interface dur-
ing simulation, but also it reduces tremendously the number of iter-
ations required for the transition to reach a steady state. This also
reduces the number of particles required for simulation resulting
from variations in particle weight across the computational domain.
Some specific example demonstrating the reduction of simulation
particles and much smaller number of transient iterations to reach
steady state by using the VTS scheme applied in unstructured-grid
DSMC can be found in Fig. 7 of [16]. This makes it appropriate to use
the VTS in a cut-cell grid system, which is one of the objectives in
the current study.

2.5. Transient adaptive sub-cell algorithm

In the current study, we divided the computational domain into
a Cartesian structured grid with uniform cells. This led to difficul-
ties in adapting the cell to be smaller (e.g., 1/3–1/2) than the local
mean free path everywhere within the computational domain,
which is the basic requirement for maintaining collisions of good
quality. Even though one can still adapt the cell using an octree
data structure, similar to those presented by LeBeau [6] and Zhang
and Schwartzentruber [20], structuring the data to enable efficient
programming in a GPU environment can be challenging. To
overcome this, we applied the transient adaptive sub-cell (TAS)
algorithm [13,14] to improve collision quality without resorting
to complex mesh adaptation. Merit of collision is a measure of col-
lision quality in a DSMC simulation, defined as the ratio of the
mean collision spacing (mcs) to the local mean free path ðkÞ.
Generally, the merit of collision ðmcs=kÞ should be less than unity
for the DSMC simulation to be considered accurate [12,21].

In the TAS approach, the number of sub-cells for cell i is
determined as follows:

Ni ¼
Z

Dx
ki

� �
þ 1

� �2

ð5Þ

where int stands for the rounded integer number and Dx represents
the size of the cell, which is a constant for all normal fluid cells and
the square root of the cell area for cut cells. This design ensures that
a greater number of sub-cells exist in regions of higher density, such
as shock waves and the stagnation region in hypersonic flow. In the
collision routine, collision events proceed cell by cell. For each bin-
ary collision event in each sampling cell, the first collision particle is
selected randomly from all of the particles in the cell, indicating the
sub-cell in which the first particle resides. The second collision
particle is then selected by searching through other particles
in the same sub-cell. In the event that the first particle is alone
in the sub-cell, the nearest neighboring sub-cells are searched



Fig. 3. Schematic diagram of 2D hypersonic flow of nitrogen over compression
ramp.
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sequentially for a second collision particle. The TAS routine ensures
that collision partners are closely spaced, even though the sampling
cell is larger than the local mean free path. The TAS approach gen-
erally produces accurate DSMC solutions if the spatial resolution of
the sample cells is high enough to resolve a change in the properties
of macroscopic flow in the spatial domain.

3. Results and discussion

We compared the parallel performance of single-GPU DSMC
code with that of single-CPU DSMC code by performing a subsonic
lid-driven cavity flow problem. We then validated the cut-cell
implementation on a single GPU using the VTS and the TAS
algorithms to run two benchmarking test cases, including 2D
hypersonic nitrogen flow (M1 = 24.8) over a compression ramp
[22–24] and 2D hypersonic argon flow (M1 = 10) past a cylinder
[12,25]. The simulated data were compared with previous
simulations and experimental data wherever available. Finally,
the code was used to simulate the transition of supersonic flow
patterns from a regular reflection to a Mach reflection [26,27]
within a channel via a slight change in ramp angle.

3.1. Speedup tests

This study performed simulations of subsonic (M1 = 0.2) argon
lid-driven cavity flow [7] for speedup tests using a variety of GPU
cards, which were also used to demonstrate the portability of the
developed GPU code. We chose to resolve this problem without
the use of the cut-cell approach mainly because the computational
overhead resulting from the addition of cut cells is minimal (<1%),
compared to that of a pure Cartesian grid. This is mainly due to the
fact that in the test cases outlined later in the paper, the fraction of
cut cells to normal fluid cells was generally less than 0.1%, and
hence can be disregarded. Table 1 summarizes the speedup tests
in two cases (Kn1 = 0.01 with 10 million particles and
Kn1 = 0.002 with 30 million particles) running through 5000 time
steps on a variety of GPU cards. The CPU processor used in this
study was an Intel Xeon 5670 (2.93 GHz, 12 M Cache, 6.4 GT/s Intel
QPI) with 48 GB RDIMM RAM. The tested GPU cards included a
gaming card (Nvidia GTX-590 with 512 cores, 1.5 GB Global mem-
ory and a memory bandwidth of 327.7 GB/s), and two professional
computing cards (Nvidia M2070 with 448 cores, 6 GB Global mem-
ory and a memory bandwidth of 144 GB/s and Nvidia K20 with
2496 cores, 5 GB Global memory and a memory bandwidth of
208 GB/s). Note that there is no test data for the case of
Kn1 = 0.02 using the GTX-590 because it ran out of memory. The
results show that speedup ranged from 15.4� (M2070) to 31.6�
(K20) for the large problem (Kn1 = 0.002) and from 13.0�
(M2070) to 29.7� (K20) for the small problem (Kn = 0.01). Based
on a detailed breakdown of timing for various components of the
DSMC code [7], we have determined that the bottleneck was the
collision module and perhaps also the indexing module. Thus,
Table 1
Speed analysis results compared to Intel Xeon X5670 CPU in two different cases (Kn1 = 0
subsonic lid-driven cavity problem through 5000 iterations on various GPU cards.

