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Abstract A new method, called the fixed full-matrix
method (FFM), is used to compute height changes at
crossovers of satellite altimeter ground tracks. Using the
ENVISAT data in East Antarctica, FFM results in crossovers
of altimeter heights that are 1.9 and 79 times more than those
from the fixed half method (FHM) and the one-row method
(ORM). The mean standard error of height changes is about
14 cm from ORM, which is reduced to 7 cm by FHM and to
3 cm by FFM. Unlike FHM, FFM leads to uniform errors in
the first-half and second-half height-change time series. FFM
has the advantage in improving the accuracy of the change
of height and backscattered power over ORM and FHM.
Assisted by the ICESat-derived height changes, we deter-
mine the optimal threshold correlation coefficient (TCC) for
a best correction for the backscatter effect on ENVISAT
height changes. The TCC value of 0.92 yields an optimal
result for FFM. With this value, FFM yields ENVISAT-
derived height change rates in East Antarctica mostly falling
between −3 and 3 cm/year, and matching the ICESat result
to 0.94 cm/year. The ENVISAT result will provide a con-
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straint on the current mass balance result along the Chinese
expedition route CHINARE.
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1 Introduction

With an area of 15 million km2 and an average ice thickness of
2 km, the Antarctic ice sheet holds about 90 % of the Earth’s
ice. Melting of the ice here will contribute significantly to
sea level rise (Church et al. 2001). In the extreme case, a
complete meltdown of the Antarctic ice sheet will increase
sea level by 60 m. Several phenomena are associated with
ice melting over the Antarctic ice sheet. One such phenom-
enon is ice height changes, but a large-scale measurement
of such changes here will be difficult without using remote
sensing satellites. A satellite altimeter can provide with direct
measurements of height changes over ice sheets, as demon-
strated by, among others, Zwally et al. (1989), Zwally and
Brenner (2001), Davis and Ferguson (2004) and Wingham
et al. (2006).

A satellite altimeter repeats its ground tracks at a des-
ignated time interval called repeat period. For example,
the repeat periods of the Geosat/ERM, ENVISAT and
TOPEX/Poseidon altimeters are 17, 35 and 10 days, respec-
tively. A complete list of the repeat periods for all altime-
ter missions can be found at the AVISO web site (http://
www.aviso.oceanobs.com/en/missions.html), and in Fu and
Cazenave (2001) for earlier altimeter missions. Given repeat
measurements over the same spot, a height-change time
series can be constructed. A typical component of a height-
change time series over an ice sheet is the seasonal variation
(Davis and Segura 2001), which is largely caused by seasonal
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snow accumulation and melting. A sufficiently long record
(say 10 years) of ice sheet height change may reveal signals
about climate change and be used to infer the long-term con-
tribution of ice sheet melting to sea level rise. Assisted by
gravity observations from missions such as GRACE (Tap-
ley et al. 2004), height changes from satellite altimeters can
reveal the mass balance over the Antarctic (Wahr et al. 2000;
Velicogna and Wahr 2006).

At a given spot or a “bin” (a bin is defined by a rectangular
box bordered by two lines of latitude and longitude), several
methods can be used to derive height changes from repeat
altimeter measurements. Two popular methods are currently
in use: one uses altimeter measurements at crossover points
(the crossover method) and the other along-track repeat mea-
surements (the along-track method). The crossover method
has the advantages over the along-track method in reducing
the geographic correlated error and the antenna polarization
error (Rémy and Parouty 2009). Earlier crossover methods,
such as that used by Yi et al. (1997), determined ice sheet
height changes with respect to a single reference month,
resulting in only a small amount of altimeter-derived obser-
vations. The method of Yi et al. (1997) is called one-row
method (ORM) and was improved by Zwally and Brenner
(2001), Ferguson et al. (2004) and Li and Davis (2006) later.
In the fixed half-matrix method (FHM), Zwally and Bren-
ner (2001) and Ferguson et al. (2004) used a globally fixed
reference month when generating improved height changes
to form an upper triangular matrix. Notice that the main dif-
ference between Zwally and Brenner (2001) and Ferguson
et al. (2004) lies in the different ways of using weights for
height changes from altimeters. In the dynamic upper trian-
gular matrix method (DHM), Li and Davis (2006) dynami-
cally selected the reference month to maximize the crossover
number of altimeter-derived height changes for any given bin.

Because of the importance of Antarctica ice sheet height
changes and the motivation to optimize the altimeter deter-
mination of such changes, the objective of this paper is to
demonstrate an improved method for constructing height-
change time series and to demonstrate the backscatter effect
on the altimeter-derived height changes. We will use the
crossover method to construct height changes in this paper.
Like the method of Ferguson et al. (2004), our method will
use a globally fixed reference month. However, for improve-
ment we will introduce a lower triangular matrix to form a full
matrix that dramatically increases the number of crossover
observations and reduces errors in height changes. As such,
our method is called the fixed full-matrix method (FFM).
With FFM and other existing methods, we will use ENVISAT
altimeter data to determine height-change time series in a
region over the Antarctic ice sheet. This region is in East
Antarctica and is bordered by longitudes from 60◦ to 80◦E,
and latitudes from 65◦ to 81.6◦S. Changes in the ice sheet
heights here constitute an important part of mass balance

Fig. 1 Topography of East Antarctica with major surface features and
the CHINARE expedition route from Zhongshan Station (solid circle)
to Dome Argus (diamond) and Kunlun Station (star)

study in the Antarctica. In addition, this study area cov-
ers the expedition route of the Chinese National Antarctic
Research Expedition (CHINARE) in the 1996–1997 aus-
tral summers. This route started from Zhongshan Station,
via Dome Argus (called Dome A for short) and finished at
Kunlun Station (Fig. 1) close to the South Pole. Since the
1996–1997 expedition, campaign-mode GPS observations
at a 1-year interval have been collected along this route and
were used to estimate horizontal velocities of ice sheet and
mass balances along this route (Zhang et al. 2008; Ding et
al. 2011). However, there was no estimate of height change
from such GPS data. The height changes from the ENVISAT
altimeter data in this paper can be used to estimate height
changes along this route and to assess the pattern of ice
sheet variation here. The ENVISAT result will provide crit-
ical information for planning future GPS campaigns in the
region.
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2 The fixed full-matrix method for determining ice sheet
height change from altimeter

2.1 The theory of the fixed full-matrix method

Here, we present the theory of FFM for determining a time
series of height changes at a given bin (a bin is defined in
Sect. 1). The notations below follow those used in Zwally
and Brenner (2001), Davis and Segura (2001), Ferguson et
al. (2004) and Li and Davis (2006). An altimeter-observed
height difference, �H , at the crossover of two crossing
ground tracks can be expressed as (here we show the case
of an ascending track and a descending track)

�H =
{

�HR + BA − BD + �HS tA > tD
�HR + BD − BA + �HS tD > tA

(1)

where tA and tD are the times associated with ascending track
and descending track, �HR the true height change, BA and
BD the time-independent biases resulting from directional
dependencies in the orbit error, �HS is the spurious ice
sheet surface height change, mainly induced by backscat-
tered power change.

