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a b s t r a c t

Battery-powered mobile devices substantially constrain energy resources. Process-level energy profiling
tools can identify the most energy-consuming process and detail the energy usage of hardware
components. With the help of energy profiling tools, programmers can fine-tune the energy consump-
tion of processes to extend battery lifetime. However, profiling tools are highly dependent on hardware
and must be calibrated for each hardware platform. Furthermore, for any new hardware components,
new energy estimation formulas must be created. To solve these two problems regarding off-the-shelf
products, this work proposes a two-phase calibrating approach. The first phase reconstructs the power
table with a power meter, while the second creates new energy estimation formulas using linear
regression analysis. The accuracy of the calibrated tool was evaluated in five scenarios and its error ratio
is proven to be below 10%, occasionally less than 5%. Hence, this proposed approach to energy
consumption profiling represents a major step in off-the-shelf devices.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The capability of digital electronic devices doubles every two
years (reflecting Moore's law; Intel), while battery capacity has
only doubled in the past decade (Parmar). Modern battery-
powered mobile devices are so powerful but they suffer from
limited energy budgets. For example, a smartphone, a currently
popular battery-powered cellular phone, has plenty of computing-
intensive applications; for example, music programs, GPS naviga-
tion, and power-hungry peripherals such as a screen and Wi-Fi
module. However, energy profiling tools cannot provide program-
mers with accurate information of energy usage on products and
devices. This causes programmers to be proficient at performance
optimization, but relatively deficient at energy fine-tuning. Hence,
energy profiling tools have been in demand and studied over the
past several years.

There are three types of approaches for profiling a system's
energy consumption: measurement; simulation; and estimation.

Measurement-based methods directly measure energy consump-
tion with digital power meters. This can either sample total power
considering different configuration factors (for instance, processor
frequency) to identify the influence of such factors on system
power consumption (Assim, 2006), or probe all hardware compo-
nents simultaneously to obtain detailed energy consumption data
for each component (Bai and Lin, 2005; Mahesri and Vardhan,
2005; Ruan and Lai, 2006). Furthermore, mapping the measured
energy consumptions to running processes helps programmers
detect energy-hungry code regions (Flinn and Satyanarayanan,
1999; Chang et al., 2003; Baek et al., 2004; Xian et al., 2007).
Simulation-based approaches create virtual platforms to gather
statuses and utilizations of hardware resources during simulation,
and then transform the gathered information to energy profiling
and energy consumption. Furthermore, there are two simulation
methods. One is tracking every hardware component's power state
during simulation so that the energy consumption of the whole
simulated platform can be calculated (Cignetti et al., 2000;
Gurumurthi et al., 2002). The other is simulating power consump-
tion of every processor during the execution of a program. This
approach monitors every register bit of a function unit, such as
an adder and an ALU, in resister-transfer level (RTL), and then
transforms the monitored information to corresponding power
consumption (Ye et al., 2000). Estimation-based approaches are
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similar to those of simulation except that, during the profiling
time, they collect resource utilization information from kernel and
log daemons. Some studies have been based on this type of
approach to achieve software energy profiling (Banerjee and
Agu, 2005; Kansal and Zhao, 2008; Xiao et al., 2013) and online
power-saving adaptation (Do et al., 2009; Zeng et al., 2002)
without the need for power meters.

The measurement-based method is the most intuitive and
accurate among the three types of approaches described above.
However, in the real world, vendors usually remove the reserved
pins, which are required for power meters, from products because
of cost and size reduction. In contrast, the simulation-based
approach is impractical for developing an energy-aware simulator
for every different hardware platform. Thus, we believe the
estimation-based approach is a complementary solution for soft-
ware energy profiling on product devices.

The concept of the estimation-based energy profiling approach
is depicted in Fig. 1(a). In Fig. 1(a), there are two components:
energy estimation formulas and a power table. The former estimates
hardware components' energy consumptions, while the latter
contains power weight coefficients of formulas. During the profil-
ing time, the estimation-based approach collects necessary
resource utilization records of energy estimation formulas from
log daemons and the kernel to calculate the energy consumption
of each process on hardware components. This is why the
estimation-based approach could detect the process level of
product devices without using power meters. For example, in
Fig. 1(a), the CPU utilization, CPU_time, is 5 ms for the profiled
process. According to the CPU energy estimation formula and
power weight coefficient, CPU_power, the CPU energy consumed
by the profiled process, is 50 nJ. However, the energy estimation

formulas and power table are heavily dependent on the hardware,
and thus the estimation-based approach may derive an inaccurate
estimation result. Therefore, the default power table in the
primitive source code of an energy estimation program must be
customized for a device under test (DUT). Furthermore, in a
porting procedure, faulty energy estimation formulas must be
addressed because they seriously harm the estimating accuracy.
For example, Fig. 1(b) shows a remarkable discrepancy between
the energy estimation of Android Battery Use (BU), an energy
estimation program for Android-based systems, and the energy
measurement of data acquisition (DAQ; NI) of file downloading
over Wi-Fi. Here, X and Y axes denote the time in minutes and the
energy consumption per minute, respectively. The reason for the
inaccurate estimation results of BU in this example is the faulty
energy estimation formula of the Wi-Fi module. Therefore, the
calibration of parameters and formulas are necessary.

This work introduces a two-phase calibration approach to
calibrate the default power table parameters and faulty energy
estimation formulas of off-the-shelf products and devices. The first
phase focuses on reconstructing the power table, while the second
is on creating estimation functions for the target hardware
components using regression analysis. The difference between
the proposed and previous approaches is that the proposed
method not only improves the estimation accuracy for one process
with a DUT, even for that with different DUTs, but also reduces the
ill effects of DUTs. Furthermore, to achieve these improvements,
the proposed method measures the total power from the battery
only and is hardware independent. This two-phase calibration
approach can be used for any device's energy consumption
estimation. We implemented the proposed approach in a real
Android device, and compared it against the built-in Battery Use
(BU). We choose Android because it is based on the open-source
Linux kernel along with middleware and key applications.

The rest of this paper is organized as follows. Section 2
investigates the spectrum of energy consumption studies, intro-
duces the energy consumption behaviors of the WLAN interface,
and overviews the experiment involving the Android platform and
its built-in energy estimation program, BU. Section 3 states
terminology and our problem statement. Section 4 describes the
concept of the proposed approach, two-phase calibration, along
with an example. Section 5 shows detailed operation procedures
and system implementation of an Android product, Android Dev
Phone 1. Section 6 presents the evaluation results, and Section 7
concludes this work.

