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For many applications, to reduce the processing time and the cost of decision making, we need to reduce
the number of sensors, where each sensor produces a set of features. This sensor selection problem is a gen-
eralized feature selection problem. Here, we first present a sensor (group-feature) selection scheme based
on Multi-Layered Perceptron Networks. This scheme sometimes selects redundant groups of features. So,
we propose a selection scheme which can control the level of redundancy between the selected groups.
The idea is general and can be used with any learning scheme. We have demonstrated the effectiveness
of our scheme on several data sets. In this context, we define different measures of sensor dependency
(dependency between groups of features). We have also presented an alternative learning scheme which is
more effective than our old scheme. The proposed scheme is also adapted to radial basis function (RBS)
network. The advantages of our scheme are threefold. It looks at all the groups together and hence can
exploit nonlinear interaction between groups, if any. Our scheme can simultaneously select useful groups
as well as learn the underlying system. The level of redundancy among groups can also be controlled.

Keywords: Sensor selection; feature selection; neural networks; redundancy control.

1. Introduction

Feature selection is a key step in designing pat-
tern recognition and function approximation type
systems.1–16 The necessity of selecting a small
number of “useful” features is fourfold. It reduces
the cost of design and decision making, makes
the learning task simpler and often improves the
classification performance. Dimensionality reduc-
tion also enhances interpretability of the sys-
tem. In particular, interpretability of decision trees

and rule-based systems including fuzzy systems is
enhanced significantly with dimensionality reduc-
tion. Not only selection of a small feature set is
desired but also their relevancy/usefulness plays a
vital role. The relevancy might be in terms of improv-
ing classification/prediction performance, if the tar-
get is to design a classifier/predictor or might be
optimizing some criteria like extent of preservation
of cluster structure. More features usually increase
the degree of freedom of the system and hence the
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system gets better freedom to memorize the data.
In many bioinformatics applications,17–21 where the
number of samples is very less compared to the
number of genes, feature selection is important to
overcome the “curse of the dimensionality” problem.
Several researchers have explored in different direc-
tions for the feature selection problem3–43 and not
to mention that this search is still on.

Feature selection methods can be classified
into Wrapper and Filter methods. While wrapper
methods need a feedback from the target predic-
tor/classifier, filter methods do not need a target to
assess the utility of the features. Generally, wrapper
methods perform better as the importance of a fea-
ture lies on the problem and also the tool that is used
to solve the problem.12 To select the optimal feature
subset, one needs to go through all possible subsets of
the original feature set which is computationally inef-
ficient. There are broadly two possible directions to
overcome this problem. One is “Forward Selection”
method and the other is “Backward Elimination”
method2 but the interaction between features are
not accounted for in these methods. There are only
a handful of embedded methods, which simultane-
ously select useful features as well as learn the under-
lying systems.4,12,24,48,50,51 Some researchers47,49

also proposed rough set-based feature selection
techniques.

Group sparsity-based feature selection has been
addressed by few researchers.44–46 Though these
methods appear to be very close to our formula-
tion, a careful analysis reveals that this framework
fails to prioritize between nearly equal important
groups, as they look at the redundancy within each
group. These methods do not explicitly try to control
redundancy using measures of dependency between
groups.

Among the features present in the data set,
besides useful features, there might be some bad/
derogatory, indifferent and redundant/correlated fea-
tures. Bad features are those whose removal from the
original set might enhance the system performance.
Indifferent features do not cause any harm other than
increasing the cardinality of the feature set. A feature
having the same value for all data points is an indif-
ferent feature. There might be some features, which
are useful but strongly dependent on each other (for
example, linearly correlated features). Such features
are redundant in the sense that all of them are not

needed and selection of only a few of them is suffi-
cient for the target application. A feature selection
method should pick the useful features and discard
all kind of “not-useful features” that we have men-
tioned. While most of the feature selection schemes
do not focus on the redundant features, there are
few methods6,27,7,17,52,42,24 which remove the corre-
lated/redundant features. We would like to mention
that feature selection with controlled redundancy7 is
desirable as complete removal of redundancy would
make the system vulnerable to measurement errors.

In this work, we focus on a different kind of fea-
ture selection. Here, we assume that features are par-
titioned into several groups. There are some real-life
problems where data are collected from several sen-
sors; for example, in case of an intelligent welding
inspection system, the inputs come from different
sensors such as radiograph, thermograph and eddy-
current. And from each sensory input signal, some
features are extracted. So, use of all these sensors
would increase the cost of system design as well as
the decision making time. In this kind of applica-
tion, the designer always tries to reduce the required
number of sensors. In a more general setting, we
can view this problem as group feature selection
problem where each group of features may corre-
spond to a sensor or the group can be decided by
the designer. We can think of the conventional fea-
ture selection problem as the group feature selec-
tion, with one feature in each group. In other words,
group feature/sensor selection is a generalized fea-
ture selection problem. The sensor selection problem
is introduced and solved by Chakraborty and Pal.12

In this work, we extend this work in terms of con-
trolling redundancy between selected groups.