Because the heights from the ascending and descending
tracks are measured at the same location, the slope effects
on both heights are common and will be largely canceled
upon differencing, especially when the difference between
the altitudes of the ascending and descending orbits is small.
It is clear �H in Eq. (1) is the height difference in the time
interval of |tA−tD|. For a given month j , the height difference
with respect to the height in a reference month for i( j ≥ i)
can be computed. Such a height difference can be formed
from an ascending and a descending track (the AD case) or
a descending and an ascending track (the DA case). For a
given bin, there can be many crossovers. The average height
difference at a bin is computed by combining the mean of
all AD height differences, �HAD, and the mean of all DA
height differences, �HDA (Zwally et al. 1989; Ferguson et
al. 2004):

�Hi, j = ωAD · �HAD + (1 − ωAD) · �HDA (2)

where ωAD = nAD/(nAD + nDA), with nAD and nDA being
respectively the numbers of crossovers formed by AD and
DA tracks in 1 month, and the total number of crossovers is
ni, j = nAD +nDA. The standard error of �Hi, j is computed
as

σi, j =
√

ω2
AD · σ 2

AD + (1 − ωAD)2 · σ 2
DA (3)

where σAD and σDA are the standard errors of �HAD and
�HDA, respectively. If nAD and nDA are sufficiently large,
BA and BD can be reduced or even eliminated (Ferguson et
al. 2004). Ignoring BA and BD in Eq. (1) and considering the

months (i, j) leads to

�Hi, j = �H R(i, j) + �H S(i, j)(t) (4)

where �H R(i, j) and �H S(i, j)(t) are the mean height change
and the error due to backscatter, respectively. We will name
the term �H S(i, j)(t) backscatter correction below (Zwally
and Brenner 2001).

For a given bin with N months of altimeter observa-
tions, we can form an upper triangular matrix of mean height
changes as follows

�H =

⎡
⎢⎢⎢⎢⎣

�H1,1 �H1,2 �H1,3 · · · �H1,N

− �H2,2 �H2,3 · · · �H2.N

− − · · · · · · · · ·
− − − · · · �H (N−1),N

− − − − �H N ,N

⎤
⎥⎥⎥⎥⎦ (5)

where the elements with the sign “–” are ignored by defin-
ition. A matrix element �Hi, j represents the mean height
change between month i and month j , computed by Eq. (2).

In the ORM method, only the height changes in the first
row, i.e., �H1, j , j = 2, . . . , N , are used to form a time series
for height-change rate (e.g., Yi et al. 1997). However, Zwally
and Brenner (2001, Eqs. (17)–(18)) and Ferguson et al. (2004,
Eq. (5)) show that, in addition to the elements in the first row,
other elements of �H can be used to construct an improved
time series of height change. Use of modified elements in
the upper triangular part of �H leads to the FHM method. In
fact, there are two different computational algorithms in the
FHM method. In the first algorithm, the following recursive
formula is used to form a time series of height change, Hj ,
using the elements in Eq. (5)

Hj = 1

j − 1

⎡
⎣�H1, j +

j−1∑
i=2

(Hi + �Hi, j )

⎤
⎦, j =3, . . . , N

(6)

with the starting values H1 = �H1,1 = 0 and H2 = �H1,2.
Note that Eq. (6) here is a compact representation of the two
recursive equations of Zwally and Brenner (2001, Eqs. (17)–
(18)). The notation Hj in Eq. (6) is the height change of
month j with respect to month one, which is the mean value
of the direct height change �H1, j and the indirect (inferred)
height changes �Hi, j shifted by Hi (each shift makes an
indirect height change referring to month one).

In the second algorithm, the indirect height changes�Hi, j

are first shifted by the elements in the first row �H1,i as

�H ′
i, j = �H1,i + �Hi, j , for j > i > 1 (7)

where �H ′
i, j is now the indirect height change of month

j with respect to month one, as contributed by the shifted
�Hi, j . The second algorithm was used by Ferguson et al.
(2004, Eq. (5)). Like Eq. (6), the mean height change of
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month j with respect to month one can be computed from
the direct and indirect height changes as

Hj = 1

j − 1

⎛
⎝�H1, j +

j−1∑
i=2

�H ′
i, j

⎞
⎠ , j = 3, . . . , N (8)

In Eq. (6), the weights for �H1, j and �H ′
i, j are identi-

cally 1/( j − 1). In both the first and second algorithms, the
number of height changes used to form Hj increases with
j , so the standard error of Hj will decrease with j (because
more measurements are used for a larger j). Furthermore, if
we replace 1/( j − 1) by a weight based on the number of
crossovers, Eq. (8) becomes

Hj = w1, j�H1, j +
j−1∑
i=2

wi, j�H ′
i, j , j = 3, . . . , N (9)

where wi, j (i = 1, . . ., j −1) is the ratio between the number
of crossovers for �Hi, j and the total number of crossovers
for all the contributing height changes in Eq. (9).

In the two algorithms for FHM, the authors (e.g., Zwally
and Brenner 2001; Ferguson et al. 2004) have used heights
at crossovers to form forward height changes. As seen in
Eq. (5), one height can be used to form multiple height
changes, which are not totally independent. A height change
in Eq. (5) is like the phase difference at a pixel of an inter-
ferogram formed by two SAR images, and one SAR image
can be used to form multiple interferograms, which are not
fully independent. For example, if there are 10 SAR images,
up to 45 possible pairs can be formed and used, but only 9
pairs are independent [these are like the elements of the first
row in the matrix of Eq. (5)].