2. Background

2.1. Spectrum of energy consumption studies

This section introduces five measurement-based and two
estimation-based approaches. Total energy measurement (TEM),
subtractive method (SM), component energy measurement (CEM),
sampling CPU occupation (SCO), and concurrent measurement (CM)
are measurement-based while counting resource utilization (CRU)
and hybrid estimation (HE) belong to estimation-based approaches.
Moreover, TEM, SM, and CEM involve hardware energy consump-
tion, while the other four entail software energy consumption.
For distinction, hardware and software energy consumptions
are discussed separately. The relationship between software
and hardware energy consumption is analogous to commerce in
a market, as shown in Fig. 2. Device under test (DUT) and
hardware components are analogous to a market and stores in
the market, separately. Processes running on the DUT are likened
to persons spending in the market.

CPU Utilization: CPU_time 5ms

Energy  =  CPU _ power  x  CPU _ time

CPU _ power:1 0 mW

Energy Estimation Model

CPU Energy Estimation Formula

Power Table

CPU Energy: 50 nJ

Energy Report

Input

Output

E
ne
rg
y(
uA
h)

Time(minute)

DAQ

BU

Fig. 1. Estimation-based approach: concept and faulty estimation. (a) Estimation-
based energy profiling approach concept and (b) faulty energy estimation of file
download.
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2.1.1. Hardware energy consumption
Three methods, TEM, SM, and CEM, are generalized based on

the resolution of energy breakdown. Total energy measurement
(TEM) observes energy consumption behaviors from total energy
consumption similar to examining business status from total
revenue of a market. On handheld computers, Assim (2006)
measured the total energy consumption in different system con-
figurations, and showed that energy consumption of a display,
processor, and Wi-Fi module plays a vital role in determining
battery lifetime. The SM roughly identifies the component-wide
energy consumption by comparing energy consumption differ-
ences in variant hardware statuses. Component energy measure-
ment (CEM) simultaneously probes all hardware components to
sample the energy consumed by the components. This measure-
ment can be illustrated by programming invoice machines to
record incomes for each store.

Based on portable computers, Bai and Lin (2005) presented the
energy measurement method for hardware components using
small resisters. Mahesri and Vardhan (2005) measured energy
consumption of main hardware components in IBM laptops. They
concluded that the power consumed by the CPU and display
dominates the power consumption of a laptop. Hardware compo-
nents, such as disk drives, expend considerable energy only in the
working state. Carroll and Heiser (2010) considered OpenMoko,
which is an open smartphone design and whose circuit schematics
are available to the research community. They studied the energy
consumption of each individual hardware component and eval-
uated the efficacy of dynamic voltage–frequency scaling of
OpenMoko.

2.1.2. Software energy consumption
According to the accuracy of energy attribution, the methods

for examining software power consumption are classified into four
methods: SCO; CM; CRU; and HE.

In practice, SCO samples total energy with an external power
meter. To map the measured energy to the running processes in
the DUT, the meter triggers the logs of a program counter (PC) and
a process identifier (PID) for each energy record. During the
analyzing time, the energy record can be associated with a specific
process using the PC and PID. Because the energy-to-process
mapping depends only on CPU utilization, inaccuracy in energy
attribution could be increased by concurrent energy consumption
contributed by multiple hardware components. PowerScope (Flinn
and Satyanarayanan, 1999) is a popular tool for discovering
energy-hungry code regions. Chang et al. (2003) replaced the
time-driven sampling approach of PowerScope with an energy-
driven sampling approach to improve accuracy of energy attribu-
tion. ePRO (Baek et al., 2004) integrates energy and performance
profiling into a convenient tool with well-defined user interface.
Shye et al. (2009) derived a system-level linear power model for
Android platform smartphones. Zhang et al. (2010) also improved
the accuracy of a linear power model by designing a training suite
to exhaustively train all related hardware components.

Concurrent measurement (CM) embeds energy sensors on
hardware components to simultaneously trace energy utilization.
For accurate energy attribution, it uses a sophisticated method
of synchronizing the multisource energy samples and the system
events. This measurement is analogous to the budget for each
shopper in a particular store. The amount a shopper spends can be
calculated by summing up the price of his or her bills. M-Sync
(Xian et al., 2007) measures an accurate energy attribution that
raises the accuracy by up to 90% of sampling CPU utilization. Jung
et al. (2012) proposed using the built-in battery voltage sensor to
construct the power models of the components in a smartphone.
Dong and Zhong (2011) introduced a linear power modeling
method with a high sampling rate for software energy estimation.

To trace software energy consumption contributed by each
hardware component, the CRU method counts resource requests
for each process. The counts of resource requests can be translated
into energy consumption using the energy estimation model
mentioned in Section 1. Using a daily life analogy, the method
works similarly to counting various types of receipts for estimating
personal spending. pTop (Do et al., 2009) estimates component-
wide energy consumption for each process on a laptop and
provides a programming interface for designing energy-aware
applications. ECOSystem (Zeng et al., 2002) counts resource
utilizations and carefully allocates energy budgets among compet-
ing tasks to extend battery lifetime.

The HE method is a derivation of counting resource utilizations
and a sampling CPU utilization. In practice, some of the resource
utilizations can be counted easily, e.g., disk I/O, while the other
resource utilization is difficult to be counted on a DUT, e.g.,
memory access. The energy consumed by the countable resources
is easy to estimate, while the residual energy escaping from
estimation is proportionally shared according to the CPU occupa-
tion. Based on the hybrid estimation method, PowerSpy (Banerjee
and Agu, 2005) distinguishes the battery energy consumed by
threads from that consumed by hardware components. Pathak
et al. (2012, 2011) recently studied the asynchronous behavior of
application power consumption, and proposed a system-call-
driven finite-state-machine approach for accurate power account-
ing in smartphones. Snowdon (2009) proposed Koala, an OS-level
power measurement/management platform, to take into account
the processes' response to power state transitions in terms of
performance and energy consumption. They found that memory-
bound processes can gain a significant power saving with a small
performance reduction.

Table 1 summarizes the comparisons of tools for software
energy profiling. This work focuses on calibrating the energy
estimation tools, which belong to the CRU method, and solves
two hardware dependent drawbacks of tools.