Total Moving

Time (s) Speedup Time (s) Speed

Case 1 (Kn = 0.01) CPU 14174.5 1.00 5066.0 1.00
GPU-M2070 1088.7 13.02 266.2 19.03
GPU-GTX590 736.6 19.24 202.4 25.03
GPU-K20 477.7 29.67 147.4 34.38

Case2 (Kn = 0.002) CPU 54359.3 1.00 23693.0 1.00
GPU-M2070 3520.4 15.44 861.5 27.50
GPU-K20 1720.7 31.59 471.9 50.20
the far higher speedup (45.75�) achieved in the indexing module
using the K20 card deserves further investigation. For other mod-
ules such as moving and sampling, speedup could be as much as
40�–50� for the K20 card. Overall, if the size of the problem is suf-
ficiently large, then a speedup of 30� can be easily achieved using
the most advanced GPU cards, such as the Nvidia K20.

3.2. Validation 1: 2D hypersonic flow of nitrogen over a compression
ramp

Fig. 3 presents a schematic diagram of the 2D hypersonic flow of
nitrogen over a compression ramp. Distance L1 between the lead-
ing edge of the flat plate and the corner of the ramp was
71.4 mm. Length L2 was also 71.4 mm and the ramp angle was
35�. Nitrogen gas was considered under the following free-stream
conditions: density (q1) of 1.401 � 10�4 kg/m3, velocity (V1) of
1521 m/s, and temperature (T1) of 9.06 K. Based on L1, the corre-
sponding free-stream Mach number (M1), Knudsen number
(Kn1), and Reynolds number (Re1) were 24.8, 0.0025, and
12,020, respectively. The wall was perfectly diffusive and the tem-
perature of the wall was 403.2 K. The time step size (5 � 10�8 s in
the free stream) in each cell was adjusted spatially based on the
VTS algorithm, in addition to the TAS scheme. The total number
of cells was 204,800 and the total number of particles was
�4,000,000. The fraction of cut cells to total cells was less than
0.1% (978/204,800) in this case. A typical simulation using 50,000
time steps required approximately 1.5 h running on a single GPU
(Nvidia M2070).

Fig. 4 shows the spatial distributions of density (along with
streamlines), temperature, pressure, and Mach number. The results
show that an oblique shock generated from the leading edge
impinged in the mid-section of the ramp surface and is reflected
upward to the end of the ramp surface. These results also indicate
that, at this low Knudsen number, a clear recirculation bubble
formed near the turning corner between the flat plate and the
ramp. The simulated maximum density at the impinging point of
the oblique shock was 14.5� that of the free-stream value, which
is in good agreement with the predictions of Moss et al. [22]. In
addition, Fig. 5 compares the corresponding distributions of the
merit of collision (MOC) with and without the inclusion of the
.01 with 10 million particles and Kn1 = 0.002 with 30 million particles) running the

Indexing Collision Sampling

up Time (s) Speedup Time (s) Speedup Time (s) Speedup

2169.4 1.00 4151.4 – 2780.4 1.00
239.8 9.05 430.5 9.64 145.3 19.13
190.7 11.38 250.6 16.57 86.7 32.08
47.4 45.75 207.5 20.01 64.7 42.98

9392.8 1.00 12788.4 – 8412.0 1.00
976.6 9.62 1221.1 10.47 433.0 19.43
432.3 21.73 583.1 21.93 187.8 44.79



Fig. 4. Distributions of (a) density (along with streamlines), (b) temperature, (c) pressure and (d) Mach number (Kn1 = 0.0025, L2 = 71.4 mm).
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TAS and VTS algorithms. These results show that the MOCs were
less than unity across the entire computational domain when the
VTS and TAS algorithms were used.