Based on the second algorithm of FHM, we extend the
use of height changes in Eq. (5) as follows. The key is to fill
the undefined height changes [with shifts of height changes
as in Eq. (7)] in the lower triangular part of �H in Eq. (5).
Following the principle in Eq. (7), we can form backward
shifted height changes as

�H ′
i, j = �H1,i − �H j,i , for i > j ≥ 2 (10)

where �H ′
i, j is now the indirect (inferred) height change

of month j with respect to month one. One must be cau-
tious about the different elements that are used to form the
shifted height changes (with respect to month one) in Eqs. (7)
and (10) for the upper and lower triangular parts. With �H ′

i, j

from Eqs. (7) and (10), we can form a full matrix of shifted
height changes relative to month one as

�H′ = (�H ′
i, j ) (11)

where the symbol in the brackets on the right-hand side rep-
resents the matrix elements, as in a standard matrix treatise.
Note that the diagonal elements in �H′ are undefined, except

for the first one, e.g., �H ′
1,1 = 0. A row vector of �H′ con-

tains the height differences from month 2 to N (with respect
to month one; except the diagonal elements), and there are
(N − 1) such row vectors that can be used to compute the
mean height change for a particular month. Because FHM
[see Eq. (8)] can use the height changes in the upper trian-
gular matrix of �H′, naturally the method can also use the
height changes in the lower triangular matrix of �H′. That
is, the logic of using the lower triangular elements of the
full matrix [Eq. (11)] follows exactly the same logic used for
FHM [however, different height shifts are used for the upper
and lower elements, see Eqs. (7) and (10)]. In summary, FFM
uses the concept of FHM, but extends to use also the lower
triangular elements to produce a time series of uniform pre-
cision (see Fig. 4 below for uniform precision). When using
the lower triangular part, the mean height change of month
j with respect to month one is computed as

Hj = 1

N − j

N∑
i= j+1

�H′
i, j , j = 2, . . . , N − 1 (12)

which is similar to Eq. (8), but based on the shifted height
changes in the lower triangular part of �H′. By definition,
H1 = 0 (height change of the first month is zero) and HN is
undefined. Therefore, one can choose to use shifted height
changes from either the upper triangular or the lower tri-
angular part of �H′ for FHM. However, the resulting height
precisions will have different patterns: as j goes from 2 to N ,
use of the upper triangular part of �H′ will lead to progres-
sively improved height precisions [ j increasing in Eq. (8)],
while use of the lower triangular part will lead to progres-
sively degraded height precisions [(N − j) decreasing in
Eq. (12)].

Because of the non-uniform height precision nature of
FHM, an improved strategy will be one that uses all height
changes in �H′ to achieve a uniform height precision. In
light of this, we propose the fixed full-matrix method (FFM)
that uses all elements of �H′ (except the diagonal elements).
Here, “fixed” means “tied” to the first month, i.e., all height
changes are relative to month one. The weighted average
of height changes from FHM and lower triangular finally
formed the height change of FFM. By FFM, the mean height
change of month j relative to month one is computed from
the (N − 1) height changes as

Hj = 1

N − 1

N∑
i=1,i �= j

�H′
i, j j = 2, . . . , N (13)

Furthermore, one can replace the weight 1/(N−1) in Eq. (13)
by a weight based on the number of crossovers. This leads
to the final formula for computing a time series of height
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change by FFM in this paper:

H j =
N∑

i=1,i �= j

ωi, j · �H′
i, j , j = 2, . . . , N (14)

By error propagation, the standard error of H j is

σ̄ j =
√√√√ N∑

i=1,i �= j

(ωi, j · σ ′
i, j )

2, j = 2, . . . , N (15)

where ωi, j = n′
i, j/n j with n′

i, j being the number of

crossovers used to compute �H ′
i, j , n j = ∑N

i=1,i �= j n′
i, j ,

and

σ ′
i, j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ 2
1, j , for i = 1√
σ 2

1,i + σ 2
i, j , for j > i > 1√

σ 2
1,i + σ 2

j,i , for i > j ≥ 2

(16)

We can expect that, compared to ORM and FHM, FFM
can substantially increase the number of crossovers used to
form a mean height change. The above theories also predict
that the standard errors of mean height changes from FHM
will decrease or increase with increasing month, depending
on the use of the upper or the lower parts of �H′. How-
ever, for FFM the standard errors will be uniform through all
months. With more crossovers used in FFM, the number of
gaps in a height-change time series will be likely reduced.
These advantages will be demonstrated in the special case in
Sect. 2.2 and the numerical examples in Sect. 3. Note that,
in the following development, the result from FHM is based
on the computational formula in Eq. (9), which is currently
used in the literature. [Eq. (12) is a new formula for FHM
given in this paper.]

2.2 Comparison of ORM, FHM and FFM

Here we give a simplified, ideal case to show the advantage
of FFM over ORM and FHM. Assume the standard error
σi, j and the number of crossovers ni, j to form the elements
in �H for all bins are identical, that is, ni, j = n, σi, j = σ0

for all i, j . In this case, the standard errors and the numbers
of crossovers are [see Eqs. (7), (10), (16) in this paper and
Eqs. (6)–(7) in Ferguson et al. 2004]:

σ̄1, j = σ0 n1, j = n, for ORM

σ̄i, j =
{

σ0, i = 1√
2σ0, i > 1, j > i

ni, j =
{

n, i = 1
2n, i > 1, j > i,

for FHM

σ̄i, j =
{

σ0, i = 1√
2σ0, i > 1, j �= i

ni, j =
{

n, i = 1
2n, i > 1, j �= i,

for FFM

(17)

with N months, the total numbers of crossovers are n(N −
1), n(N − 1)2 and n(N − 1)(2N − 3) for ORM, FHM and

FFM, respectively. Therefore, the total numbers of crossovers
for FFM and FHM are (2N −3) and (N −1) times of that of
ORM, respectively, and FFM almost doubles FHM ((2N −
3) vs. (N −1)) in the number of crossovers. The numbers of
matrix elements for ORM, FHM and FFM are (N −1), (N −
1)N/2 and (N − 1)2, respectively. Hence, the numbers of
matrix elements for FFM and FHM are (N − 1)and N/2
times of that for ORM, respectively, and FFM doubles FHM
in the number. The standard errors, σ̄ j , and the total numbers
of the height changes, n j , for ORM, FHM and FFM are

σ̄ j = σ0 n j = n, for ORM
σ̄ j = σ0

√
4 j − 7/(2 j − 3) n j = n(2 j − 3), for FHM

σ̄ j = σ0
√

4N − 11/(2N − 3) n j = n(2N − 3), for FFM

(18)

Thus, for ORM and FFM, σ j and n j in H j do not depend
on j . Moreover, σ j of FFM is

√
4N − 7/(2N − 3) times of

that of ORM, and n j of FFM is (2N −3) times that of ORM.
Note that, for FHM, σ j and n j depend on j .

Figure 2 illustrates the differences in σ̄ j and n j among
ORM, FHM and FFM, using σ0 = 1 cm, N = 60, n = 9.
As predicted by the theory (see also Fig. 2a), n j does not
vary with j for both FFM and ORM. For FHM, n j increases
with j and falls between the numbers for ORM and FFM.
For FHM, the average n j in the first-half (FH) height-change
time series ( j = 2, . . . , 30) is 261, which increases to 792
in the second-half (SH) ( j = 31, . . . , 60). For FHM, the

Fig. 2 Numbers of crossovers and standard errors for ORM, FHM and
FFM using σ0 = 1 cm, N = 60, n = 9
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standard error decreases with increasing j , and this is also
demonstrated in Fig. 3 of Ferguson et al. (2004). The non-
uniform standard errors of FHM are shown in Fig. 2b: the
means in the FH and SH time series are 0.32 and 0.15 cm,
respectively. In contrast, the mean standard errors σ̄ j for all j
are identical for FFM and ORM, and they are 0.13 and 1.0 cm,
respectively. For FFM, n j is much larger than that for ORM,
and the former is 117 times of the latter (1,053 vs. 9). As
a result, FFM leads to the least standard error (Fig. 2b). In
summary, FFM achieves a uniform and the optimal precision
throughout the entire height-change time series, which is not
accomplished by the methods of ORM and FHM.