2.2. Energy consumption of wireless network interface

The energy efficiency of a WLAN interface is a critical concern
especially for battery-powered mobile devices. For a clean image
of power consumption behaviors, Stemm and Katz (1997)
measured the power consumption on four distinct interfaces.

Fig. 2. Spectrum of energy consumption studies.
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They concluded that power consumption of receiving packets is
nearly equivalent to that of an idle network interface, and sending
packets consumes more power than receiving packets. Ebert et al.
(2002) further studied the influence of packet size, transmission
rate, and RF power level on power consumption of 802.11 standard
network interfaces. In an identical RF channel, Ebert et al. showed
that a higher RF power level results in more power consumption
on the interface. In contrast, the packet size and transmission rate
were less significant in power consumption. For mathematical
analysis, Feeney and Nilsson (2001) characterized the energy
consumption of an IEEE 802.11 wireless network interface operat-
ing in an ad hoc mode using simple linear formulas. However, the
work did not include discussion of power saving mechanisms,
which contain two distinct operation modes: power saving mode
(PS) and active mode (AM). In PS, the interface periodically
awakens from the sleeping state only for beacon packets. In
contrast, in AM, the interface remains active in the idle state for
handling instantaneous packet transmission. Therefore, idling in
AM consumes more power than in PS. Rohl et al. (1997) simulated
the power saving mechanism of an IEEE 802.11 ad hoc wireless
network, and they also identified the figures for optimal beacon
intervals for ATIM window sizes.

2.3. Android systems

At the end of 2008, Google released Android, a new software
platform for smartphones. Market share of Android is expected to
continue growing for the next few years (MIC, 2013).

2.3.1. Android framework
Android adopts a Linux kernel as a hardware abstraction

because it provides numerous proven hardware drivers and
sophisticated core operating system infrastructures, especially in
the networking layers. Above the OS, lightweight libraries, such as
Bionic libc optimized for embedded system, are exposed for native
programming. The Dalvik virtual machine and core libraries,
which provide most of the functionality for Java programming,
construct the runtime environment for Android applications. The
application framework contains several services to serve the user
applications. Taking the advantage of the Dalvik virtual machine
and a unified application framework, applications can migrate
between platforms seamlessly. According to the functionality and
performance requirements, the components in Android is written
in different programming languages, as shown in Fig. 3.

2.3.2. Battery Use
Battery Use is an energy consumption estimation program of

Android. It is based on the counting resource utilization method,
and has been integrated into the Android system since, version 1.6.
During system booting, the application framework starts a special
service, battery info, which takes the responsibility for the count-
ing resource utilization. For calculating energy consumption, BU
raises the inter process communication (IPC) to obtain the data
from the battery info service. Table 2 summarizes the default
energy estimation formulas and power weight coefficients in BU.

In Table 2, the basic energies are the energy consumed to keep
the hardware components active. In the basic energy estimation
formulas, Pb

R is the basic power consumption of the hardware
component R, and Tb

R is the time duration wherein the component
is active. Because there are many brightness levels, backlight
energy estimation is formulated in a summation form of multiple
energy consumption instances. In the estimation formulas of
working energy, Pw

R is the working power and Tw
R;p is the durat-

ion wherein hardware component R are used by the process p.

Table 1
Comparison of software energy profiling tools.

Method Tool Level Features Drawbacks

Sampling CPU occupation
(SCO)

PowerScope Function � Energy hotspots detection � High overhead when high sample rate
� Rough energy attribution
� No component-wide energy breakdownePRO Function � Performance and energy profiling

� Fine energy debugging UI

Concurrent measurement
(CM)

M-Sync Function � Track of programs' usage of multiple hardware
components

� Accurate energy synchronization

� High overhead when high sample rate

Counting resource utilization
(CRU)

pTop Process � Energy-sensitive process management � Hardware dependent, e.g. power table
� Hardware component dependent, e.g. estimation

formulasBattery Use Process � Many hardware components consideration

Hybrid estimation (HE) PowerSpy Thread � Energy detection from battery

Fig. 3. Architecture of Android system.
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The networking energy estimation of process p is defined as a
product of per byte transmission energy Enetbyte and total traffic
volume including receiving packets Vrcv

p and sending packets Vsnd
p .

The formulas in Table 2 are extracted from the source code of
BU. Basically, these formulas assume that the power consumption
are stable when components are working in the same state.
However, different DUTs may require calibrating the coefficients
of the formulas for accurate power consumption estimation. The
energy estimation method described above remains the same until
the latest Android version when we wrote this paper.1

3. Problem statement

3.1. Terminology

Table 3 defines the terminology of this work. The real and
estimated energy consumption of a target hardware component
T are ET and Ê

T
, respectively. Ê

T
is formulated by the energy

predictor variable fk and the power weight coefficient ck corre-
sponding to fk. For linear regression analysis, In is the nth input
data set containing k values (from fn,1 to fn,k) for k predictor
variables (from f1 to fk). Because ET is difficult to be measured
directly from real devices, ETapx, the approximate value, is adopted
in the regression analysis for creating a new estimation formula.
EtotalðT1;⋯; TmÞ and ÊestðT1;⋯; TmÞ denote the real and estimated
total energy of hardware components from T1 to Tm, respectively.

3.2. Problem description

Because there would be no reserved pins for power probing
in off-the-shelf products, it is nearly impossible to measure the
energy consumption of a hardware component in the final
products. Even if we could measure the energy consumption using
the development prototypes, the estimation results would be
biased because of the difference between the prototypes and the
final products. Therefore, we propose measuring the total system
energy consumption and cross-matching the results of different
test scenarios to identify the energy consumption of individual
components. The rest of this section is on the statements of the
problems for power formula calibrating without hardware com-
ponent power measurement.

Let the energy ET consumed by a component T be modeled as a
linear equation Ê

T ¼ c:0þc1f 1þ⋯þckf k with k energy predictor
variables and kþ1 power weight coefficients (Do et al., 2009;
Economou et al., 2006). C0 is the constant parameter and ck is the
corresponding coefficient to energy predictor variable fk. This work

calibrates parameters and formulas for process-level energy con-
sumption profiling by updating power weight coefficients and
modifying faulty energy estimation formulas.