Fig. 6 illustrates the distributions of pressure, shear stress, and
heat transfer coefficients along the solid wall (L1 = 71.4 mm,
L2 = 31.55 mm) at three different ramp angles (15�, 25� and 35�).
Current flow conditions are briefly described as follows: VHS nitro-
gen gas, Mach number M1 = 22.8, density q1 = 5.14 � 10�5 kg/m3,
temperature T1 = 8.3 K, and a fully thermally accommodated and
diffusive wall with Tw = 340 K. Based on L1, the resulting Knudsen
number Kn1 and Reynolds number Re1 were 0.0066 and
3,938.66, respectively. Note that the pressure and shear stress coef-
ficients were normalized to the free-stream dynamic pressure, and
the heat transfer coefficient was normalized to the free-stream
dynamic heat flux. The results show that all of the simulated coef-
ficients at the three angles used in this study were in excellent
agreement with the simulation data predicted by Wu and Tseng
[23] and Moss et al. [24]. Details of the physics were discussed in
previous studies [23] and are therefore skipped here for brevity.
One interesting point is that the shear stress coefficient becomes
very small near the corner due to the formation of recirculation
bubbles in this region.

These results demonstrate the efficacy of parallel DSMC using
the cut-cell approach with the VTS and TAS algorithms on a single
GPU or the problem with inclined straight solid boundaries.

3.3. Validation 2: 2D hypersonic flow of argon past a circular cylinder

Fig. 7 presents the second benchmarking test case of a sketch of
2D hypersonic flow past a cylinder under rarefied conditions. Note
that the azimuthal angle began at the front stagnation point and
ended at the rear stagnation point along the surface of the cylinder.
The test conditions included: argon gas with a free-stream Mach
number of 10, a free-stream temperature of 200 K, a cylinder diam-
eter of 0.3048 m, a fixed cylinder wall temperature of 500 K, and a
free-stream Knudsen number of 0.01, based on the diameter of the
cylinder. The free-stream number density and velocity were
4.247 � 1020 particles/m3 and 2,634.1 m/s, respectively. This case
was first simulated by Lofthouse et al. [25] as a comparison
between a Navier–Stokes equation solver and the MONACO DSMC
code. The present study included a total of 48,000 cells and
�2,000,000 particles. The time step size, 5 � 10�7 s, was set to
1/2 of the mean collision time in the free stream for the cases with
and without VTS algorithm. A typical simulation of 50,000 time
steps required approximately two hours on a single GPU (Nvidia
M2070). In the following, we compare the simulation results with
and without the use of the VTS and the TAS algorithms.

Fig. 8 presents the distributions of simulated flow properties,
including density, Mach number (along with streamlines), temper-
ature, and pressure for the case of Kn1 = 0.01 using the VTS and
TAS algorithms. Our results are in excellent agreement with those
presented by Lofthouse et al. [25]. Bird [12] compared the results
for drag across a cylinder and peak surface heat transfer flux for
his own DS2 V program with other DSMC codes, including MON-
ACO, SMILE, and DAC as well as the obsolete DS2G code. Table 2
summarizes the predicted total drag and peak heat transfer flux
obtained using various DSMC codes, including the present single-
GPU DSMC code. Our simulation results are in excellent agreement
with those of other coding methods when the VTS and the TAS
algorithms are employed. As expected, the results are seriously
degraded when they are not used. It demonstrates that using TAS
and VTS allows one to obtain accurate DSMC results on meshes



Fig. 5. Comparison of corresponding distributions of the merit of collision: (a)
without and (b) with the use of the TAS and VTS algorithms (Kn1 = 0.0025,
L2 = 71.4 mm).

Fig. 6. Distributions of surface properties: (a) pressure coefficient; (b) shear stress
coefficient; and (c) heat transfer coefficient as functions of distance along the ramp
at three different ramp angles (Kn1 = 0.0066, L2 = 31.55 mm).
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that are not refined to level of the local mean free path of the flow,
and with potentially shorter transient times than the standard
DSMC method.

Fig. 9 presents the distribution of predicted surface properties
(pressure, shear stress, and heat transfer coefficients) as functions
of azimuthal angle with various numbers of cells (48,000–
3,072,000) without the use of VTS and the TAS algorithms. We also
plotted data from Lofthouse et al. [25] using 34,770 unstructured
cells for comparison. The number of particles in the simulations
was increased proportionally, such that the average number of par-
ticles per cell was maintained at approximately 10.

