Soft Comput (2014) 18:1757-1770
DOI 10.1007/s00500-013-1218-0

FOCUS

Network security management with traffic pattern clustering

Tao-Wei Chiou - Shi-Chun Tsai - Yi-Bing Lin

Published online: 21 January 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Profiling network traffic pattern is an important
approach for tackling network security problem. Based on
campus network infrastructure, we propose a new method
to identify randomly generated domain names and pinpoint
the potential victim groups. We characterize normal domain
names with the so called popular 2gram (2 consecutive char-
acters in a word) to distinguish between active and nonex-
istent domain names. We also track the destination IPs of
sources IPs and analyze their similarity of connection pat-
tern to uncover potential anomalous group network behav-
iors. We apply the Hadoop technique to deal with the big data
of network traffic and classify the clients as victims or not
with the spectral clustering method.

Keywords Clustering - Machine learning - Jaccard
similarity - ROC curve - Denial of service - Big data

1 Introduction

There are many malware flooding in the Internet today. It’s
an important and difficult task for network administrator to
know which client has been infected by malware. Botnet is
a collection of compromised machines, called victims and
controlled by a botmaster, which controls the compromised

Communicated by A. Castiglione.

T.-W. Chiou - S.-C. Tsai (X)) - Y.-B. Lin

Department of Computer Science, National Chiao Tung University,
Hsinchu 30050, Taiwan

e-mail: sctsai@cs.nctu.edu.tw

T.-W. Chiou
e-mail: ch1102chiou@gmail.com

Y.-B. Lin
e-mail: liny @cs.nctu.edu.tw

computers by command-and-control (C&C) server. Botnet
causes many security problems, such as DDoS attacks, spam
mail, phishing, click fraud, information leakage, etc. With the
rapid growth rate of the network complexity and traffic size,
it is important to build a system to detect victims infected
by malware and provide stable IT service. However, it is a
challenge to build such a system, because of the huge traffic
size and diversity of end-hosts. Even the infected victims
are identified, we may not be able to defuse the problem in
time, because of the shortage of network facility crew. In this
paper, we show a network alarm system, that can detect the
potential victim group and monitor group activity when the
botnet launches a massive attack.

The behavior of C&C server consists of infection stage
and attack stage as shown in Fig. 1. During the infection
stage, when a system is infected and becomes a victim, it
will try to find the C&C server by querying the DNS server
with some specific domain names. The infected computer
will download and execute malicious codes for identity theft,
backdoor codes, etc. The victims connect to C&C server via
randomly generated domain names to avoid detection, such
as the notorious bot Conficker (Porras et al. 2009), whose
infected victims will randomly generate tens of thousands
domain names with the domain generation algorithm (DGA)
(Porras et al. 2009; Antonakakis et al. 2012; Yadav et al. 2010;
Stone-Gross et al. 2009). While only very few of the domains
areregistered and can be used to connect to C&C server. DGA
could evade the blacklist and counter measurement, since the
botmaster could change the active domains rapidly. The pro-
cedure that victims connect to C&C server is shown in Fig. 2.
We can split the procedure into two stages: try stage and con-
nect stage. In try stage, victims generate a set of domains
and the botmaster already has registered a subset of these
domains. Victims do not know which domains are registered,
and thus select domains from the list randomly and try to con-

@ Springer

1758

T.-W. Chiou et al.

Fig. 1 The infect stage and
attack stage of
command-and-control server. a
Infection stage, b attack stage

DNS server

Download
binary

[

Compromised machine

(a)

.) - \\

i @

NXdomains

\(@7

(a)

nect to C&C server one by one. Note that when these vic-
tims try to find the registered domains, they might query the
same unregistered domains (NXdomains). We extract from
the NXdomains which look like DGA domains by using two
features: popular 2gram and longest meaningful substring,
and group these domains into a number of clusters called NX
group. NXDomains in the same NX group indicate that these
domains look like random string and are queried by common
clients. After these victims find the active domains, domain
name server would return one or multiple IPs which can con-
nect to C&C server. Because these domains belong to the
same botmaster, they might share some resolve IPs, because
of the limit of available IPs. We consider the domains and IPs
as a bipartite graph G = (D, P) where D is a set of domains
and P is a set of IPs. If there is a query on domain d € D for
it’s IP and the returned IP address is p € P, then we con-
struct an edge for (d, p). We perform a Hadoop job proposed
by Kang et al. (2009) on G to find connected components to

@ Springer

Binary server

=

Target
machine
C&C server
Send ‘ Attack
C&C server command
Connect to C&C k
server
==

Compromised
machines

(b)

C&C
Server

(b)

Fig. 2 Victims infected by DGA-based malware connect to C&C server. a Try stage, b connect stage

group active domains called active group. The domains in the
same active group indicate that these domains belong to the
same network. The detecting intuition is that only victims
infected by the same malware connect to the same NXdo-
mains (NXdomains queried by infected clients), and most of
these victims would connect to the same active component
which others clients never connect with. In other words, it can
be observed that one NX group and one active group serve
the same clients, which is an unusual event. We build a detec-
tion system to analyze DNS log, find DGA-based domains
and discover victims infected by the malware based on this
observation. We will discuss the details in Sect. 2.

