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s u m m a r y

This article presents the use of stochastic methodology for quantitative analysis of variability in stream
flow discharge in response to fluctuations in lateral inflow rate, where the lateral inflow rate is consid-
ered to be the difference between rainfall and infiltration rates. In this work, we focus on the case where
the temporal correlation structure of the fluctuations in the lateral inflow rate can be characterized by the
statistics of random fractals. A closed-form expression quantifying the stream flow variability is therefore
developed to investigate the influence of the fractal dimension of lateral inflow process and the size of
time domain. It is found that the stream flow discharge variability increases with the time domain size,
while the fractal dimension of lateral inflow process plays a role in the smoothness of fluctuations in
stream flow discharge around the mean.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Understanding and quantifying the conversion of rainfall–
runoff process into stream flow discharge is one of the major tasks
in water resources engineering, especially for a long-term manage-
ment of available water resources. Temporal fluctuations in rainfall
are generally recognized as being affected by a wide range of nat-
ural physical processes, the details of which cannot be anticipated
precisely. Hence, there is a great deal of uncertainty associated
with the quantification of surface lateral inflow to the stream along
its reach as produced by the rainfall–runoff process. This prompted
us to investigate how the temporal fluctuations in the lateral
inflow rate influence the variability in the stream flow discharge.

Note that lateral inflow refers to any water added to the stream
due to effluent seepage from ground water, overland flow, inter-
flow or via small springs and seeps (e.g., Singh, 1995). This research
is primarily concerned with the case that the source of lateral
inflow is dominated by the rainfall. Therefore, the lateral inflow
rate in this work is defined as the difference between rainfall and
infiltration rates.

Rainfall events show significant variability on temporal scales.
However, some observations indicate that the temporal distribu-
tions of fluctuations in rainfall fields do exhibit the properties of
long-range correlation and scale invariance. These properties
greatly simplify the statistical characterization of rainfall fields at
time scales by using the concept of fractal objects (e.g., De
Michele and Bernardara, 2005; Hubert et al., 1993; Menabde
et al., 1997; Olsson et al., 1993; Schmitt et al., 1998; Venugopal
and Foufoula-Georgiou, 1996; Veneziano et al., 1996). In other
words, the temporal distribution of fluctuations in rainfall fields
can be modeled according to self-similar random processes and
their temporal correlation satisfies a power law (e.g., Hewett,
1986; Voss, 1985).

The surface lateral inflow to the stream is a direct consequence
of the rainfall–runoff process. There is a need to address the uncer-
tainty (variability) associated with the prediction of available
stream water resources, which is the task undertaken herein. In
the following analysis, the temporal fluctuations in the lateral
inflow rate is considered to be self-similar random fields such that
the temporal variability in the lateral inflow rate can be dealt with
using a fractal description, where the lateral inflow rate represents
the surface runoff mainly from rainfall.

In the following we present a stochastic analysis of one-
dimensional transient stream flow subject to uniformly distributed
lateral inflow along the side of the stream. The application of the
perturbation-based nonstationary spectral techniques will lead to
a closed-form solution for quantifying the variability in stream
flow discharge. This solution provides a basis for assessing the
impact of input parameters on the stream flow discharge
variability.
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2. Problem formulation

Unsteady flow in a stream has traditionally been formulated
based on the Saint–Venant system equations (e.g., Chow et al.,
1988). In practical applications, the local and convective accelera-
tions in the system equations are often neglected to simplify the
analysis. The exclusion of accelerations thus leads the system
equations to a single equation, known as the diffusion wave equa-
tion (e.g., Fan and Li, 2006; Gottardi and Venutelli, 2008; Moussa,
1996; Sivapalan et al., 1997; Sulis et al., 2010)

@Q
@t
¼ Dh

@2Q

@X2 �
@qR

@X

 !
� U

@Q
@X
� qR

� �
ð1Þ

where Q is the stream flow discharge, Dh and U are the hydraulic
diffusivity and wave celerity, respectively, and qR is the lateral
inflow rate (per unit stream length), which is considered to be uni-
formly distributed along the stream.