Let the consumed energy ET for a component T be modeled as a
linear equation Ê

T ¼ c:0þc1f 1þ⋯þckf k with k energy predictor
variables and kþ1 power weight coefficients (Do et al., 2009;
Economou et al., 2006). c0 is the constant parameter and ck is the
corresponding coefficient to energy predictor variable fk. This work
calibrates parameters and formulas for process-level energy con-
sumption profiling by updating power weight coefficients and
modifying faulty energy estimation formulas.

3.2.1. Problem statement 1: updating power weight coefficients
The default values in the power table may be specific to some

particular DUTs, or their default values are arbitrarily set and can
cause unacceptable errors in the estimation results ET. Therefore,
updating the correct value to the power weight coefficients, ck, and
replacing them to the power table are necessary for a new
hardware component in the DUT to obtain a correct ET. Hereafter,
we call this problem “power table reconstruction”.

3.2.2. Problem statement 2: modifying faulty energy estimation
formulas

EtotalðT1;⋯; TmÞ can be correctly measured on an off-the-shelf
device, but for a hardware component T, its energy estimation
formula may be wrong because of the totally different energy
consumption behavior of T in the new DUT. Furthermore, it is
difficult to discover the faulty energy estimation formula of a
particular component T from a set of hardware components'
energy estimation formulas. Therefore, identifying a faulty energy
estimation formula and create a correct one for a specific hardware
component T is necessary.

4. Two-phase calibration approach

4.1. Calibration approach overview

Most of the DUTs share a common set of hardware compo-
nents. For example, Android smartphones have an LCD screen, a
Wi-Fi module, radio hardware, and a system-on-chip (SoC) pro-
cessor with two cores. The first core is for radio signal processing
and the second is for user applications. Because energy consump-
tion heavily depends on hardware design, equipping similar
hardware components usually causes the DUTs to resemble energy
consumption behaviors. For example, as shown in Fig. 4, the
backlight power of four smartphones maintains the similar linear-
ity between brightness levels and consumes stable energy within
the brightness levels. The main difference of the four lines is the
slope related to the power weight coefficient, Pbt

i QUOTE , of the
screen energy estimation formula mentioned in Section 2. The
above observation suggests that most energy estimation models
can adapt to the similar DUTs by updating power weight coeffi-
cients for each estimation formula.

During the reconstruction of the power table, power consump-
tion can be classified into two categories: system-basic and
process-related. The former considers the whole system, while
the latter is process-level and is consumed by the hardware
components related to specific processes. In other words, the
system-basic category represents the basic power consumption
of system-wide hardware components, while the process-related
one is defined as the extra power consumption consumed by the
activity of running processes. In this work, the energy consump-
tion from the system-basic power belongs to the entire system,
while that from the process-related power is charged from the
corresponding processes.

Table 2
Default energy estimation formulas in Battery Use.

Energy item Estimation formulas Power weight coefficient

Wi-Fi basic Pb
wif i � Tb

wif i Pb
wif i

Radio basic Pb
radio � Tb

radio Pb
radio

Screen basic Pb
screen � Tb

screen Pb
screen

Screen backlight ∑I
i ¼ iP

bt
i � Tbt

i Pbt
i

CPU idle Pb
cpu � Tb

cpu Pb
cpu

CPU working Pw
cpu � Tw

cpu;p Pw
cpu

GPS working Pw
gps � Tw

gps;p Pw
gps

Phone call Pw
radio � Tw

radio Pw
radio

Networking Enetbyte � Vrcv
p þVsnd

p

� �
Enetbyte

1 〈http://source.android.com/devices/tech/power.html#〉.
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Sometimes, although two DUTs have similar hardware compo-
nents, the energy estimation formulas still cannot be successfully
applied from a DUT to the other DUT because of the variant
specification of hardware component T. Furthermore, when the
DUT is a product, there are no longer reserved pins for measure-
ment. Therefore, the real energy ET consumed by T is unable to be
directly measured. Thus, to create a new energy, estimation
formula to replace the faulty or inaccurate one and obtain the
energy consumption ET, this work proposes using a linear regres-
sion analysis and an approximate energy consumption ETapx,

obtained by subtracting ÊestðT1;⋯; TmÞ from EtotalðT1;⋯; TmÞ, to
help modeling power consumption behaviors of T. Moreover, to
facilitate programmers in obtaining proper data, the energy
estimated using new formulas is mapped onto running processes
for process-level energy profiling.

Figure 5 depicts the main flow of the two-phase calibration
process, i.e., the power table reconstruction and new formula
creation. The first phase, power table reconstruction, involves
updating power weight coefficients (as explained in Section 3),
and can be divided into two function blocks of measuring the
system-basic power and process-related power. The second phase,
new formula creation, involves identifying the faulty formulas,
replacing the faulty formulas with new, correct ones, and propor-
tionally distributing the estimated energy. Between the two
phases, the estimation evaluation is used to feedback calibrated
results. There are predefined test scenarios and a threshold (H)
for the evaluation procedure. The calibrated tools are tested by
estimating energy consumption of each test scenario. If one of the
estimation errors is larger than the threshold H, the new formula
creation procedure is performed for further calibration. Note that a
stricter threshold value will cause more runs of calibration, but
more accurate result will be calibrated. In this work, the error
ratios are chosen as the criteria and defined in Section 6.

4.2. Power table reconstruction

4.2.1. System-basic power coefficient measurement
It is easy to obtain the system-basic power weight coefficient,

such as Pb
wif i, by measuring the difference of total power con-

sumption when the hardware component operates in different
states. The most common case is to measure the power difference
between on and off states of hardware components. In other cases,
multiple power measurements are performed if the target com-
ponent provides multiple operating states. For example, a screen
backlight can work at different brightness levels and results in
different power consumptions at the each level, as shown in Fig. 4.

4.2.2. Process-related power coefficient measurement
Because the process-related power, for example Tw

cpu;p, depends
on the hardware resource utilization, a dedicated process is used
to stress the hardware component. In practice, the dedicated
process should be chosen or designed carefully for stressing only
one hardware component during a time period. For instance, the
infinite for-loop can be used to stress a CPU hardware component
with minimized memory accesses. The process-related power
can be refined by subtracting the total system-basic power
from the measured total power consumption. This is why the
process-related power measurement is after the system-basic
power measurement.

Table 3
Terminology definitions.