Many malicious malwares, such as botnet, spyware, spam-
mer etc., abuse DNS to carry out their misconduct. For exam-
ple, the botmaster, such as Conficker (Porras et al. 2009)
and Torpig (Stone-Gross et al. 2009), usually registers some
domains and the compromised computer systems will con-
nect to the C&C server through these domains and start a

Network security management with traffic pattern clustering

1759

Fig. 3 System overview

Log Collector

(4)

Campus

Network
PA
Router
[B=g) PA Traffic Log
HIR
(5)
Traffic Log
PA-Traffic
Collector

DNS Log Analyzer

Victim
Group
o)

(6) 1
Victim Group
> Network Behavior

joint massive attack later. Many researchers (Antonakakis et
al. 2010, 2012; Fiore et al. 2013; Palmieri and Fiore 2009;
Yadav et al. 2010; Choi and Lee 2012; Dietrich et al. 2011)
have applied machine learning techniques to identify these
domains. Choi and Lee (2012) found that botnet generally
acts as a group and they developed a system to identify mali-
cious domains by capturing botnet’s group activities. Anton-
akakis et al. (2010) proposed a dynamic reputation system
for DNS by providing a reputation score from 35 features for
each new domain. Yadav et al. (2010) determined malicious
domains by domain’s zone features. Some of the domain
names are generated by DGA. Yadav et al. also leveraged
the fact that the alphanumeric distribution of algorithmically
generated domain is very different from those generated by
human.

After we got the victims, we consider botnet group activity
during the attack stage, the infected computers will execute
the instructions downloaded from C&C server and usually
target at certain systems to block normal service, conduct
click fraud, send spam mails, etc. It means that connection
behaviors of these victims are similar because victims con-
nect to the same destination. We build the Traffic log monitor
system to capture the group activity and report the desti-
nations where they want to connect and the corresponding
source and destination ports. Then Network administrator
could build the access control rules with the obtained infor-
mation and block the botnet attack.

Xu et al. (2011) extracted source and destination IPs from
backbone network traffic, and explored the behavior similar-
ity of end-hosts with the same prefix and grouped together

Victim Group
Database

(7) . .
Victims Behavior

the end-hosts with high similarity by the spectral clustering
method (Luxburg 2007). The end-hosts in the same cluster
means that these clients have similar connection behavior in
the time window. Particularly, the cluster is very sensitive to
massive activity, such as DDoS attack and scanning. Once
we obtain the victim group after inspecting the DNS logs,
we use spectral clustering method to analyze the relation
between source and destination IPs. As in the work by Xu
et al. (2011), we can model the relation as a bipartite graph,
where the analysis unit is the IPs of victim groups. Then we
can identify effectively the security related problems, such
as DDoS, scan activity. We will discuss it in Sect. 3.

Since the size of DNS logs and traffic data is huge, it is
already a challenge to move the big data around efficiently, let
alone processing the data. To this end, we use Apache Hadoop
(http://hadoop.apache.org) technique to handle the humon-
gous data size. Hadoop is a Java-based platform, which sup-
ports big data computation and storage. The MapReduce
computation model is adopted in Hadoop, which processes a
job in two phases, i.e., Map phase and Reduce phase. While
in Map phase it splits input data into chunks and processes
them in parallel, and in Reduce phase it collects outputs from
Map phase and combines them into the final answer.

Our system overview is as shown in Fig. 3. We con-
sider clients in campus network and network traffics pass
through the firewall PA (Palo Alto Networks, https://www.
paloaltonetworks.com) and the router, then directed to two
collectors, i.e., DNS log collector and PA-Traffic collector.
DNS log collector collects the log if a client requests to the
domain name server on campus. DNS log collector records

@ Springer

http://hadoop.apache.org
https://www.paloaltonetworks.com
https://www.paloaltonetworks.com

1760

T.-W. Chiou et al.

Fig. 4 DGA detection

(1) (2) i
NX Domains
workflow
) Unique
DNS Unique Domains
LOG Stage list
Active
74 14 Domains
@)
'SR
Active DGA Connected
domain Component
groups Stage
Victim Victim 7
Groups Group (6)
Detector
ng D(?A Spectral fents DGA DGA domain
e— :::;I: Clustering Connection Join Stage NXDomains detection
Stage log Stage
N/

the client, queried domains and the corresponding timestamp.
PA-Traffic collector collects packet information about source
IP, destination IP, source port, and destination port, but PA-
Traffic collector does not collect the payload. We apply the
DNS Log Analyzer to detect victim group and malicious
domains, and store them into Victim Group Database with
MongoDB (http://www.mongodb.org). Finally we use net-
work traffic log to monitor botnet group activity. Network
administrator can leverage the information about victims’
malicious domains and results of victim behavior to construct
control access rules or simply block the botnet activity.
We summarize our contributions as follows.

e We propose a new feature, popular two gram, to detect
DGA domains.

e We propose a system for detecting (1) DGA-based mali-
cious domains, (2) corresponding IPs, which can connect
to C&C server, (3) the victims infected by these mal-
wares, and (4) the victim behavior when acting together.

The rest of the paper is organized as follows. In Sect. 2, we
show the details of capturing the victims, DGA-based domain
names and victim groups from the DNS log. In Sect. 3, we
show the network behavior analysis with spectral clustering
method. We conclude the paper in Sect. 4.

2 Analysis of DNS log
In this section we introduce our DNS log analysis workflow.
2.1 Notations

First we introduce some notation. For a DNS record r,
we define r.c as the client’s IP which was queried to

@ Springer

(s) ©] €)

DNS server by the domain r.d. Note that we only focus
on A type query. For example, a DNS record r is as
in the following form 29-Oct-2013 15:14:53.722 queries:
info: client 140.113.xx.xx#61974: query: ssl.gststic.com IN
A +. It means client /40.113.xx.xx queries for domain
ssl.gststic.com with port 61974, i.e., r.c = 140.113.xx.xx
and r.d = ssl.gstatic.com.

A domain d can be separated into several parts by dot.
The right most part of a domain is called top-level domain
(TLD(d)), and the second part is called second-level domain
(2LD(d)), and so on. For example, the top-level domain of
mail.google.com is com, the second-level domain is google,
and the third level domain is mail.

2.2 Workflow

Our DNS log analysis workflow is shown in Fig. 4. There are
seven stages: Unique Stage, DNS Query Stage, DGA domain
detection Stage, Join Stage, Spectral Clustering Stage, Con-
nected Component Stage, andVictim Group Detector. We now
describe how they work.