Eq. (1) is highly nonlinear due to the dependence of the diffusiv-
ity and celerity coefficients on the stream flow discharge Q, the
dependent variable of (1). However, it may be linearized in a
perturbation form based on the steady uniform reference values
of the flow discharge and flow cross-sectional area written as
(e.g., Lal, 2001; Moramarco et al., 1999; Yen and Tsai, 2001)
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where Q0 = Q�Q0, q = qR�q0, and Q0 and q0 represent the steady uni-
form initial values. For a wide rectangular channel, for example, the
diffusivity coefficient may be expressed in the form (e.g., Yen and
Tsai, 2001)
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where V0 and Y0 are the uniform flow velocity and depth, respec-
tively, S0 is the channel bed slope, F0 = V0/(gYh)0.5, and Yh is the
hydraulic depth. The celerity coefficient is given by (e.g., Yen and
Tsai, 2001)

U0 ¼
3
2

V0 ð4aÞ

using Chezy’s formula and

U0 ¼
5
3

V0 ð4bÞ

using Manning’s formula. Note that the term oq/oX has been omit-
ted from (2) due to the assumption of uniformly distributed
recharge.

In the analysis presented below, the lateral inflow representing
the source of stream flow is assumed to be a temporally correlated
random field (a stochastic process based on the time series). It
results in temporally correlated random fluctuations in stream
flow discharge. That is, the stream flow discharge, the output
(dependent variable) of the stream flow equation, is also treated
as a random field. As such, the perturbation Eq. (2) provides a
framework for quantifying the stream flow variability in terms of
the temporal variability of the lateral inflow.

3. Stream flow variability analysis

We consider a weakly stationary random lateral inflow field in
time so that the fluctuations in lateral inflow may be presented in
form of Fourier-Stieltjes integral as:

qðtÞ ¼
Z 1

�1
eixtdZqðxÞ ð5Þ
where x is the frequency and dZq is the complex random amplitude
of the fluctuations. The perturbed quantity of stream flow discharge
in (2) may be expressed by the Fourier-Stieltjes representation of a
nonstationary process (e.g., Li and McLaughlin, 1991) as:

Q 0ðX; tÞ ¼
Z 1

�1
UQqðX; t;xÞdZqðxÞ ð6Þ

where UQq(X, t, x) is the transfer function.

Using (5) and (6), it follows from (2) that
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To gain a clear insight into the influence of the source variability
on the stream flow, we focus only on the case where the boundary
and initial conditions are deterministic (i.e., the case of lateral-
inflow-dominated stream). Thus, the stochastic perturbation
boundary and initial conditions associated with (7) take the forms:

UQqð0; tÞ ¼ 0 ð8aÞ

UQqðL; tÞ ¼ 0 ð8bÞ

UQqðX;0Þ ¼ 0 ð8cÞ

where L is the length of the stream. The system of Eqs. (7) and (8)
admits the following solution:

UQq ¼ 2pU0 exp
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where l ¼ U0L=D0; n ¼ X=L; q1 ¼ D0p2=L2; q2 ¼ U2
0=ð4D0Þ. A useful

approximation may be made for the case of q1t� 1. For this case,
the infinite series in (9) converges rapidly (e.g., Haberman, 1998)
and (9) becomes

UQq ¼ 2pU0
1þ e�l=2

p2 þ l2=4
eln=2 sinðpnÞ e

i-t � e�at
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ð10Þ

where a = q1 + q2 = (Dh0p2 + l2/4)/L2. In conjunction with (9), (6) is
written as:
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Requiring from the representation theorem for Q0, one obtains

r2
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where r2
Q is the variance of the stream flow discharge, E(�) stands

for the ensemble average, the asterisk denotes the operation of
complex conjugation, and Sqq(x) is the spectrum of the lateral
inflow perturbation.

As mentioned earlier, the temporal correlation structure of the
rate of lateral inflow is assumed described by the statistics of ran-
dom fractals. It has been demonstrated by Voss (1985) and Hewett
(1986) that the spectral density of the fractal objects follows the
power-law behavior. Hence, the spectrum of the lateral inflow
Sqq(x) in (12) has the form of

SqqðxÞ ¼ S0=xb ð13Þ

where S0 is the spectral density at x = 1, b is the spectral exponent
which can be related to the fractal dimension D. For one-
dimensional fractal objects, b = 5–2D and 1 < D < 2. The reader is



Fig. 1. Dimensionless variance of stream flow discharge as a function of fractal
dimension of temporally fractal lateral inflow process.