Term Definition

Ê
T The energy estimation for the target hardware component T

ET The real energy consumed by the target hardware component T

ETapx The approximate energy consumption of ET

f k The energy predictor variable of Ê
T

ck The corresponding power weight coefficient to f k
In The n-th input data for the k energy predictor variables f 1⋯f k
f n;k The variable value of f k in input data In
EtotalðT1 ;⋯; TmÞ The total energy measured by the power meter for the system where hardware components T1⋯Tm are active or

working

ÊestðT1 ;⋯; TmÞ The sum of calibrated energy estimation for Ê
T1⋯Ê

Tm

Fig. 4. Backlight energy consumption behaviors of smartphones.

Fig. 5. Tow-phase calibrating flowchart.
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4.3. New formula creation

4.3.1. Discovering faulty formula
From the feedback of estimation evaluation, there may be a

faulty estimation formula with incorrect energy estimation results
because of wrong or missing energy predictor variables. Because
old and new DUTs have different energy consumption behaviors,
they use different energy predictor variables. Therefore, the faulty
estimation formula always causes the faulty results on T , regard-
less of how the power weight coefficients are modified. For
example, the following is a simple method that discovers one
single faulty formula on the DUT. Let there be m estimation
formulas, each for a hardware component, and assume that there
is only one faulty formula among m estimation formulas. In such a
situation, there can be Cm

k test scenarios involving k hardware
components, where k is an arbitrary variable and is smaller than
m. During the evaluation in test scenarios, two false evaluation
scenarios can be found and both of them involve the faulty
estimation formula. With the cross-matching algorithm, the m0

joint formulas of both false evaluation scenarios can be extracted.
Based on the m0 formulas, the next loop is continued with Cm0

k0 test
scenarios until only one joint formula is discovered. At the end of
the discovering procedure, only one joint formula is the faulty
estimation formula.

4.3.2. Identify energy predictor variables
To determine the energy predictor variables for T , a series of

experiments are performed to observe the remarkable effect of
each candidate energy predictor variable f k on energy consump-
tion. In each experiment, only one energy predictor variable can be
examined with different variable values. For example, we observed
that, during network transmissions, if the size of transaction
packet changes, the power consumption of networking compo-
nents varies as well. Thus, we identified that the transaction
packet size is a predictor variable of energy consumption for
networking components. Another possible method to determine
the energy predictor variables is to take the advantage of proven
results from other papers that extensively report on the power
consumption behavior of T on similar hardware platforms. How-
ever, this approach is highly difficult and requires domain knowl-
edge of T for the energy predictor variable choice. Hence, this
work uses the experimental approach.

4.3.3. Forming linear formulas
We assume that the linear property between hardware resource

utilization and energy consumption of T holds (Do et al., 2009;
Economou et al., 2006). Therefore, the estimation equation can be
formulated in a summation form,

Ê
T ¼ c0þc1f 1þ⋯þckf k

where fk is the new energy predictor variable and ck is fk's correspond-
ing power weight coefficient.

To obtain the unknown kþ1 coefficients, the observation input
data In is collected with the instance of real energy consumption
ETn , consumed by T. For the convenience of regression analysis, the
relationship of input data set F, the real energy consumption set
ET ¼ ð ET1 ET2 … ETn ÞT , and the power weight coefficient set
C¼ ð c0 c1 … ck ÞT are compiled in a vector form

ET ¼ FC;

where the matrix of input data set F is shown as

F¼

I1
I2
⋮
In

0
BBB@

1
CCCA¼

1 f 1;1 ⋯ f 1;k
1 f 2;1 ⋯ f 2;1
⋮ ⋮ ⋱ ⋮
1 f n;1 ⋯ f n;k

0
BBBB@

1
CCCCA
:

4.3.4. Launching linear regression analysis
The probing pins for component energy measurement would

have been removed from DUTs. Therefore, the real energy ET

cannot be measured directly from hardware component T with
power meters. An alternative is to apply the approximate energy
consumption ETapx for E

T. Assume there are a total of mþ1 active or
working components while measuring the total energy, and the
energy estimation of m components performs effectively after the
first calibrating phase (Do et al., 2009; Economou et al., 2006).
Therefore, the ETapx is calculated by a subtracting operation,

ETapx ¼ Etotalð T1; …; Tm; T Þ� Êestð T1; …; Tm Þ;

where ÊestðT1;⋯; TmÞ is the estimated total energy of m hardware
components and EtotalðT1;⋯; Tm; TÞ is the measured total energy of
mþ1 hardware components.

In practice, the calibrating procedure of T can only be per-
formed after the energy consumption of other involved hardware
components are estimated. For example, the CPU energy con-
sumption is estimated before the energy consumption of the
networking module is calibrated. This is because networking
packages always consume the energy on the CPU for network
protocol processing. Therefore, instead of ET,

ETapx ¼ ð ETapx;1 ETapx;2 … ETapx;n ÞT

is adopted as the energy consumed by T for regression analysis,
where ETapx;n is the approximate value for ETn .

4.3.5. Attributing energy proportionally
he last procedure involves mapping the energy consumption to

the related processes. Based on per-process information logging,
each resource request on hardware component T is counted in the
profiling time. During the analysis time, the estimated energy of
the new created formula is proportionally and fairly shared among
the corresponding processes according to the request counts.

4.4. Using two-phase calibration: an example

Assume there are three hardware components, T , T1, T2, on a DUT
without probing pins for component energy measurement, and an
energy estimation application is being calibrated for correct energy
estimation on the DUT. The application contains three estimation
formulas, Ê

T
f oult , Ê

T1 , Ê
T2 , and a default power table with null values. Ê

T1

estimates the system-basic energy of T1, while Ê
T
f oult and Ê

T1 predict
the process-related energy of T and T2, respectively. In the first phase
of the calibration procedure, the system-basic power weight coeffi-
cient of Ê

T1 is retrieved by switching T1 on and off. For the case of
Ê
T
f oult and Ê

T2 , the desired process-related power weight coefficients
are measured with two dedicated programs stressing T and T2

individually.
After the first phase, the calibrated tool is evaluated in three

(C3
2) scenarios. Each scenario involves different hardware compo-

nents, and the evaluation results are shown in Fig. 6(a). With the
cross-matching manner, because T appears in both two failure
scenarios, the Ê

T
f oult is identified as a faulty energy estimation

formula. The correct energy predictor variables of T are discovered
from a series of experiments and form a new formula Ê

T
new . In the

regression analysis, the energy consumption of T is in demand and
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approximated by Ê
T
apx. In Fig. 6(b), the energy consumption of T1

and T2 are correctly estimated by ÊestðT1; T2Þ after the first phase
calibration, and the total energy EtotalðT1; T2; T3Þ can also be
measured directly from the battery or the power supply. Finally,
to map the estimated energy to processes, if the energy estimated
by Ê

T
new is er and the usage count of hardware component T is 3 and

4 time units within a time interval for the processes P1 and P2,
respectively, then the energy consumed by P1 on T is estimated as
eT3/(3þ4).