(1) Unique Stage: This stage extracts the set of domains
which have been queried in one day. The input of Unique
Process is the raw data of DNS log and white list domains.
For each record r in DNS log, this process removes duplicate
records and records with r.d in the white list, then output
a list of distinct domains queried in a day. The algorithm
is shown in Fig. 5. In practice, we confront the problem
of the huge size of DNS log. Therefore, we adopt Apache
Hadoop (http://hadoop.apache.org) technique to parallelize
this process. Mappers extract r.d from DNS log and send the
(r.d, null) key/value to the Reducers. Reducers receive the
domains list from Mappers, filter out the domains in white
list and output the unique domain list.

http://www.mongodb.org
http://hadoop.apache.org

Network security management with traffic pattern clustering 1761
Flg.S Unique stage pseudo Input: The DNS log DNS = {ri,r2,...,7n}, white list domains W = {di,ds,...,dn}
code Output: The unique domain list D
Unique (DNS)
D=9

for each r€ DNS

if rd¢ D and rd¢ W

D =DU{rd}
end if
end for
return D

(2) DNS Query Stage: In this stage, we categorize the
domains from Unique Stage into two classes: active domains
and NX domains. For each domain d, we query world-wide
domain name servers to resolve the domain. If we receive
the IP list P = {p1, p2, ..., pn} from world-wide domain
name servers, it means that this domain is active domain, and
we add this domain and the corresponding IPs into Active
Domains List. On the other hand, if the domain is a failure
domain or expired domain, then we add these domains into
NX Domains List. Note that when we query to some domain
name servers with NXDomains, the domain servers would
return a specific IP. For example, OpenDNS (http://www.
opendns.com) would return 67.215.65.132 if the domain
is NXDomain. We prepare an IP list that represents the
NXDomain from the report on the internet (http://£.00f.net/
PubDNS/redirecting.txt). If domain name server returns an
IP appearing in the list, then we add the domain into NX
Domains List.

(3) DGA Detection Stage: In NX Domains List, there are
some type error domains like yghoo.com or expired domains
or DGA domains queried by victims. This stage is respon-
sible for classifying the domains from DGA and other NX
domains. To classify these domains, we choose six features
and adopt the Alternating Decision Tree (ADT) (Freund and
Mason 1999) to classify domains. Antonakakis et al. (2012)
used a similar approach to classify domains from DGA and
benign domains. Intuitively, legitimate domain names are
usually easy to memorize or spell. While the names gen-
erated by botnet, such as Conficker, are usually hard to pro-
nounce. To quantify this observation, we use two features,
popular 2-gram (two consecutive alphanumeric characters)
and longest meaningful substring (longest substring which
can be found in dictionary). For example, the longest mean-
ingful substring of getsomeinformation is information. To
determine the longest meaningful substring, we define that
a string is meaningful if the string appears in English dictio-
nary. Benign domains tend to have longer LMS than DGA
domains. The idea of longest meaningful substring was pro-
posed by Bilge et al. (2011). They query strings on google
search engine, and define a string to be meaningful, if the
number of results returned by google is larger than a thresh-
old. We use the English dictionary from Debain GNU/Linux

6.0.4 (/usr/share/dict/american-english). We build a trie data
struct (Horowitz et al. 2006) to store and match words. Trie
is a prefix tree which can be used to store a set of strings and
can be looked up efficiently.

Google scanned over two trillions of English words
and computed the frequency of each pair of consecutive
letters (Lutkebohle 2013, http://norvig.com/mayzner.html).
The frequency list of 2gram is shown on the webpage: http://
norvig.com/mayzner.html. We choose the top 250 most fre-
quent 2gram as the so called popular 2grams. We will argue
why 250 is areasonable choice later. The popular 2grams help
us pinpoint the random domains generated by algorithms.
For example, consider a well known domain name word-
press, whose 2gram set is: {wo, or, rd, dp, pr,re, es, ss}
and popular 2gram set is {wo, or, rd, pr,re,es, ss}, i.e.,
over 80 % of the 2grams are popular. While the domain name
Jsgjeyxsko, generated by Conficker, has the popular 2gram set
{je, ey, sk, ko}, which is less than 50 % of its 2gram set.

Note that there are 2grams not popular in English but
may be popular in other countries. We include three non-
popular 2grams: ku, ko, ao, which are common in Chinese
and Japanese domain names.

For each domain d, we extract the following features for
classification.

(1) Length of 2LD(d)

(2) Length of 3LD(d)

(3) Ratio of popular 2gram in 2LD(d)

(4) Ratio of popular 2gram in 3LD(d)

(5) Longest meaningful substring in 2LD(d)
(6) Longest meaningful substring in 3LD(d).

We collect many DGA-based domains from Threat Expert
(http://www.threatexpert.com), and other malware reports
(Porras et al. 2009; Technical details of Srizbis domain gen-
eration algorithm, http://www.fireeye.com/blog/technical/
botnet-activities-research/2008/1 1/technical-details-of-srizb
is-domain-generation-algorithm.html; File-Patching ZBOT
Variants ZeuS 2.0 Levels Up, http://www.trendmicro.com/
cloud-content/us/pdfs/security-intelligence/white-papers/w
p__file-partching-zbot-varians-zeus-2-9.pdf). We got domai-
ns from Conficker, Zbot, Srizbis, Bobax, Kraken. We ran-

@ Springer

http://www.opendns.com
http://www.opendns.com
http://f.00f.net/PubDNS/redirecting.txt
http://f.00f.net/PubDNS/redirecting.txt
http://norvig.com/mayzner.html
http://norvig.com/mayzner.html
http://norvig.com/mayzner.html
http://www.threatexpert.com
http://www.fireeye.com/blog/technical/botnet-activities-research/2008/11/technical-details-of-srizbis-domain-generation-algorithm.html
http://www.fireeye.com/blog/technical/botnet-activities-research/2008/11/technical-details-of-srizbis-domain-generation-algorithm.html
http://www.fireeye.com/blog/technical/botnet-activities-research/2008/11/technical-details-of-srizbis-domain-generation-algorithm.html
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp__file-partching-zbot-varians-zeus-2-9.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp__file-partching-zbot-varians-zeus-2-9.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp__file-partching-zbot-varians-zeus-2-9.pdf

1762

T.-W. Chiou et al.