3 Numerical assessment of FFM using ENVISAT
altimeter data

3.1 The ENVISAT altimeter data

For the numerical assessment and the case study in East
Antarctica, we used altimeter data from the ENVISAT satel-
lite mission. ENVISAT was launched in 2002 and was
equipped with a satellite radar altimeter (RA2), a radiome-
ter and a DORIS antenna. Ice sheet surface height mea-
surements from the latest V2.1 Sensor Geophysical Data
Record (SGDR) of ENVISAT altimeter were analyzed over
the period from October 2002 to September 2007 in this
paper. Compared to the data in the earlier versions, the data
in V2.1 are corrected for the drift in the Ultra Stable Oscillator
Clock (USO). Because the effect of terrain slope will be elim-
inated when forming the height difference at a crossover, we
used ENIVSAT data without the slope correction. A consis-
tent set of environmental, instrument corrections was applied
to the ENVISAT altimeter data. However, the ocean tide
corrections were not applied because our study area is on
land. The surface heights in SGDR were derived from the
ENVISAT altimeter range measurements, which were cor-
rected by the waveform effect using the ICE-2 algorithm of
waveform retracking (Legresy et al. 2005). In this paper, we
derived height changes from ENVISAT at 1-month interval
(they are called monthly height changes below). As an exam-
ple, Fig. 3 shows the ENVISAT data distribution in July 2003.

3.2 Assessment of height change determination by FFM

In this section, the numerical assessment focuses on the
five issues: (1) the number of crossovers, (2) the elements
of matrices containing height changes, (3) the number of
months in H j , j = 2, . . . , N , (4) the mean value of σ̄ j ’s of
H j , and (5) the mean value of σ̄ j ’s of H j in the FH and SH
of the monthly height-change time series from ENVISAT.
For the assessment, we determined the height changes for
all 2◦ × 1◦ bins in the study area (Fig. 1) and discarded the

Fig. 3 The distribution of ENVISAT ground tracks in July 2003 in the
study area

bins satisfying any of the following three criteria (Li and
Davis 2006): (1) a bin with less than 5,000 crossovers, (2)
a bin resulting in less than 20 % of the maximum number
of elements (i.e., about 0.2 × (N − 1)2) in �H′, and (3)
a bin containing less than 20 % of the data months (i.e.,
0.2 × (N − 1)).

As an example, Fig. 4 shows the monthly height changes
from three methods over the 2◦ × 1◦ bin centered at
70.5◦S, 65◦E. The monthly height changes from the lower
triangular matrix of Eq. (12), denoted as FHM_L, are also
shown in Fig. 4c. All height changes from the three meth-
ods show a strong seasonal variation, with a peak value
up to 50 cm. Starting from the 16th month (correspond-
ing to February 2004), there is a positive linear trend (the
dashed lines in Fig. 4) in the height changes from all meth-
ods. There are many data gaps in the ORM-derived height
changes (16 months missing), and the standard errors of such
height changes are relatively large compared to those from
the other two methods (Fig. 4b, d). The result from FHM
contains less data gaps (missing data in the 2nd, 5th and 51st
months) and the overall standard errors are less than those
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Fig. 4 Monthly height changes
from ENVISAT with one-sigma
error bars, starting from October
2002, at the 2◦ × 1◦ bin centered
at 70.5◦S, 65◦E, from ORM,
FHM, FHM_L (based on
Eq. (12)) and FFM. The linear
trends starting from October
2002 (solid lines) and from
February 2004 (dashed lines)
are also plotted

from ORM. As the theory [Eqs. (8) and (12)] predicts, the
standard error of height change from the upper/lower triangu-
lar matrix (FHM_L) decreases/increases with time (Fig. 4b,
c). There is only one data gap (in the 51st month, correspond-
ing to January 2007) from FFM (Fig. 4c). Using the weighted
least-squares method, we estimated the linear height rates
of the four time series (ORM, FHM, FHM_L and FFM) in
Fig. 4a–d, which are 9.61 ± 0.24, 8.92 ± 0.56, 6.22 ± 0.50
and 6.88 ± 0.02 cm/year, respectively. Because of the non-
uniform errors in the heights, the standard errors of the rates
for FHM and FHM_L are relatively large and but are close (0.
56 and 0.50 cm/year). The standard error of the rate for FFM
is the least, showing the effectiveness of FFM in reducing
the error in the estimated rate. This suggests that the addi-

tional observations used in FFM improve the overall qual-
ity in the ENVISAT height changes: FFM produces height
changes with the smallest and the most uniform standard
errors throughout the entire height-change time series. The
FFM result also shows the most pronounced seasonal varia-
tion in height, compared to the results from ORM and FHM.

Table 1 summarizes the results of the height changes from
three methods over the bin at 70.5◦S, 65◦E. The number of
crossovers from FFM is about 23,794, which is 1.9 and 79
times more than the numbers from FHM and ORM, respec-
tively. The number of elements in �H′ from FFM is two
times more than that from FHM. The mean standard error of
height changes is about 48 cm for ORM, reduced to 28 cm by
FHM, and to 17 cm by FFM. For FHM, the overall precision
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of the SH height-change times series is better than that of the
FH height-change time series (18 vs. 39 cm); this result is
due to the different numbers of height changes used to form
the FH and SH time series [Eq. (7) in Ferguson et al. (2004)].
Both ORM and FFM achieve a nearly uniform height error
over the FH and SH height-change time series, but the overall
height error from FFM is much smaller than others because
FFM uses much larger numbers of observations.