5. Implementation on Android Dev Phone 1

In this work, the Android Dev Phone 1 (Dev 1) is used as the
DUT. The goal of this section is to obtain the correct energy
estimation of Battery Use on Dev 1 by executing the two-phase
calibration procedures.

5.1. Power table reconstruction on Dev 1

In this work, the power consumption of eight hardware
components is measured and further classified into two cate-
gories: system-basic and process-related. The measurement pro-
cedures for each hardware component are summarized as follows.

5.1.1. System-basic category

� Wi-Fi basic: the Wi-Fi basic power is easy to obtain by switch-
ing the Wi-Fi module on and off with the Android Setting
application.

� Radio basic: the Airplane mode closes every wireless interface
including the phone radio. It is utilized to switch the radio
between on and off states.

� Screen backlight: in the Android Linux, the sysfs file system
(Mochel, 2005) is able to set values into the kernel variables
and is used to configure the screen brightness. Because of the
linearity of backlight power, as shown in Fig. 4, the power
difference between the maximal and minimal screen bright-
ness is measured and denoted as Pbt

max. Power consumption of
other brightness levels is calculated using linear interpolation.

� Screen basic: the power consumed by an LCD panel is obtained
by measuring the power difference between the on and off
states of the screen. In practice, there are two tricks of the
screen basic power measurement. First, the screen backlight is
turned off to distinguish the screen basic power from the
screen backlight power. Second, to prevent the system from
entering suspend mode when the screen is closed, it should
make use of a power management feature of Android system
such as wakelock (Google).

� CPU idle: is defined as the power consumed in Battery Use
while the screen is closed. With the power button on the Dev 1,
turning off the screen is easy.

� Phone call: is the power of making a call. It can be measured by
the average power during the call excluding other basic power.

5.1.2. Process-related category

� GPS working: To obtain the working power of the GPS device,
we created a simple Android application, called GPStest, to
activate the GPS without processing the GPS data.

� CPU working: CPU_busy contains the infinite for-loop and is
used to stress the CPU hardware resource.

In this study, both the CPU and the hardware components that
get activated synchronously with the CPU, such as memory,
contribute to the working power consumption of the CPU. The
idle power consumption of the CPU is defined accordingly. Table 4

Table 4
Power table values.

Category Energy item Power weight
coefficient

Default
(mA)

Reconstructed
(mA)

System-
basic

Wi-Fi basic Pb
wif i

0.1 22.68

Radio basic Pb
radio

0.1 3.27

Screen
backlight

Pbt
max

0.1 134.87

Screen basic Pb
screen

0.1 38.48

CPU idle Pb
cpu

0.1 1.45

Phone call Pw
radio 1 204.94

GPRS.basic Pw
gprs 0.1 103.32

Process-
related

CPU working Pw
cpu 0.2 84.08

GPS working Pw
gps 1 104.99

Networking Enetbyte
0.1 N/A

Fig. 7. Power consumption behaviors of the Wi-Fi interface: (a) power consumption while receiving a packet in PS and (b) power consumption in PS and AM.

Fig. 6. Example run of two-phase calibration: (a) evaluation results under three
scenarios and (b) approximate energy consumption of T.
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shows power tables with categories, energy items, power weight
coefficients, default value, and reconstructed value. The default
and reconstructed values are respectively the raw data from the
Android source code and rebuilt using the proposed approach.
Most energy consuming hardware is the radio component operat-
ing during phone calls. Moreover, the screen backlight with the
maximal brightness level and working GPS consume more power
than does the busy CPU. In new Android versions, the default
values are left to vendors for their own definitions.

5.2. Wi-Fi formulas creation on Dev 1

From the evaluation results, the estimation errors of test
scenarios with Wi-Fi networking always exceed the predefined
error ratio threshold, 10%. As a result, the original Wi-Fi estimation
formula is recognized as the faulty formula. Accordingly, our
method will create a new estimation formula for the Wi-Fi module
on Dev 1.

From observations on Dev 1, the energy consumed by the Wi-Fi
module correlates closely with operation modes and packet
transmission time, Ttx. Ttx stands for receiving time and sending
time. In Fig. 7, the power consumption is captured from the power
line of battery by DAQ when the Dev 1 receives packets. For every
second, DAQ records 2000 power samples and its resolution of
current probe is 71 mA. The length of power pulse, in Fig. 7(a),
closely depends on the time receiving a packet. Figure 7(b) depicts
dramatic difference in power consumption between power saving
mode (PS) and active mode (AM) at the same data rate. The

obviously difference is that, in AM, the Wi-Fi module consumes an
active energy from active power (Pac) inherently.

In the experiment, Ttx is adopted as the energy predictor for the
Wi-Fi module. The general regression equation of the module is
formulated as

Ê
wif t ¼ c0þc1 � Ttx:

To produce different lengths of packet transmission time, user
datagram protocol (UDP) packets in different sizes are transmitted
with several data rates; for example, 54 Mbps and 11Mbps. The linear
regression analysis is launched for sending and receiving packets in
the two operation modes, individually. The results are shown in Fig. 8
and summarized in Table 5. In Fig. 8, the high correlation coefficient (r)
of each line proves the liner property between transmission time and
energy consumption of a Wi-Fi module.

In AM, because the receiving power nearly equals Pac, receiving
the packet consumes no additional energy on the Wi-Fi module,
excluding active energy. Therefore, the receiving energy of AM is
omitted from the regression analysis and estimated simply with
Wi-Fi active energy Ê

wif i
ac , shown in Table 5. The value of Pac is

retrieved as 165.81 mA by measuring the power difference
between the two modes.

In Fig. 8(a), because the sending slope is two times steeper than
the receiving one, it implies that sending one byte consumes more
energy than receiving two bytes in PS. Moreover, additional energy
for listening to the beacons and sending the polling control packet
(Ebert et al., 2002) (PS-Poll) causes the constant coefficient of the
receiving line to be larger than that of the sending line. Moreover,
from sending lines in Fig. 8(a) and (b), we can observe that sending
packets consumes less energy in AM than in PS.