Table1 Comparison of different

popular 2gram sizes Size ROC curve %
0 94.2
50 95.6
100 96.1
150 96.2
200 95.9
250 96.3
300 95.9
Use all 94.5

domly choose 4/5 of these domains as training DGA domains,
and collect the top 10,000 domains from Alexa website http://
www.alexa.com/ as training benign domains, and build an
ADT by these training data. To verify the classifier, we use
Receiver operating characteristic (ROC) curves (Han et al.
2012) to measure the accuracy of a model. We used top
10,000-12,000 domains from alexa.com and the remaining
1/5 DGA domains as testing data. We measure the ROC curve
for different popular 2gram definitions (used top 100, 150,
200, 250, 300 as popular 2gram). With the result shown in
Table 1, we choose the top 250 most frequent 2gram as our
popular 2gram. The domain features extraction procedure
is shown in Fig. 6. The procedures for computing popular
2gram, building Trie and finding longest meaningful sub-
string are shown in Figs. 7, 8, 9 respectively.

Recently, Antonakakis et al. (2012) proposed a method to
classify a group of domains whose size is equal to y as DGA
domain group or benign group by ADT. We focuson y =1,
because we want victims infected by the same malware to
be grouped into the same cluster in the following Spectral
Clustering Stage. Antonakakis et al. split a list of NXDo-
mains into k groups with size y and classify each group by
33 features. They allowed some of DGA domains to be clas-
sified as benign domains (i.e., four from benign domains and
one from DGA domains in one group and classify them as
benign domain group), because they used the Hidden Markov
Model (HMM) to find the C&C server based on the domain
text string. In this work, we find the C&C server domains by
victims’ connection behaviors. The DGA domains, which are
connected by different clients, are extremely important (most
of the DGA NXDomains are just queried by one client). If
we used y > 1, the extremely important NXDomains might
be dropped. So we use y = 1.

Results of our experiments show that our features are bet-
ter than Antonakakis et al. (2012) when y = 1. We give the
ROC curves of our approach and the one by Antonakakis
et al. (2012) as shown in Fig. 10. Note that several features
from Antonakakis et al. (2012) are not considered, such as
the variance of length, variance of entropy etc, when y = 1.
The 18 active features used in Antonakakis et al. (2012) are
as follows:

@ Springer

(1) Ngram features: measure the frequency distribution of
ngrams for the domain name strings, withn=1,...,4
and use median, average and standard deviation as fea-
tures (3 x 4 = 12 features).

(2) Measure entropy of character distribution from 2L.D(d).

(3) Measure entropy of character distribution from 3LD(d).

(4) Number of distinct characters.

(5) TLD(d) is .com or not.

(6) Length of domains.

(7) Number of levels.

Comparing with the area under ROC curve, Antonakakis et
al. (2012) has 0.918. and our approach has 0.963. We get a
larger area, which is better under the measure of ROC curve.
This will be helpful for detecting victim group as shown in
Fig. 11.

(4) Join stage: In the DGA Detection Stage, we collect
the DGA-like NXDomains. In this stage we look up the raw
data of DNS log and find the clients which had queried these
domains. The task is similar to Unique Stage. Since the log
size is huge, we use Hadoop technique to find all pairs of
(B, d), where B is a client and d is a DGA-like NXdomain.
The pseudo code is shown in Fig. 12.

(5) Spectral Clustering Stage: The victims infected by the
same malware will attempt to connect the same NXDomains.
This is an unusual event. Two domains with higher similarity
means that they have more common clients trying to connect
to them. In this stage, we try to group DGA-like NXDomains
into groups from Join Stage, which collects all the (B, d)
pairs from DNS log. We compute the similarity by Ochiai
(Cheetham and Hazel 1969) coefficient between domains.

Definition 1 Ochiai coefficient: Let By and B, be the set of
clients IP and D; and D, be the two domains, which B and
B; connect with, respectively. The Ochiai coefficient of D
and D is:

[B1 N Bs|

VIBII X [B2]

In this stage, we first build the similarity matrix M. Let
M be the n x n matrix, where n is the number of domains.
M;; is the Ochiai coefficient of domain i and domain j. We
apply spectral clustering algorithm to group domains. Spec-
tral clustering is a popular clustering approach for graph par-
tition. We use the approach proposed in Xu et al. (2011).
Given a similarity matrix M and two parameters « = 0.95
and B = 2, the spectral clustering works as follow:

Ochiai(D1, D)) =

(1) Let D be the diagonal matrix, and D;; = X; M;;.

(2) Compute the matrix L = D 12pMpD—1/2,

(3) Find all eigenvectors and corresponding eigenvalues
A=Al > Ay > - > A, from L.