A further comparison of the accuracies of height changes
from the three methods was made over the entire study area.
We assessed the results in two sub-areas according to lati-
tude: Area 1 (lower latitude) is over 68◦−75◦S, and Area 2
(higher latitude) is over 75−81.6◦S. The statistics for Areas
1 and 2, and the entire area are summarized in Table 2. In
the three areas, FFM always produces more crossovers than
the other two methods. For example, the mean number of
crossovers from FFM is about 2 and 118 times more than
those from FHM and ORM, respectively. As for the matrix
elements, FFM is about two times more than FHM. Both
the number of crossovers and height precision increase with
absolute latitude. For example, ORM results in a mean lati-

Table 1 Statistics of the results from three methods over the 2◦ × 1◦
bin centered at 70.5◦S, 65◦E

Method A B C D E F

ORM 300 43 43 0.50 0.47 0.48

FHM 12,273 846 56 0.39 0.18 0.28

FFM 23,794 1,694 58 0.20 0.15 0.17

A no. of crossovers, B no. of matrix elements, C no. of monthly values
in the height-change time series, D mean standard error in the first-half
(FH) time series (m), E mean standard error in the second-half (SH)
time series (m), F mean standard error in the time series (m)

tude error of 6 cm in Area 2, which is just about 1/4 that of
Area 1 (24 cm). Although FHM can improve the height pre-
cision over ORM, FHM results in non-uniform accuracies in
the FH and SH height-change time series. For example, in
Area 1, FHM delivers a mean error of 12 cm in the FH time
series, compared to 6 cm in the SH time series. This draw-
back of FHM has been pointed out in the example associated
with Table 1. FFM can both improve the height precision
over FHM and ORM and maintain a uniform precision in
the entire time series. For example, FFM results in mean
errors of 5 and 1 cm in Areas 1 and 2, respectively, in both
halves of the time series. The result from Table 2 indicates
that the height precision increases with absolute latitude for
all methods, and FFM delivers the least height errors.

In summary, the numerical result in this section is con-
sistent with the predicted result in Sect. 2.1. That is, FFM
achieves (1) the maximum number of crossovers, (2) the least
data gaps in the full time series of height change, and (3) uni-
form and least standard errors in the time series.

4 Result of ice sheet height change from ENVISAT
using FFM

4.1 Improved correlation between height change and
backscattered power change by FFM

In Sect. 3.2, we have computed the monthly height-change
time series by FFM for all 2◦ × 1◦ bins in the study area
using the ENVISAT altimeter data. Here, we discuss the
backscatter effect on height changes. The backscatter effect is
a function of the surface and/or sub-surface scattering char-
acteristics of the ice sheet. Different altimeters, retracking

Table 2 Statistics of the results from three methods over three latitude-averaged areas (definitions of D–F are the same as those given in Table 1)

Method A1 B1 C1 D E F

(a) Area 1: latitude 68◦−75◦S, longitude 60◦−80◦E

ORM 868.04 56.91 56.91 0.24 0.24 0.24

FHM 50, 402.93 1, 606.31 58.63 0.12 0.06 0.09

FFM 99, 924.80 3, 214.26 58.82 0.05 0.05 0.05

(b) Area 2: latitude 75◦−81.6◦S, longitude 60◦−80◦E

ORM 3, 793.97 59 59 0.06 0.06 0.06

FHM 227, 186.83 1, 711 59 0.03 0.01 0.02

FFM 451, 103.91 3, 422 59 0.01 0.01 0.01

(c) Entire area: latitude 68◦−81.6◦S, longitude 60◦−80◦E

ORM 2, 506.56 58.08 58.08 0.14 0.14 0.14

FHM 149, 401.91 1, 664.94 58.84 0.07 0.03 0.05

FFM 296, 585.10 3, 330.59 58.92 0.03 0.03 0.03

A1 mean no. of crossovers, B1 mean no. of matrix elements, C1 mean no. of monthly values in the height-change time series
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algorithms, and locations of analysis will result in differ-
ent backscatter effects. Wingham et al. (1998, using ORM)
and Davis and Ferguson (2004, using FHM) showed that
backscattered power change of a radar altimeter can result in
false height change. For most of the 2◦×1◦ bins in Antarctica
(defined in the same manner as in this paper; see Sect. 2.1),
Wingham et al. (1998) found that the correlation coefficients
between changes in height and in backscattered power exceed
0.7. Davis and Ferguson (2004) found only 50 % of the
2◦ × 1◦ bins in their study area having correlation coeffi-
cients over 0.7. In addition, Zwally et al. (2005) and Yi et al.
(2001) discussed several criteria when applying backscatter
corrections to altimeter-derived height changes. Khvoros-
tovsky and Johannessen (2009) showed that the correla-
tion coefficient varies with time. When deriving the cor-
relation coefficients in the paper, the height and backscat-

Table 3 Statistics of the correlation coefficients between height-change
rates (cm/year) and backscattered power change from ORM, FHM and
FFM over 60◦−79◦S, 60◦−74◦E

Method Max Min Mean SD

ORM 0.96 −0.17 0.70 0.26

FHM 0.98 −0.11 0.82 0.20

FFM 0.98 −0.04 0.85 0.17

tered power changes were the weighted means as computed
by Eq. (14).

To stress the importance of improved height precision for
an improved estimation of backscatter effect, we computed
the backscatter–height correlation coefficients using heights
determined by ORM, FHM and FFM over the entire study
area (Fig. 1). For each bin, we then determined the corre-
lation coefficient R̄ between the height and the backscatter
time series. Table 3 shows the statistics of the backscatter–
height correlation coefficients from all bins using the heights
and backscatters from ORM, FHM and FFM. The maxi-
mum correlation coefficient increases from 0.96 (ORM) to
0.98 (FHM and FFM). The mean correlation coefficients for
ORM, FHM and FFM are 0.70, 0.82 and 0.85, respectively,
with the standard deviations of correlation coefficients being
0.26, 0.20 and 0.17, respectively. Hence, FFM increases the
overall correlation between backscatter and height change,
which in turn yields a better estimate of backscatter effect
for height correction.

As an example, Fig. 5 compares the monthly height
changes (from FFM) and backscattered power changes at the
2◦ ×1◦ bins centered at 80.5◦S, 65◦E (the interior bin) and at
70.5◦S, 65◦E (the coastal bin). At the interior bin (Fig. 5a),
the uncorrected height changes (the method of backscat-
ter correction is shown in Sect. 4.2 below) are strongly
correlated with the backscattered power changes, with a

Fig. 5 Monthly backscattered
power changes and height
changes (corrected and
uncorrected) at the 2◦ × 1◦ bins
centered at a 80.5◦S, 65◦E and
b 70.5◦S, 65◦E
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Fig. 6 Spatial distributions of a height–backscatter correlation coeffi-
cients R̄ and b height–backscatter gradient

correlation coefficient of 0.97. At the annual and inter-
annual time scales, the height changes are coherent with
the backscattered power changes. In addition, the maximum
peak-to-trough seasonal height change reaches 1 m, which
is too large for an interior bin in East Antarctica, where the
annual snow accumulation is roughly 12 cm/year (Vaughan
et al. 1999). In contrast, the coastal bin (Fig. 5b) shows a
moderate height–backscatter correlation coefficient of 0.53.
Like the interior bin, the seasonal variation and the height-
change rate at the coastal bin are affected by backscattered
power change, but only to a limited extent.