Our results clearly show that the pressure surface coefficients in
all the test cases with various numbers of cells are in strong agree-
ment with previous simulations. However, large discrepancies from
the previous data were observed in the predicted surface shear
stress and heat transfer coefficients [25] in all cases, regardless of
the fineness of the grid, particularly with regard to the shear stress
coefficient. Table 3 summarizes the corresponding ratios of cell size
to free-stream local mean free path, computational time, and max-
imal merit of collision in the computational domain for various
numbers of cells. As can be seen, runtime increased from 1449 s
(48,000 cells) to 93,824 s (3,072,000 cells), while the maximal merit
of collision decreased from 11.78 (48,000 cells) to 2.62 (3,072,000
cells). The fact that the data based on three million cells was supe-
rior to that obtained using 48,000 cells can be attributed to far bet-
ter collision quality in the former case, even though the former are
far from being accurate. Fig. 10 presents the corresponding spatial
distribution of merit of collision for cases of 48,000 and 3,072,000



Fig. 7. Sketch of Mach 10 hypersonic flow over a cylinder.

Table 2
Comparisons of drag and peak heat flux on the surface of cylinder for M-10
hypersonic flow over a cylinder, as predicted using various DSMC codes.

Drag (N) Peak heat flux (W/m2)

Present (standard) 41.83 65,162
Present (VTS + TAS) 39.89 38,657
DS2 V 39.76 38,400
DAC 39.71 38,500
SMILE 39.76 39,000
MONACO [24] 40.00 39,319
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cells. Clearly, the use of a more refined grid did improve the solution
at the price of a severe drop in efficiency. Note the computational
time of the case using 3,072,000 cells is approximately 60 times
longer than that of the case using 48,000 cells.
Fig. 8. Distributions of flow properties for hypersonic flow of argon past a cylinder with
(d) pressure.
Fig. 11 presents the predicted surface properties (pressure,
shear stress, and heat transfer coefficients) as functions of
azimuthal angle using the standard approach and the VTS and
VTS–TAS algorithms. As expected, all of the data obtained using
the VTS and TAS algorithms with 48,000 cells are in good
agreement with the results presented by Lofthouse et al. [25] with
34,770 unstructured cells. In fact, these results and are even better
Kn1 = 0.01: (a) Mach number (along streamlines); (b) density; (c) temperature and



Fig. 9. Distributions of surface properties: (a) pressure coefficient; (b) shear stress
coefficient and (c) heat transfer coefficient as functions of angle around the cylinder
for flow past a cylinder using various simulation cells (Kn1 = 0.01).

Table 3
Comparisons of corresponding runtimes and maximum merits of collision for flow
past a cylinder with various numbers of cells without the use of VTS or TAS
algorithms (Kn1: 0.01, Initial particle number per cell: 10, total time steps: 50,000,
sample time steps: 20,000).

Total cells 48,000 192,000 768,000 3,072,000

Dx/k1a 1.64 0.82 0.41 0.21
Simulation time (s) 1449 4908 21,616 93,824
(MOC)max

b 11.78 7.8 4.33 2.62

a Dx: cell size, k1: free stream mean free path.
b (MOC)max: maximum merit of collision.

Fig. 10. Distribution of MOC for cases of (a) 48,000 and (b) 3,072,000 cells.
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than those obtained without the use of the VTS and the TAS algo-
rithms with more than three million cells. It should also be noted
that the sole use of TAS improved the DSMC solution. However,



Fig. 11. Distributions of surface properties: (a) pressure coefficient; (b) shear stress
coefficient and (c) heat transfer coefficient as functions of angle around the cylinder
for flow past a cylinder with or without the use of TAS and VTS (Kn1 = 0.01).

Table 4
Comparisons of corresponding runtimes and maximum merits of collision for the flow
past a cylinder with or without TAS and VTS (Kn1: 0.01, Particles per cell: 10, total
time-step: 50,000, sample times: 20,000).

Approach Standard Standard TAS only TAS + VTS

Number of cells 48,000 3,0720,00 48,000 48,000
Simulation time (s) 1449 93,824 2080 6793
(MOC)max

a 11.78 2.62 1.68 1.02

a (MOC)max: maximum merit of collision.
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this did not occur to the degree achieved using the VTS and the TAS
algorithms simultaneously, mainly because the time-steps in those
small cut cells were too large and conflicted with the basic rules of
DSMC. Conversely, when using the VTS algorithm in these cut cells;
the time-steps were reduced to suit DSMC requirements. Table 4
summarizes the corresponding runtimes and maximal merits of
collision presented in Fig. 11. The results show that the maximal
merit of collision decreased dramatically from 11.78 (standard)
to 1.02 (VTS + TAS) in the case of 48,000 cells, which explains the
highly accurate surface data presented in Fig. 11. Nonetheless, this
resulted in a penalty in computational time from 1449 s to 6793 s,
representing an increase of approximately 4.5�. This time penalty
was due primarily to the use of much smaller time-steps in the cut
cells, which extended the time required for the simulation to reach
a steady state. The case of three million cells without the use of the
VTS or TAS algorithms was inferior (although close) to the case
using only 48,000 cells; nonetheless, the time saving can be as
great as 14�.