(4) Find the maximum Ax where X; <xA; > o X X;<,A; and
(A1 = 2) > B X (A — Ak—1)-

http://www.alexa.com/
http://www.alexa.com/

Network security management with traffic pattern clustering

1763

Input:
Output: an array of double represent
DOMAIN_EXTRACT (d ,pop2gram ,W')
Let features[0..5] be a new array .
missing = —1
Let so be 2Ld(d)
s3 = NIL
if 3LD(d) exist
s3 = 3Ld(d)
end if
Let S = {82783}
//1length features
index = 0
for ¢ = 2 to 3
if s; == NIL
featuresfindex] = missing
else
features[index] = s;.length
end if
index = index + 1
end for
// compute ratio of popular 2gram
for 1 = 2 to 3
if s; == NIL
features[index] = missing
else
features[index] = POP2GRAM_RATIO(s;)
end if
index = index + 1
end for
// compute LMS
t = BuildTrie (W)
for 1 = 2 to 3

if s; == NIL
features[index] = missing
else
maxString = LMS(s; ,t)
featuresfindex] = maxString.length
end if
index = index + 1
end for
return

a domain d, pop2gram is a set of popular gram, W is a set of dictionary words.
the features

of domain d

Fig. 6 Domain extraction stage pseudo code

(5) Construct the matrix X = [ujuy - - - ug] where u; is the
corresponding eigenvector of eigenvalue A;.

(6) Construct the normalized matrix Y, where Y;; =
(Z; Xl?j)z.

(7) The i-throw of Y represents data point i, clustering rows
with k-means, where the number of clusters k is already
found at step 4.

In this stage, we find NX groups NX = {nxy,nxz, ..., nxy},
where nx = {dy,da, ..., d,}. Each NX group consists of
DGA-like NXDomains which were connected by common
clients. This is an unusual event for general users. These
groups of domains are called NX group. We collect all of the
NX groups and send them to Victim Group Detector, which
will be given later.

(6) Connected Component Stage: DGA-based virus gen-
erates domains every day, and the botmaster only registers a
subset of these domains. The victims will try to connect to
these registered domains to reach C&C server. Because of
the limited number of IP, we assume IPs used by one mali-
cious domain could be also used by some other malicious
domains. In this stage we group the active domains from
Active Domain List. Domains in the same group means these
domains belong to the same network. Recalling DNS Query
Process, Active Domain List consists of a list of tuple (d, P),
where d is an active domain and P is the corresponding IP
list. To illustrate how to group the domains, we build a bipar-
tite graph G = (D, P), where D is a set of active domains
and P is a set of IPs. For one domain d € D and one IP
p € P, there exists an edge iff IP address p is returned when

@ Springer

1764 T.-W. Chiou et al.
Input: an array of characters label find the connected components. We define the component
Output: an array of 2gram list gram as act; = {dy,d>r, ds, ...,d,} called active group, where i

GET_2GRAM (label)
Let graml0...label.length — 2] be a new array
for i = 0 to label.length — 2
Let onegram[0,1] be new characters
onegram[0] = label[i]
onegraml[l] = labeli + 1]
gram[i] = onegram
end for
return gram

array

Input: an array of characters s
Output: the ratio of popular 2gram
POP2GRAM_RATIO(s):
popcount = 0 //counter popular 2gram
grams = GET_2GRAM(s)
for i = 0 to gram.length —1
if gramlj] € pop2gran
popcount = popcount + 1
end if
end for
return popcount/gram.length

Fig. 7 Pseudo code for computing popular 2gram ratio

Input: W is set of words
Output: Root of trie r
BuildTrie (W)
Let » be a tree node
for each weW

trace = r
for i = 0 to w.length —1
if trace.cy;y == NIL // Located new child
Let trace.cy;; be a new tree node
trace.cyp).accept = false
end if
trace = trace.cy[
end for
trace.accept = true
end for

return root

Fig. 8 Pseudo code for building Trie

we query domain d to the world wide domain name server in
DNS Query Process. Because there are many active domains
in the network, finding all connected components in G by a
single machine is impractical. We use Hadoop cluster and the
algorithm proposed by Kang et al. (2009) to find connected
components. Given a graph G, we first assign a unique index
iy for each node d. In the map phase, every node sends it’s
index i to its neighbors. In reduce phase, every node receives
an index list I = {iy, iz, ..., i,} sent from it’s neighbors,
and updates it’s index by i(;"ew) = min{ig, iy, iz, ...,Iin}.
We repeat the map phase and reduce phase until no node
can be updated. Nodes with the same index means they are
in the same connected component. Figure 13 shows how to

@ Springer

is the unique active group ID. Finally, we collect all of the
active groups and send them to Victim Group Detector.

(7) Victim Group Detector: Recall that, in Spectral Clus-
tering Stage, client infected by the same malware using the
same DGA would attempt to connect the same DGA-like
NXDomains. On the other hand, they might connect to the
same active group which are extracted in Connected Compo-
nent Stage. Consider the victims infected by one DGA-based
malware, when the victims try to connect to C&C server.
Victims attempt to connect the common NXDomains (in the
same nx), and finally connect to the same act (active domains
might share the same IPs). We compute the Jaccard (Han et
al. 2012; Kiyomoto et al. 2012) similarity between each pair
of (act, nx).

Definition 2 Jaccard similarity: Let B, be the set of client
IPs which had queried to domains in act;, and anj be the
set of client IPs which had queried to domains in nx;. The
Jaccard similarity of act; and nx; is:
Jaccard(actj,nx;) = M

|Bact,- U anj|

For filtering noise, we filter out the NX group with size
smaller than five (|nx| < 5), because the size of NXdomains
generated by DGA-based malware is usually more than 100
in one day. We also filter out the act group if the number
of clients which have queried to this act is less than four.
The reason is if we do not set this threshold, we might clas-
sify benign domains as domains of C&C server. Consider
there are two compromised machines in the network and
they all connect to benign.com every day. Our detection sys-
tem would find that they all connect to the same NX group
which is generated by a malware. In this situation, similarity
between the NX group and benign.com is high, and our sys-
tem would report such pair. It simply generates noise record
with benign act and we will filter out such act group.