Figure 6a shows the distribution of the height–backscatter
correlation coefficients for all 2◦ × 1◦ bins (the heights are
from FFM). The correlation coefficients tend to be higher in
the interior of East Antarctica and smaller near the coasts.
The correlation coefficients over the Amery Ice Shelf are
mostly less than 0.4 and are smaller than the coefficients
elsewhere. On the Amery Ice Shelf, the mean and standard
deviation (SD) of the correlation coefficients are 0.30 and
0.13, respectively, while they are about 0.87 and 0.15 else-
where. Excluding the bins near the coasts and the Amery
Ice Shelf, the mean and SD of the correlation coefficients
are 0.91 and 0.06, respectively. The accuracies of height
change from ENVISAT over the Amery Ice Shelf and the
coastal zone may be affected by ocean tide variations, as we
did not apply tidal corrections to the ENIVSAT data used
in this paper. Tidal correction may increase the correlations
between height changes and backscattered power changes
here.

4.2 Backscatter effect on ENVISAT-derived height

The results from Sect. 4.1 show that the raw ENVISAT-
derived height changes are highly correlated with the
backscattered power changes over most part of the study area.
Using the correlation coefficients given in Fig. 6a, the raw
height changes were corrected for the backscatter effect as
follows. The backscatter correction, H S( j), was computed for
each month as the negative product of the height–backscatter
gradient hB and σ0 j (Davis and Ferguson 2004):

H S( j) = −σ0 j · hB (19)

where hB is the height–backscatter gradient and the negative
sign indicates that a positive backscattered power change
can induce a negative height change. In this paper, the
height–backscatter gradient at a bin was computed as the
ratio between height change and backscattered power change
from the height and backscatter time series (see Eq. (1) in
Davis and Ferguson 2004). The distribution of the height–
backscatter gradients in the study area is shown in Fig. 6b.
The color scales and quantities in Fig. 6a and b are different
(correlation coefficient vs. height–backscatter gradient), but
there is a high degree of similarity between the two plots.
For example, in the coast, both the correlation coefficient
and gradient are low, suggesting large height uncertainties
here. At higher latitudes (south of −75◦), both two quantities
are simultaneously larger and this is the result of (1) more
crossovers in the interior of Antarctica, and (2) improved
height precision by FFM. In general, height–backscatter gra-
dient increases with height–backscatter correlation coeffi-
cient. The height–backscatter gradients over the Amery Ice
Shelf and the coasts are less than 0.15 m/dB and are smaller
than the values elsewhere. The mean and SD values of the
height–backscatter gradients over the Amery Ice Shelf and
coasts are 0.14 and 0.09 m/dB, respectively, compared to
0.30 and 0.10 m/dB elsewhere. This result is consistent with
that of Davis and Ferguson (2004).

Again, we used the two sample bins in Fig. 5 to exam-
ine the backscatter effect on height change. For each of the
two bins, we computed the amplitude of the seasonal varia-
tion and the height-change rate with and without backscatter
correction. As stated before, at the interior bin (Fig. 5a), the
raw height changes contain large annual variations. After the
backscatter correction, the annual height variations become
reasonable: the mean seasonal amplitude is reduced to 0.03
from 0.23 m, and the height-change rate is reduced to −0.01
from 0.05 m/year. The changes in amplitude and rate are also
seen at the coastal bin (Fig. 5b): the mean seasonal ampli-
tude changes from 0.27 to 0.12 m, and the rate from 0.06
to 0.05 m/year. The two examples in Fig. 5 highlight the
fact that the backscatter correction will significantly alter the
result of a height-change time series derived from ENVISAT.
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Fig. 7 Filtered and original
monthly height changes at the
2◦ × 1◦ bin centered at
78.5◦S, 63◦E, with three outliers
removed from the original
heights

Such an alteration is consistent with that reported by Davis
and Ferguson (2004).

4.3 Height-change rate over the ice sheet of East Antarctica

4.3.1 Filtering raw height change and removing outlier

Before computing the height-change rate, we applied fil-
tering to raw height changes as follows. A filtered height
change was obtained by convolving the raw height changes
with the time-dependent Gaussian function (Hwang and Hsu
2008)

g(�t) = e− �t2

σ2 (20)

where σ is the 1/6 of the given window size (in time)
of convolution, �t is the time difference between the tar-
geted month (the month where a smoothed height change
is desired) and the running month. An iterative process
was used to remove outliers in height changes while fil-
tering height changes. First, the differences between the
raw and filtered heights were computed for all months,
and the SD of the differences was found. The largest dif-
ference that exceeds three times of the SD was consid-
ered as an outlier and the corresponding height change was
removed. This process was repeated without the removed
height. The iteration stops when no outlier was found. The
data gaps (due to removed outliers) were filled using val-
ues interpolated from the outlier-free data. As shown in
Sect. 3, the SDs of height changes from FFM are quite
uniform throughout the entire height-change time series.
As an example, Fig. 7 shows the raw and filtered height
changes over the bin centered at 78.5◦S, 63◦E. In this
example, the iterative process has removed three outliers.
Except at the months with outliers, the filtered and the
original height-change time series do not differ signifi-
cantly from each other, because the former was derived
by averaging the height changes over the bin (for a given
month).

4.3.2 The best threshold correlation coefficient (TCC) for
ENVISAT using the ICESat result

Figure 6 suggests that the degree of correlation between
height and backscatter can vary from one bin to another in the
study area. If the height–backscatter correlation coefficient is
low, applying the backscatter correction will result in an extra
error in the original (raw) height (Zwally et al. 2005); see also
Sect. 4.1. Therefore, we applied the backscatter correction to
a raw height at a given bin only when the height–backscatter
correlation coefficient here exceeds a given threshold corre-
lation coefficient (TCC), based on Zwally et al. (2005). That
is, a backscatter-corrected height change is computed as

H R( j) = H j − f · σ0 j · hB (21)

where f is defined as

f =
{

0, if R̄ < RT

1, if R̄ ≥ RT
(22)

with R̄ and RT being correlation coefficient and TCC, respec-
tively. Note that, we did not consider TCC in the case study of
Fig. 5, i.e., f = 1. It turns out the selection of the best TCC
is difficult. After several attempts, we decide to determine
the best TCC using the height-change rates of ICESat. The
ICESat result we used is from Yamamoto et al. (2008), who
used ICESat data over October 2003 to April 2007 in the area
over 65◦−79◦S and 61◦−73◦E. The uncertainty of a single
height measurement of ICESat is about 10 cm. According
to Schutz et al. (2005), ICESat can determine height-change
rates over polar ice sheets to better than 1 cm/year and does
not have the problem of backscatter effect. For the best TCC
determination, the height-change rates from ENVISAT were
computed for all bins over the same time span and area as for
the ICESat result of Yamamoto et al. (2008). According to
the result of the inter-campaign comparison of Gunter et al.
(2009), we removed a bias of 2.3 cm/year from the ICESat
rates of Yamamoto et al. (2008) for all bins.