3.4. Application: transition from a regular reflection to a Mach
reflection in the supersonic flow of nitrogen through a channel

To demonstrate the high fidelity of the developed parallel DSMC
code, we have performed simulations for modeling the transition
from a regular reflection to a Mach reflection of supersonic flow
in a channel. Fig. 12 presents a schematic diagram of 2D supersonic
flow past a pair of symmetric ramps attached to the channel walls.
The test conditions include the following: nitrogen gas (specific
heat ratio c = 1.4) with an incoming Mach number of 4.96, a tem-
perature of 365 K, a number density of 1.388 � 1021 particles/m3,
a ramp angle of h, and a Knudsen number based on the free-stream
conditions and the dimensions of the wedge (L = w = 0.1 m). The
VHS model was used for collision kinetics and the wall presented
a perfectly specular reflection. The total number of cells was
320,000 and the total number of particles was �4,000,000. A typi-
cal simulation using 50,000 time steps required approximately
7.4 h running on a single GPU (Nvidia M2070).

Figs. 13 and 14 present the spatial distributions of the major
flow properties incurred by changing the ramp angle from 27.5�
and 27.85�. These results illustrate a clear transition from a regular
Fig. 12. Schematic diagram of 2D supersonic flow past a pair of symmetric ramps
attached to the channel walls.



Fig. 13. Distributions of flow properties of supersonic flow past a pair of symmetric ramps attached to the channel walls at a ramp angle of 27.5�: (a) Mach number (along
streamlines); (b) density; (c) temperature and (d) pressure.

Fig. 14. Distributions of flow properties for supersonic flow past a pair of symmetric ramps attached to the channel walls at a ramp angle of 27.85�: (a) Mach number (along
streamlines); (b) density; (c) temperature and (d) pressure.
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reflection of impinging oblique shock originating from the corner
of the ramp at the symmetric line with a ramp angle of 27.5� to
a distinct Mach reflection pattern with a ramp angle of 27.85�.
These results coincide with previous simulations and experiments
[26,27]. In addition, the calculated Mach stem height was 0.024 m,
which is in excellent agreement with 0.0235 m predicted by Ivanov
et al. [26,27]. These simulations clearly demonstrate that the
proposed parallel DSMC code using the cut-cell approach with
the VTS and the TAS algorithms on a single GPU is capable of
reproducing challenging fluid dynamics.
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4. Conclusion

This study proposed and validated a cut-cell approach to the
treatment of geometrically complex objects in a Cartesian-grid
DSMC using the variable time-step (VTS) and transient adaptive
subcell (TAS) algorithms on a single GPU. Simulation results dem-
onstrate that the proposed parallel single-GPU DSMC code is capa-
ble of reproducing previous simulations using both the VTS and
TAS algorithms. An accurate transition from regular reflection to
Mach reflection in the supersonic flow of nitrogen within a channel
was also predicted with high-fidelity using the single-GPU DSMC
code. Simple speedup tests demonstrated – 30� speedup on the
most advanced GPU card in cases of ten million particles or more.
Efforts to extend the DSMC code to run on multiple GPUs, which is
similar to the work by Su et al. [7], is currently underway and will
be reported in the near future.
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Appendix A. Crossing number test for a point in a polygon

// cn_PnPoly(): crossing number test for a point in a polygon
// Input: P = test point
// V[] = vertex points of a polygon V[n + 1] with V[n] = V[0]
// Return: 0 = outside, 1 = inside

int cn_PnPoly(Point P, Point� V, int n)
{

int cn = 0; // the crossing number counter

// loop through all edges of the polygon
for (int i = 0; i < n; i++) { // edge from V[i] to V[i + 1]

if (((V[i]�y <= P�y) && (V[i + 1]�y > P�y)) // an upward
crossing

|| ((V[i]�y > P�y) && (V[i + 1]�y <= P�y))){ //a downward
crossing

// compute the actual edge-ray intersect x-coordinate
float vt = (float)(P�y � V[i]�y)/(V[i + 1]�y � V[i]�y);
float ixc = V[i]�x + vt� (V[i + 1]�x � V[i]�x); // intersect

x-coordinate
if (P�x < ixc)
cn = !cn;

}
}
return cn; // 0 if even (out), and 1 if odd (in)

}
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