By the above filtering approach, now we show that it
is an abnormal event if there exist nx, and act such that
Jaccard(nx, act) > 6, where we choose 6§ = 0.7 empir-
ically. Note that the 6 depends on the network. Different
networks might use different 6. We show how we choose the
suitable 6 to detect victims behavior better. We performed an
experiment on DNS log which was collected on 2013/09/07.
We extracted 152,125 active groups and 458 NX groups. We
measured Jaccard similarity for all possible (act, nx) pair
and collect the (act, nx) pair if Jaccard(nx, act) > 6. The
relation between 6 and the number of collected pairs is shown
in Fig. 14. It can be observed that it’s rare to find the act and
nx with high Jaccard similarity. However, recall the obser-
vation mentioned in Sect. 1. Victims infected by the same
malware attempt to connect to the NX groups and active

Network security management with traffic pattern clustering

1765

Fig. 9 Longest meaningful

substring {)n[;lltit String s,
utput:
LMS(s,t)
trace = t

Longest meaningful

root of trie ¢.
substring of s

Let maxLenString be an empty string
for ¢ = 0 to s.length—1
for j=1 to s.length—1
if trace.accept == true and j— i+ 1> maxLenString.length
maxLenString = sli...j]

end if

if trace.cs;;) == NIL

break
else
trace =

end if

trace.cgpj)

if trace.accept == true and j— i+ 1> maxLenString.length
mazLenString = s[i...j]

end if
end for

return maxLenString

True Positive Rate

03 ¢ 4

02 r 1

0.1 & —+— Our approach
—&— M. Antonakakis's approach with y =1

D 1 1 L 1
0 0.1 0.2 0.3 0.4 05 0.6 07 08 09 1

False Positive Rate

Fig. 10 The ROC curve for our approach and approach from Anton-
akakis et al. (2012)

group, which other clients never connect. We can find the
(nx, act) pair with high similarity if clients in our network
have been infected. We simulate behaviors of victims infected
by the well-known DGA-based malware to show that vic-
tims’ group connection behavior would generate (act, nx)
with relative high Jaccard similarity. We will discuss it later.
We consider acty,, as malicious domain group (domains
direct to C&C server) if there exists nx,,,; € NX such that
Jaccard(nxpyq;, actyq) > 6, and we consider clients which
had connected to act,,4; as victim group because these clients
attempted to connect to C&C server. We store the victims

group and corresponding acty, g1, NXmq to victim group data-
base.

To show that this detection mechanism works, we simu-
late victims’ DNS activities and simulate the DNS records
when they try to connect to C&C server. We set up several
connection parameters as follows:

(1) Maximum try: Conficker C generate 50000 domains per
day and victims randomly choose 500 domains to connect
to C&C server. If fail to connect to C&C server, these
victims will sleep one day. On the other hand, some of
victims infected by other malwares (i.e. Bobax) would try
to connect until connect to C&C server or all of candidate
domains have been tried. In our experiment, Maximum
try parameter is set to “retry until connect” or “up to five
hundred times trial”.

(2) Register Rate: Botmaster needs to register a subset of
domains generated by DGA-based malware. This para-
meter specifies the ratio of domains that are generated
and registered. Victims would connect with more NXDo-
mains, if the register rate is low.

(3) Number of victims: It is the number of victims in our
network. The more victims are infected by the same mal-
ware, the easier we could get more complete NX groups.

(4) IP configuration: In active domains side, these domains
might be resolved to one single IP (single IP) or to mul-
tiple IPs. Botmaster might construct the botnet by apply-
ing IP fast-flux technique. Domain name server might
return different IPs in each query for one domain. IP
fast-flux brings fragment when we construct the Active
Domains Groups. The parameter /P configuration can be
set to “single IP” or “IP flux”. To simulate IP fast-flux,

@ Springer

1766

T.-W. Chiou et al.

Fig. 11 Pseudo code for
Victim Group Detector

Input: Set of active group ACT = {acty,acts,...,act,},
Set of NX group NX = {nzi,nz2,....,nTm},
DNS Log DNS
Output: Victim Group G ={g1,92,...,9x}, g= (act,nz,C = {c1,c2,..c1}),
where C is a set of client IPs, which had connected to domain d € act
VICTIM_GROUP(ACT ,NX ,DNS)
Let NXContain = {nzconi,nxcons, ...,nxconm },nxcon; = 0,i <m
Let ActContain = {actconl,actcong, vty actconn},actconi =0,i<n
G =10
// Initialization
for each r in DNS
if r.d e act;
actcon; = actcon; U {r.c}
end if
if r.denw;
nxcon; = nxcon; U {r.c}
end if
end for
6 = 0.7
for actcon; € ActContain
for nacon; € NXContain
if Jaccard (actcon;, nxcon;) > 0
Let g be a tuple (act;, nz;, actcon;)
G = Gu{g}

end if
end for
end for
return G

Fig. 12 Pseudo code for Join
Stage

Input: DNS Log DNS, Set of DGA NXDomains NX = {di,ds,..,dn}
Output: A set of tuple C = {ti,t2,....,tm}. t=1(d,c),

where d is one of domain in NXDomains List, ¢ is one client IP.

Join(DNS,NX)
Cc=0

for each r€ DNS

if rde NX

C = Cu{(rd,r.o)}

end if
end for
return C

we choose 50 IPs from one “5.2.10.1-5.2.10.50”. With
a specific set of DNS log, we make sure that there is no
domain queried by clients from our campus resolved to
these 50 IPs. When one DGA domain is marked as active
domain and “IP-flux”, we randomly choose 5 of 50 IPs
as the answers in DNS Query Stage.