We experimented with −0.2 ≤ TCC ≤ 1.1 at an interval
of 0.01 to see the relationship between TCC and standard
deviation of height differences (ENVISAT vs. ICESat), and
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Fig. 8 Correlation coefficients
between height changes from
ICESat and from ENVISAT (by
ORM, FHM and FFM), and the
standard deviations of height
differences (ICESat vs.
ENVISAT)

Fig. 9 Spatial distributions of height-change rates from a ENVISAT
with RT = 0.5, b ENVISAT with RT = 0.7, c ENVISAT with RT =
0.9, d ICESat

Table 4 Statistics of the differences between height-change rates
(cm/year) from ICESat and ENVISAT based on three threshold cor-
relation coefficients (TCCs) over 60◦−79◦S, 60◦−74◦E

TCC Max Min Mean SD

0.5 5.13 −1.47 0.93 1.26

0.7 5.13 −1.47 0.83 1.25

0.9 4.43 −2.22 0.03 0.99

the relationship between TCC and height–backscatter cor-
relation. Figure 8 shows the result: TCC = 0.92 leads to
the highest correlation of 0.85 (height changes from FFM)
and a standard deviation of 0.94 cm. We also determined the
optimal TCC values from the height changes from ORM and
FHM, as shown in Fig. 8. The optimal TCC for FHM is also
0.92, leading to the maximum correlation coefficient of 0.76
and the minimum standard error of 1.16 cm. For ORM, the
optimal TCC is 0.75, which results in the maximum corre-
lation coefficient of 0.79 and the minimum standard error of
1.10 cm. In comparison to ORM and FHM, FFM increases
the height–backscatter correlation and reduces the standard
deviation of height differences.

To demonstrate the impact of TCC on the ENVISAT-
derived height-change rates, Fig. 9a–c shows the height-
change rates from ENVISAT using TCC = 0.5, 0.7 and
0.9, and Fig. 9d shows the rates from ICESat. Table 4 shows
the statistics of the differences between the height changes
from ICESat and from ENVISAT based on the three TCCs.
The mean of the ICESat–ENVISAT differences in the case
of TCC = 0.5 differs by 0.1 cm/year from the mean in
the case TCC = 0.7. The standard deviations of the dif-
ferences in the two cases differ by 0.01 cm/year. However,
there is a sharp difference between the cases of TCC = 0.5
and TCC = 0.9: the mean and standard deviation of the
ICESat–ENVISAT height differences are reduced to 0.03 and
0.99 cm/year from 0.93 and 1.26 cm/year, respectively. With
TCC = 0.9, we obtained the highest correlation coefficient of
0.85 between the height changes from ICESat and ENVISAT
in the study area. This suggests that the backscatter correc-
tion for ENIVISAT by Eq. (20) can be made more accurate
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Fig. 10 ENVISAT-derived
height-change rates (with
backscatter correction) over
October 2002 to September
2007, a in the study area b along
the CHINARE route as a
function of latitude

(in terms of the agreement with the ICESat result) when the
height–backscatter correlation coefficient exceeds 0.9.

4.3.3 ENVISAT-derived height-change rates in East
Antarctica and along CHINARE

Using the best TCC, i.e., RT = 0.92, we determined the
height-change rates from ENVISAT in the study area over
October 2002 to September 2007 (Fig. 10a). Figure 10b
shows the height-change rates along the CHINARE route.
The height-change rates (Fig. 10a) are not spatially uniform
in the study area and mostly fall between −3 and 3 cm/year.
West of the Amery Ice Shelf and in the latitude range of
68−75◦S, the rates are mostly positive with a peak value of
3 cm/year. East of the Amery Ice Shelf, the rates are mostly
negative. Along the CHINARE route (Figs. 1, 10b), the rate
near Zhongshan Station is about −1 cm/year, and it (absolute
value) increases with latitude, reaching about −3 cm/year
between 71−72◦S. South of 72◦S, the rate starts to decrease,
reaching almost zero at 75◦S. South of this point, again the
rate (absolute value) increases with latitude, finally reaching
about −1 cm/year at the finishing point near Kunlun Sta-
tion. A future work will be to compare this spatial pattern of
height-change rate with the spatial patterns of surface mass
balance (Ding et al. 2011) and horizontal velocity (Zhang et
al. 2008) along CHINARE, to cross-validate the remote sens-
ing result (this paper) and the ground measurement result.

5 Conclusions

We demonstrate the theory and numerical results of FFM.
FFM forms a full matrix referring to the first month using

the modified relationship among the elements in the upper
triangular matrix of FHM. Using the ENVISAT altimeter
data, we show that FFM results in a substantial increase in
the numbers of crossovers and matrix elements, compared
to such numbers from FHM and ORM. The mean standard
errors of height change from FFM are significantly smaller
than those from FHM and ORM. The mean latitude error
from FFM is about 1/2 and 1/5 of those from FHM and ORM,
and it increases with absolute latitude. FFM can improve
not only the height precision, but also maintain a uniform
precision in the entire height-change time series (FHM loses
precision in the FH height-change time series).

We also investigate the backscatter effect on ENVISAT-
derived height changes. In general, the height–backscatter
correlation is low near the coast of East Antarctica and Amery
Ice Shelf (about 0.3 on average) and is high in the inte-
rior of East Antarctica (about 0.9 on average). The ICESat
height-change rates are used to assist the determination of
the best TCC for the backscatter correction for ENVISAT,
which is 0.9 among three tested TCC values. The ENVISAT-
derived height-change rates mostly fall between −3 and
3 cm/year, with a large spatial variability in East Antarctica.
We believe that the ENVISA-derived height-change rates
along CHINARE (Fig. 10b) will serve as a constraint for
the ground-based mass balance result, which is derived from
only snow-stick and GPS measurements from Zhongshan
Station to Kunlun Station.

A satellite-derived height-change field like the one given
in Fig. 10a can be used to plan an optimal route for future
fieldwork to collect data at key spots for mass balance stud-
ies and to improve the glacier-isostatic adjustment model in
Antarctica. In principle, the method of FFM and the method
of backscatter analysis in this paper are also applicable to

123



914 Y. Yang et al.

detection of height change using properly retracked altime-
ter on a land mass that is not covered by ice, such as Tibetan
Plateau. This is a subject for future studies.

Acknowledgments We thank the European Space Agency for provid-
ing the ENVISAT SGDR data through the AVISO CNES Data Center.
This study is supported by the MOST (Grant No. 2013CBA01804),
National Natural Science Foundation of China (Grant No. 41106163,
No. 41128003 and No. 41076126), and SOA (Grant No. CHINARE
2013, 2014). We thank the three reviewers, who provide very construc-
tive comments that greatly improve the quality of this paper.