With per-process traffic logging, the estimated transmission

energy (for example, Ê
wif i
ps_send) easily relates to the corresponding

processes when transmitting the packets. Because the policy of
switching into AM is related to packet count, the estimated active

energy Ê
wif i
ac is shared propositionally according to the sending and

receiving packet counts of processes.

5.3. Wi-Fi power daemon implementation on Dev 1

Regarding logging networking traffic, the socket layer of the
Android Linux kernel is modified slightly. In the layer, a list of
recorders counting traffic volume for each process is created. Note
that some networking traffic does not consume the resources of
the Wi-Fi module because of inter process communication (IPC).
Therefore, to exclude the IPC traffic, from statistics, the packets
with the local address such as 127.0.0.1 are filtered by a black
list. The translation between the traffic volume and desired

Fig. 8. Linear regression of Wi-Fi module in operation modes: (a) regression of
receiving and sending in PS and (b) regression of sending packet in AM.

Table 5
Linear regression results summarization.

Mode Energy estimation function (uA h)

PS recv Ê
wif i
ps_recv ¼ 70:22337� Trecvþ0:155057

send Ê
wif i
ps_send ¼ 169:25099� Tsend�0:021450

AM recv Ê
wif i
ac ¼ Pac � Tac

send Ê
wif i
ac ¼ Pac � Tac

Ê
wif i
ac_send ¼ 54:761373� Tsendþ0:058923

Ê
wif i
ps_send=Ê

wif i
ps_recv: the sending/receiving energy estimation in PS.

Trecv=Tsend: the sending/receiving time of a packet.
Ê
wif i
ac : the estimated energy consumed by Pac .

Tac: the time duration while Wi-Fi module works in AM.
Ê
wif i
ac_semd: the sending energy estimation in AM.
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transmission time is achieved through the data rate information
retrieved directly from the Wi-Fi driver.

In the Wi-Fi driver, the policy of switching the operation modes
involves the count of the packets transmitting through the Wi-Fi
module. If the packet count value is greater than 15 per second,
the Wi-Fi module automatically switches into AM. By contrast,
if the packet count value is smaller than eight per second, the
module enters PS from AM. Therefore, to predict the operation
modes for the Wi-Fi module, the packet count information should
be captured from the data link layer.

In the implementation, as shown in Fig. 9, the proc (Mouw) files
are created for shipping the information from kernel space to user
space. Furthermore, to reduce the performance overhead of the
Java virtual machine, the Wi-Fi power daemon is created in C
language. The Wi-Fi power daemon calculates the energy con-
sumption of the Wi-Fi module for each process and logs the results
into a file once per second. To integrate the logs of Battery Use and
the Wi-Fi power daemon, a log parser is created to combine these
two logs with the timestamps labeled on each energy record.

5.4. GPRS power formulas

Because Battery Use does not include the power model of the
GPRS interface, we built a new formula for it. We considered the
power consumption of the downloading and uploading activities
using the GPRS interface. The power formulas for the GPRS
inherits the form of the Wi-Fi power formulas, as follows:

Ê
gprs
ac ¼ c0þc1 � Tac;

where ac is either dw (downloading) or up (uploading), Tac is an
time duration of the downloading or uploading activity, c0 is the
basic energy (in uA h), and c1 is the power weight coefficient.
In our experiment, we downloaded a 100 kB file and uploaded
the same file via GPRS using the AndFTP client, and measured the
power consumption of the GPRS interface. Figure 10(a) and
(b) shows the power consumption behaviors of uploading
and downloading the file. Notice that the GPRS active periods in
Fig. 10(a) and (b) are [10.8 s, 41.5 s] and [20.9 s, 68.6 s], respec-
tively. We used the same method described in Section 5.2 to
compute the power weight coefficients, and the power formulas
are shown in Table 6.

6. Evaluation studies

In this section, an evaluation framework is designed to verify
the correctness of the energy estimation results. The energy
consumption of five scenarios, described in Sections 6.2 and 6.3,
are profiled at the process level for case studies. We must

App

Socket

TCP/UDP

IP

Data Link

Wi-Fi Driver

Wi-Fi Power 
Daemon

proc
Traffic Info

Pkt Count 
Info

Data Rate 
Info

Log Info

Network Traffic

Kernel Space

User Space

Log File

Fig. 9. Wi-Fi power daemon implementation.

Fig. 10. Power consumption behaviors of uploading/downloading a 100 kB file via GPRS: (a) GPRS power consumption behavior of downloading an 100 kB file and
(b) GPRS power consumption behavior of uploading a 100 kB file.

Table 6
GPRS formulas.

Activity Energy estimation function (uA h)

Downloading file Ê
gprs
dw ¼ 64:63� Tdwþ12:03

Uploading file Ê
gprs
up ¼ 105:94� Tupþ0:96
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emphasize that the data used by the calibration process shown in
prior sections are different from that in the following experiments.

6.1. Evaluation framework

In the experiments shown in Fig. 11, Dev 1 is configured at the
minimal brightness level and the SIM card is removed. Further-
more, to experiment with a clean networking environment, the
Wi-Fi access point (AP) and Web/FTP server are within a local
network. Dev 1 is configured to transmit traffic data through the
Wi-Fi module only. We evaluated the proposed method described
in Sections 6.1–6.3, for system-level and process-level energy
estimation. We choose the full-system modeling solution pre-
sented by Economou et al. (2006) to measure the system-level
energy consumption and a DAQ (NI) to measure the process-level
energy consumption. The estimated results are compared against
the measured results. Notice that the full-system modeling solu-
tion cannot provide the energy consumption information of
processes and hardware components, while DAQ is used to
measure the hardware component energy consumption with one
single hardware component.

We implemented the full-system solution, which performs
linear regression method using the total power. As a result, the
total system energy can be estimated by

Pdev1 ¼ 0:067þð8:67� 10�4Þ � ucpuþð1:28� 10�7Þ � umem

þð2:15� 10�5Þ � udiskþð3:56� 10�4Þ � unet

where ucpu is CPU utilization in percentage, umem is the sum of data
and instruction cache miss count in kilo-time per second, udisk is
the number of read and write sectors, and unet is the sum of send
and receive traffic volume in kilo-bytes per second. In contrast,
DAQ measures the energy consumption from the power line
between the battery and Dev 1, as shown in Fig. 11.