Fig. 2. Dimensionless variance of stream flow discharge as a function of time
domain size of fractal lateral inflow process.
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referred to Mandelbrot (1983) for a detailed discussion on the con-
cept of fractals.

Note that the frequency is proportional to the inverse of the
characteristic scale of time domain. In the limit when x ? 0,
Sqq(x) approaches1, implying that the time scale under consider-
ation is unbounded. In reality, the extent of time series or the pro-
file is finite, and therefore there exists a cut-off frequency x0 such
that below x0 the spectral content becomes negligible. With such a
cut-off limit, the modified power spectrum of the lateral inflow
accounting for the finite-scale effect reads as:

SqqðxÞ ¼
S0=xb for x > x0

0 otherwise

�
ð14Þ

where x0 = 2p/T0 and T0 is the size of time domain. The idea of
using a power spectrum with a low cut-off representing the spatial
structure of the log hydraulic conductivity field at the scale of inter-
est has been applied to solve various groundwater problems (e.g.,
Chang and Kemblowski, 1994; Di Federico and Neuman, 1997;
Zhan and Wheatcraft, 1996). It has been mentioned in Molz et al.
(1997) that a stationary function with a correlation scale larger than
the domain size gives a good approximation of a nonstationary
function in a finite domain. This implies that with the aid of cut-
off limit, the existing stochastic models developed for the stationary
process can be applied to analyze nonstationary fractal processes.

In addition, the observed variance of lateral inflow associated
with (13) within the range of the time domain can be found as:
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where r2
q is the observed variance of the lateral inflow. Eq. (15) indi-

cates the observed variance is scale-dependent (a function of time
scale). This equation also shows that the variance of the observed
lateral inflow increases with the time domain size. This agrees with
our geologic intuition.

Inserting (14) into (12) and integrating over the frequency
domain yields
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where s = at, 2F1 is Gauss’s hypergeometric function (e.g.,
Gradshteyn and Ryzhik, 1980), 1F2 is the generalized hypergeomet-
ric function (e.g., Gradshteyn and Ryzhik, 1980), C(�) is the Gamma
function, and q = 2p/(a T0).

Again, note that r2
q increases with the size of the time domain.

Thus, to investigate the influence of the fractal dimension of the
lateral inflow on the variance of the stream flow discharge, we
assume that the time-domain variance of the lateral inflow is con-
stant. This assumption allows us to replace S0 in (16) with

S0 ¼ ð2� DÞ 2p
T0

� �4�2D

r2
q ð17Þ

Fig. 1 demonstrates how the variance in the stream flow dis-
charge is influenced by the fractal dimension of the lateral inflow.
When D > 1.5, the recharge process generates anti-persistence,
having negatively correlated increments. Anti-persistent stochastic
processes tend to show an increase in value following previous
decreases, or show a decrease following previous increases. On
the other hand, when D < 1.5, the lateral inflow processes display
persistence, having positively correlated increments. That is, posi-
tive increments tend to be followed by other positive increments,
while negative increments tend to be followed by other negative
increments. As the value of fractal dimension is increased, the tem-
poral correlation is decreased and the profile of stream flow dis-
charge is smoothed (i.e., less fluctuations in the stream flow
discharge around the mean). When the fractal dimension is close
to 2, the increments of the stream flow discharge exhibit an anti-
correlated structure and the variance of the stream flow discharge
approaches zero.

The plot of dependence of the variance of the stream flow dis-
charge upon the scale of the time domain is illustrated in Fig. 2
based on (16). The increase in the variance of the stream flow dis-
charge with the time domain scale is due to the fact that an
increased size of the time domain introduces a wide range of var-
iability in the lateral inflow processes which in turn increases the
variability of the stream flow discharge. The rate of the increase
in the variance of the stream flow discharge is more significant
for a smaller D (more persistence of the process).
4. Conclusions

Stochastic analysis of the stream flow problem demonstrates
that the fractal dimension of temporal lateral inflow process and
the size of the time domain have an important effect on the
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variability in the stream flow discharge, as illustrated by the fol-
lowing results:

1. The variance of the stream flow discharge is influenced strongly
by the fractal dimension of temporal lateral inflow process. A
higher fractal dimension of temporal lateral inflow processes
results in a less persistence of stream flow processes, which
produces smaller fluctuations in the stream flow discharge
about its mean.

2. The variability in the stream flow discharge is scale-dependent
and increases with the size of time domain.
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