References

Church JA, Gregory JM, Huybrechts P, Kuhn M, Lambeck K, Nhuan
MT, Qin D, Woodworth PL (2001) Changes in sea level. In:
Houghton JT (ed) Climate change 2001: the scientific basis. Con-
tribution of working group I to the third assessment report of the
intergovernmental panel on climate change. Cambridge University
Press, Cambridge, pp 639–694

Davis CH, Segura DM (2001) An algorithm for time-series analysis
of ice sheet surface elevations from satellite altimetry. IEEE Trans
Geosci Remote Sens 39:202–206

Davis CH, Ferguson AC (2004) Elevation change of the Antarctic ice
sheet, 1995–2000, from ERS-2 satellite radar altimetry. IEEE Trans
Geosci Remote Sens 42:2437–2445

Ding M, Xiao C, Li Y, Ren J, Hou S, Jin B, Sun B (2011) Spatial variabil-
ity of surface mass balance along a traverse route from Zhongshan
station to Dome A, Antarctica. J Glacio 157(204):658–666

Ferguson AC, Davis CH, Cavanaugh JE (2004) An autoregressive model
for analysis of ice sheet elevation change time series. IEEE Trans
Geosci Remote Sens 42:2426–2436

Fu LL, Cazenave A (2001) Satellite altimetry and earth sciences: a
handbook of techniques and applications. Academic, San Diego

Gunter B, Urban T, Riva R, Helsen M, Harpold R, Poole S, Nagel P,
Schutz B, Tapley B (2009) A comparison of coincident GRACE and
ICESat data over Antarctica. J Geod 83:1051–1060

Hwang C, Hsu HY (2008) Shallow-water gravity anomalies from satel-
lite altimetry: case studies in the East China Sea and Taiwan Strait.
J Chin Inst Eng 31(5):841–851

Khvorostovsky K, Johannessen OM (2009) Merging of ERS-1, ERS-
2 and Envisat altimeter data over the Greenland ice sheet. Nansen
Environ Remote Sens Center, Bergen, Norway, Technical Report 307

Legresy B, Papa F, Remy F, Vinay G, Bosch M, Zanife OZ (2005)
ENVISAT radar altimeter measurements over continental surfaces
and ice caps using the ICE-2 retracking algorithm. Remote Sens
Environ 95:150–163

Li Y, Davis CH (2006) Improved methods for analysis of decadal
elevation-change time series over Antarctica. IEEE Trans Geosci
Remote Sens 44:2687–2697

Rémy F, Parouty S (2009) Antarctic ice sheet and radar altimetry: a
review. Remote Sens 1:1212–1239

Schutz BE, Zwally HJ, Shuman CA, Hancock D, DiMarzio JP (2005)
Overview of the ICESat mission. Geophys Res Lett 32(21). doi:10.
1029/2005GL024009

Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins M (2004)
GRACE measurements of mass variability in the earth system. Sci-
ence 305(5683):503–505

Vaughan DG, Bamber JL, Giovineto M, Russell J, Cooper APR (1999)
Reassessment of net surface mass balance in Antarctica. J Clim
12:933–946

Velicogna I, Wahr J (2006) Measurements of time-variable gravity
show mass loss in Antarctica. Science 311(5768):1754–1756. doi:10.
1126/science.11237785

Wahr J, Wingham D, Bentley C (2000) A method of combining ICESat
and GRACE satellite data to constrain Antarctic mass balance. J
Geophys Res 105(B7):16279–16294

Wingham DJ, Ridout AJ, Scharroo R, Arthern RJ, Ck Shum (1998)
Antarctic elevation change from 1992 to 1996. Science 282:456–
458

Wingham DJ, Shepherd A, Muir A, Marshall GJ (2006) Mass balance of
the Antarctic ice sheet. Philos Trans R Soc A 364(1844):1627–1635

Yamamoto K Fukuda Y, Doi K, Motoyama H (2008) Interpretation of
the GRACE-derived mass trend in Enderby Land, Antarctica. Polar
Sci 2(4):267–276

Yi D, Bentley CR, Stenoien MD (1997) Seasonal variation in the appar-
ent height of the East Antarctic ice sheet. Ann Glaciol 24:191–198

Yi D, Zwally HJ, Cornejo HG, Barbieri K, DiMarzio J (2001) Elevations
observed by satellite radar altimeter over ice sheets to variations
in backscatter power and derived corrections. CryoSat Validation
Workshop 2011, Frascati, Italy, February 2001

Zhang S, E D, Wang Z, Li Y, Jin B, Zhou C (2008) Ice velocity from
static GPS observations along the transect from Zhongshan station
to Dome A, East Antarctica. Ann Glaciol 48:113–118

Zwally HJ, Brenner AC (2001) Ice sheet dynamics and mass balance.
In: Fu LL, Cazenave A (eds) Satellite altimetry and earth sciences: a
handbook of techniques and applications. Academic Press, Orlando,
pp 351–369

Zwally HJ, Brenner AC, Major JA, Bindschadler RA, Marsh JG (1989)
Growth of Greenland ice sheet: measurement. Science 246:1587–
1589

Zwally HJ, Giovinetto MB, Li J, Cornejo HG, Beckley MA, Bren-
ner AC, Saba JL, Yi D (2005) Mass changes of the Greenland and
Antarctic ice sheets and shelves and contributions to sea-level rise:
1992–2002. J Glaciol 51(175):509–527

123

http://dx.doi.org/10.1029/2005GL024009
http://dx.doi.org/10.1029/2005GL024009
http://dx.doi.org/10.1126/science.11237785
http://dx.doi.org/10.1126/science.11237785

	A fixed full-matrix method for determining ice sheet height change from satellite altimeter: an ENVISAT case study in East Antarctica with backscatter analysis
	Abstract 
	1 Introduction
	2 The fixed full-matrix method for determining ice sheet height change from altimeter
	2.1 The theory of the fixed full-matrix method
	2.2 Comparison of ORM, FHM and FFM

	3 Numerical assessment of FFM using ENVISAT altimeter data
	3.1 The ENVISAT altimeter data
	3.2 Assessment of height change determination by FFM

	4 Result of ice sheet height change from ENVISAT using FFM
	4.1 Improved correlation between height change and backscattered power change by FFM
	4.2 Backscatter effect on ENVISAT-derived height
	4.3 Height-change rate over the ice sheet of East Antarctica
	4.3.1 Filtering raw height change and removing outlier
	4.3.2 The best threshold correlation coefficient (TCC) for ENVISAT using the ICESat result
	4.3.3 ENVISAT-derived height-change rates in East Antarctica and along CHINARE


	5 Conclusions
	Acknowledgments
	References