We first randomly choose clients on campus as fake vic-
tims, and simulate DNS log as if these clients are com-
promised by the same DGA-based malware. Second, we
add these DNS log into original DNS query log and feed
these log into our detection system to find these fake vic-
tims. We measure with two DGA (Conficker C, Zbot)
bots with different parameters setting as mentioned above.
We implement the DGA algorithm for each malware by
online malware reports or malware analysis paper (Porras
et al. 2009; File-Patching ZBOT Variants ZeuS 2.0 Lev-
els Up, http://www.trendmicro.com/cloud-content/us/pdfs/

@ Springer

security-intelligence/white-papers/wp__file-partching-zbot-
varians-zeus-2-9.pdf). The simulation result is shown in
Table 2. Capture number is the number of fake victims
reported from our system. However, we can not detect fake
victims infected by Conficker C, which generates 50,000
domains in one day and the similarity between NXdomains
are relative low if there are very few victims in our network.
With low similarity of NXdomains, our system cannot gen-
erate the complete nx, which most of victims have queried.
This is a limitation of our system. We leave the improvement
as future works.

3 Traffic analysis

In DNS log analysis, we propose the methodology for detect-
ing victims group. Because of false positive, machine learn-
ing approach might recommend innocent client IPs as vic-
tims. Furthermore, these victims may not attack any other

http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp__file-partching-zbot-varians-zeus-2-9.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp__file-partching-zbot-varians-zeus-2-9.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp__file-partching-zbot-varians-zeus-2-9.pdf

Network security management with traffic pattern clustering

1767

Fig. 13 Finding connected
components: a initial step, b o (5,6] o [1,2]
send index to neighbors, ¢ V v
update index, d, e repeat until no
node can be updated
) s (2) [

(7) el (5] [3]
(8) [4]
‘ 189] Q‘
(s) (5) B
)

(a)

® o N6 &
® ® ©
0\9 9\9 9‘9

#Pairs
12000

10000
8000

6000 \
4000 \

2000 \
\ | o

0.1 0.2 0.3 04 05 06 0.7 0.8 09 1

0

Fig. 14 Theta measurement

machines directly. It’s difficult to block victims directly in
practice. In this section, we use a system to monitor victims’
network behaviors on packet level, and extract the informa-
tion for administrator to mitigate botnet attacks. Once the
information of infected groups is available, we analyze the

Table 2 Simulation on Zbot

Maximum Number of Register IP configu- Capture
try victims rate ration number
Retry Until Connect 10 0.01 Single 10
Try 500 times at most 10 0.01 Single 9
Retry Until Connect 25 0.01 Single 25
Try 500 times at most 25 0.01 Single 22
Retry Until Connect 10 0.002 Single 10
Try 500 times at most 10 0.002 Single 7
Retry Until Connect 25 0.002 Single 25
Try 500 times at most 25 0.002 Single 19
Retry Until Connect 10 0.01 Fast-Flux 10
Try 500 times at most 10 0.01 Fast-Flux 9
Retry Until Connect 25 0.01 Fast-Flux 25
Try 500 times at most 25 0.01 Fast-Flux 23

packet traffic in order to capture group activity. We use only
four features, (srcIP, dstIP, srcPort, disPort), for similarity
analysis. For this we adopt the approach by Xu et al. (2011)

@ Springer

1768

T.-W. Chiou et al.

cluster 0
sre:
140.xx.xx.xx
140.xx.xx.xx
140.xx.xx.xx

used Ports set([80]) to connect
dst IP 212.xx.xx.xx

(b)

dstPorts set([59073, 38466, 57955, 57311, 54289, 33833, 40398, 45936, 50865, 34324, 46869, 48479,

55485, 52894, 49973])

(c)

Fig. 15 Scan activity: a the ordinary clusters, b the clusters when scan happened, ¢ the summary of one cluster

to cluster network behaviors by using spectral clustering
method. For one network segment we track the similarity of
end-hosts’ connections. If two end-hosts’ destination IPs are
similar during a period of time, then they will be assigned to
the same cluster. Jaccard similarity measurement is applied
to this part of analysis. Figure 15a shows one cluster result in
one prefix. We can see Fig. 15a is a similarity matrix and the
deeper the color of (i, j) in the matrix, the higher the similar-
ity of client i and client j. As we mentioned in the introduc-
tion, clusters are sensitive with group activity such as DDoS
attack or scan activity. Figure 15 shows the original cluster
result and clusters when scan activity occurred. Figure 15 is
one cluster result. After three minutes, scan activity started.
An IP 272.xx.xx.xx scanned on the campus network at port
80, and campus network received packets and sent back to the
scanner in a short time. The clusters become larger because
many clients responded accordingly. The cluster summary is
shown in Fig. 15¢c. Network administrator can observe the
common dstIP they sent (2/2.xx.xx.xx) and the correspond-
ing port. We apply this method to capture group activity and
report the information about the IPs that these victims want to
connect and the corresponding ports. In our system, network
administrator can build access control rules by monitoring
the group dstIP or dstPort to block malware behavior before
all victims are discovered.

We collect data from PA, a commercial security package
(Palo Alto Networks, https://www.paloaltonetworks.com),

@ Springer

which stores traffic records of each IP. We apply Hadoop
technique to handle the huge log. There are nearly 190GB
traffic log in one day. We write Hadoop job which is respon-
sible to collect the data in traffic log and build Json files to
describe the clients connections behavior in each period. An
example of Json file is shown in Fig. 16, where it can be
observed that there are two active clients (srcl Py, srcl P>)
in this period, and srcl Py connect to dstI Py and dstI P;.
We can compress the traffic data and speed up the cluster
procedure, when constructing the similarity matrix.