The evaluation details are as follows: On the host machine, the
energy sampler logs two thousands energy records from the DAQ
as the energy measurement results every second. In contrast, the

energy estimation results of the two-phase calibration approach
are produced by the energy estimation daemons, which are BU
and the Wi-Fi power daemon running on Dev 1. During the
profiling time, the energy sampler and energy estimation daemons
generate the measurement and estimation logs concurrently.
During the analysis time, the log parser processes the energy
estimation logs extracted from Dev 1 for the energy estimation
results. The accuracy of the energy estimation result is evaluated
by the error ratio (err), which is defined as

err¼ jest�meaj=mea� 100%;

where est is the energy estimation result, and mea is the energy
measurement result. The smaller err is, the more accurate est will be.

We conducted the full-system modeling solution and our two-
phase calibration approach using the five scenarios. Table 7
summarizes the average error ratios and the standard deviations
of the total system energy. In the five scenarios, the estimation
accuracy of two-phase results is guaranteed and all error ratios are
below 10%, although different estimation errors of hardware
energy estimation formulas exist. Conversely, the full-system
modeling solution produced accurate estimations only in CPU
intensive and FTP download scenarios. This may be because the
four predictor variables of the full-system estimation formula
cannot accurately model the energy consumption behaviors of
the embedded devices that have plenty of hardware components.

6.2. Evaluation scenarios without networking

6.2.1. System idle scenario
In this scenario, Dev 1 is put idle and measured for four

minutes. Figure 12(a) shows that the energy estimation accuracy
of the two-phase result is high and the average error ratio is about
4.79%. Figure 12(b) depicts the energy decomposition in process
level in the scenario. From this figure, 97% of the total energy
consumption of Dev 1 contributed by the LCD display. Notice that
the display energy includes the energy of screen backlight and LCD
panel. The other 3% are shared among the idle process, the
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Fig. 11. Power consumption evaluation framework.

Table 7
Error ratio comparison between full-system and two-phase under five scenarios.

Without networking With networking

System idle CPU intensive Web browsing FTP download FTP upload

Full-system Mean (%) 24.60 9.04 25.80 6.52 34.78
Standard deviation 2.31 2.28 1.78 1.49 0.46

Two-phase Mean (%) 4.79 7.39 9.16 2.82 4.74
Standard deviation 2.47 1.10 1.84 1.07 0.72
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profiling tool, and Battery Use (BU). Figure 12(b) indicates that the
overhead of BU is extremely small, only 2%.

6.2.2. CPU intensive scenario
BenchmarkPi calculates the approximate value of Pi so it is a

CPU intensive application. In this experiment, the BenchmarkPi is
once in the first minute and twice in the second minute. The error
ratio of the proposed energy estimation is approximately 7.39%.
The process BencharmkPi uses considerable energy (41%) of Dev
1 and the display uses 54% of energy consumption, as shown in
Fig. 13(a) and (b).

6.3. Evaluation scenarios with networking

6.3.1. Web browsing scenario
We refer to the Wi-Fi power daemon as WPD in this section.

For every forty seconds, the Android browser connects to a web
server and retrieve web pages.

The experiment results within a five-minute period are shown
in Fig. 14. In Fig. 14(a), the estimation results closely match the
measured results, and the average error ratio is 9.16%. In Fig. 14(b),
the energy profiling tools consume negligible energy as BU and

Fig. 12. Energy consumption under system idle scenario: (a) estimation evaluation and (b) energy profiling.

Fig. 13. Energy consumption under CPU intensity scenario: (a) estimation evaluation and (b) energy profiling.

Fig. 14. Energy consumption under web browsing scenario: (a) estimation evaluation in web browsing and (b) energy profiling in web browsing.

Fig. 15. CPU and Wi-Fi module energy consumption of browser process and
AndFTP process.
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WPD are energy-efficient. The energy consumed by the browser
process is almost identical to that of the display energy. Further-
more, keeping the Wi-Fi module active uses 17% of the total
energy. Because the test web pages contain JavaScript, which
heavily stresses the CPU, the browser process consumes more
energy on CPU (58%) than on the Wi-Fi module (42%) in the
scenarios, as shown in Fig. 15.

6.3.2. File transmission scenarios
In this experiment, a 90 MB file is transmitted between Dev

1 and a file server using an FTP client, AndFTP. The FTP application
requires more energy for uploading a file than downloading it,
because sending packets consumes more power than receiving
packets. This can be observed from Fig. 16(a) and (c), which clearly
shows that the accuracy of the two-phase results is high, and the
average error ratios are below 5%. From Fig. 16(b) and (d), the
AndFTP process consumes 67% and 70% energy of Dev 1 during
downloading and uploading, respectively. Different from the
browser process in the prior experiment,

The AndFTP process consumes more energy on Wi-Fi network-
ing than on CPU, as shown in Fig. 15.

7. Conclusion and future work

This work proposes a two-phase approach to calibrate the
faulty energy estimation results at the process level for off-the-
shelf devices. The first phase reconstructs the power table for a
DUT and the second phase further replaces the faulty energy
estimation formulas with correct ones based on linear regression
analysis.

Accurate energy consumption estimation with a set of co-
existing hardware components is difficult because there are many
predictor variables in the estimation formulas for the co-existing
hardware components. We propose testing one hardware compo-
nent at a time, and systematically rebuild the estimation formula
for each component. We performed five case studies, and the

proposed two-phase method produced more accurate energy
consumption estimations than a full-system modeling approach.
Furthermore, the average error ratios in energy consumption
estimation of the proposed approach are proven below 10%, and
in the file transmission scenarios the average error ratios are less
than 5%. The proposed approach only imposes limited overheads
on the DUT. For example, the Wi-Fi power daemon and Battery
Use are proven contributing less than 3% of the total energy
consumption.

The current study does not include the energy profiling of
video-based applications because of the absence of hardware
video decoders. We shall further extend this work to hardware
video decoders and video-based applications like YouTube. The
problem for discovering multiple faulty formulas should also be
addressed in future work. Recent study identified that the power
consumption of AMOLED screens is a quadratic function to the LCD
brightness (Mittal and Kansal, 2012; Xu et al., 2013). However, we
believe that the core idea of this work is not subject to any specific
power model and regression method. For example, the proposed
two-phase calibration process can include both the linear model
and the quadratic model and pick up the model of the minimal
error during the calibration process.
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