In the Sect. 2, we extract active connected components
in Connected Component Stage, and some of active com-
ponents would be reported as suspicious domains in Victim
Group Detector. Note that we just query each domain one
time, and we might get all of IPs poll for one domain. It
brings fragment effect that is shown in Fig. 17, where five
victims, on the right hand side, connect to C&C server with
five domains (dy, da, . . ., ds), and the connection records are
stored in DNS log. When we analyze the log, we get the map-
ping of domains and corresponding IPs (i.e. d; to I P, I P>)
and build active components list. As shown in Fig. 17, we
might obtain two victim groups even if they actually belong
to the same botnet. So Instead of treating one victim group
as one network segment, we put all the victims reported from
Victim Group Detector as one network segment and analyze
the network connection behavior in the segment. The proce-
dure is as follows:

https://www.paloaltonetworks.com

Network security management with traffic pattern clustering

1769

object:{
srelPp i
dstIPy:{
srcPort :[123]
dstPort :[123]
}
dstIPy:{
srcPort :[514]
dstPort :[514]
}
srclPy: {45578
dstIPy:{
srcPort :[514]
dstPort :[514]
dstIPs:{
srcPort :[45578]
dstPort :[80]
}
dstIPy:{
srcPort :[57869]
dstPort :[53]
}

}
}

Fig. 16 Json file to specify the connections behavior in one period

Active

Componetl @
&

1

_(@
\(@7

IP Flux

XX

Active
Componet2

3

Victims

Fig. 17 Fragments of connected component

(1) For one time period (i.e. 5 min), collect the records with
srcIP marked as victim.

(2) Build the similarity matrix M with these records. For
each pair of victims (i, j), we compute the Jaccard sim-
ilarity Jaccard(i, j) = :j: Sg : where A; is a set of
dstIP with which client i connects in the period.

(3) Apply the spectral clustering, which is the same one used

in Spectral Clustering Stage.

(4) For each cluster we build a summary that specifies the
dstIP, srcPort, disPort as shown in Fig. 15c¢.

(5) After clustering, use Data-Driven Documents (http://
d3js.org) and Jquery (http://jquery.com) to present the
results, such that network administrator can review on
the web.

4 Conclusion

We propose a new method to determine the domains gener-
ated by DGA-based malware, victims infected by the same
DGA-based malware and active domains which direct to
C&C server. Along the way, we use Hadoop technique and
tools from machine learning for clustering. After finding the
victim groups, we apply network behavior clustering tech-
nique to monitor the victim’s group activity. Our works pro-
vide network administrators valuable information to con-
struct access control rules. Our system still cannot detect
victims infected by Conficker C with the log within 24 h. It
is possible to collect long term DNS log data for detecting.
However, it will need more computing power for analyzing.
We leave it as a future work.

References

Antonakakis M, Perdisci R, Dagon D, Lee W, Feamster N (2010) Build-
ing a dynamic reputation system for DNS. In: USENIX security
symposium, pp 273-290

Antonakakis M, Perdisci R, Nadji Y, Vasiloglou N, Abu-Nimeh S, Lee
W, Dagon D (2012) From throw-away traffic to bots: detecting the
rise of DGA-based malware. In: Proceedings of the 21st USENIX
security symposium

Bilge L, Kirda E, Kruegel C, Balduzzi M (2011) Exposure: finding
malicious domains using passive DNS analysis. In: 18th Annual net-
work and distributed system security symposium,6—9 Feb 2011. San
Diego, CA, USA

Cheetham AH, Hazel JE (1969) Binary (presence—absence) similarity
coefficients. J Paleontol 43(5): 1130-1136

Choi H, Lee H (2012) Identifying botnets by capturing group activities
in DNS traffic. Comput Netw, vol 56, pp 20-33

Dietrich C, Rossow C, Freiling F, Bos H, van Steen M, Pohlmann N
(2011) On botnets that use DNS for command and control. In: Sev-
enth European conference on computer network defense (EC2ND),
pp 9-16

Fiore U, Palmieri F, Castiglione A, De Santis A (2013) Network anom-
aly detection with the restricted Boltzmann machine. Neurocomput-
ing 122:13-23

Freund Y, Mason L (1999) The alternating decision tree learning algo-
rithm. In: ICML, vol 99, pp 124-133

Han J, Kamber M, Pei J (2012) Data mining, concepts and techniques,
3rd edn. Morgan Kaufmann, San Francisco

Horowitz E, Sahni S, Mehta DP (2006) Fundamentals of data structures
in C++, 2nd edn. Silicon Press, Summit

Kang U, Tsourakakis CE, Christos F (2009) PEGASUS: a peta-scale

ICDM 2009, pp 229-238

@ Springer

http://d3js.org
http://d3js.org
http://jquery.com

1770

T.-W. Chiou et al.

Kiyomoto S, Fukushima K, Miyake Y (2012) Design of categorization
mechanism for disaster-information-gathering system. J] Wirel Mob
Netw Ubiquitous Comput Dependable Appl 3(4):21-34

Lutkebohle I (2013) English letter frequency counts: Mayzner revisited

Luxburg UV (2007) A tutorial on spectral clustering. Stat Comput 17(4):
395-416

Palmieri F, Fiore U (2009) A nonlinear, recurrence-based approach to
traffic classification. Comput Netw 53(6):761-773

Porras P, Saidi H, Yegneswaran V (2009) Conficker analysis. SRI Inter-
national, Menlo Park

@ Springer

Stone-Gross B, Cova M, Cavallaro L, Gilbert B, Szydlowski M, Kem-
merer R, Kruegel C, Vigna G (2009) Your botnet is my botnet: analy-
sis of a botnet takeover. In: Proceedings of the 16th ACM conference
on computer and communication security. ACM, New York, pp 635—
647

Xu K, Wang F, Gu L (2011) Network-aware behavior clustering of
internet end hosts. In: IEEE INFOCOM 2011, pp 2078-2086

Yadav S, Reddy A, Ranjan S (2010) Detecting algorithmically gen-
erated malicious domain names, In: Proceedings of the 10th ACM
SIGCOMM conference on internet measurement, pp 48-61

	Network security management with traffic pattern clustering
	Abstract
	1 Introduction
	2 Analysis of DNS log
	2.1 Notations
	2.2 Workflow

	3 Traffic analysis
	4 Conclusion
	References