2. MLP Network for Group-feature
Selection with Controlled
Redundancy (GFSMLP-CoR)

Chakraborty and Pal12 developed a generalized net-
work for group-feature selection. In this work, we
move it one step further for controlling the redun-
dancy among the groups of selected features. A
sketchy description about the group feature selection
network by Chakraborty and Pal12 is given at first.
Then we discuss our redundancy control scheme in
detail. An MLP network for group feature selection
is given in Fig. 1. Note that, the architecture in Fig. 1
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Fig. 1. GFS-MLP: A group-feature (sensor) selection MLP network.

is similar to that of an MLP except that each input
is modified by the gate value of its associated group.

Let (X, Y ) be the training data set with
X = {x1,x2, . . . ,xN}T ; xj ∈ R

p and Y =
{y1,y2, . . . ,yN}T ; yj ∈ R

c. N , p and c are the num-
ber of data points, number of features and number
of classes, respectively. We denote a data point by xi

or x in the rest of paper, unless otherwise stated, the
kth component of x is denoted by xk. The network
consists of p input nodes and c output nodes. Assume
that this set of p features is partitioned into g groups
where each group is denoted by Si, i ∈ {1, 2, . . . , g}
such that

∑g
i=1 |Si| = p, |Si| is the cardinality of the

set Si (Note that Si �= Φ and Si ∩ Sj = Φ, i �= j).
Each group Si is associated with an attenuator func-
tion Fi ∈ [0, 1]. So any feature l ∈ Si is multi-
plied by the attenuator function Fi. Thus, for a data
point x and a feature l ∈ Si, the attenuated output
would be

x′
l = xlFi. (1)

When the attenuator function Fi attains the 0 value
then x′

l = 0, ∀ l ∈ Si, on the other hand, with
Fi = 1, all features belonging to the ith group enter

the network unattenuated. Each Fi is a monotonic
differentiable function of βi (a tunable parameter),
which is adjusted during the training. The parame-
ter β is unrestricted and the range of Fi is [0, 1]. Two
such attenuator functions are:

Fi =
1

1 + exp−βi
, (2)

Fi = exp−β2
i . (3)

We use the function Fi in (2), i.e. the sigmoidal func-
tion.

The symbols used in the following discussion are
given below:

x′
i: The attenuated value of the ith component, xi,

of an input vector x ∈ X .
ok

i : The output of the ith node of the kth hidden
layer.

wk
ij : The weight connecting the jth node of the kth

layer to the ith node of the k+1th layer. (k = 0
refers to the input layer, n is the total number
of hidden layers and n + 1th layer refers to the
output layer).

φ: The activation function.
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φ′k
i : The derivative of φk

i at the ith node of the kth
hidden layer.

ε: The instantaneous error for the input vector x.

Note that, in Fig. 1, the input xij denotes jth
feature in the ith group, i = 1, 2, . . . , g and j =
1, 2, . . . , |Si|, where |Si| is the size of the ith group.
Since each feature is generated by a particular sen-
sor, each feature belongs to exactly one group. With
these notations, the output from the ith node of the
output layer is on+1

i and the desired/target output
for the ith output node is yi, when the input is x.

Given an input vector x, the output from the ith
node of the first hidden layer is:

o1
i = φ


 p∑

j=1

x′
jw

0
ij


. (4)

This signal is then propagated through the
network.

2.1. Derivation of the learning rules

Let µ be the learning rate for the attenuator param-
eter and η be the same for the weights.

The attenuated inputs computed in layer one are:

x′
i = Flxi; i = 1, 2, . . . , p. (5)

Let there be n1 nodes in the first hidden layer.
The output of the ith node of the first hidden layer
is

o1
i = φ


 p∑

j=1

x′
jw

0
ij


; i = 1, 2, . . . , n1. (6)

The output of the ith node of the kth layer can be
written as:

ok
i = φ


∑

j

ok−1
j wk−1

ij


; i = 1, 2, . . . , nk;

k = 2, 3, . . . , n + 1. (7)

The final output from the ith output node of the
network is on+1

i .
For an input vector x, let the instantaneous error

be Ex. The learning algorithm updates the weights
and βs to minimize the system error E:

E =
∑
x∈X

Ex =
1
2

∑
x∈X

c∑
i=1

(on+1
i − yi)2. (8)

Differentiating E w.r.t. wk
ij we get the update rule

for weights:

∆wk
ij = −η

∑
x∈X

∂Ex

∂wk
ij

. (9)

Using the chain rules, it is easy to derive the
detailed update rules.

Similarly, the update rule for β’s can be written
as

∆βl = −µ
∑
x∈X

∂Ex

∂βl
. (10)

Detailed update rules can be found in Ref. 12.
In order to learn the weights and β values, all the

weight values are initialized with random values from
[−0.5, 0.5]. Whereas, for the β values, we initialize
them such that attenuator values are close to zero.12

So at the beginning of the training, all groups are
unimportant. As we choose the attenuator function
to be sigmoidal function, the β values are randomly
selected from [−5.05,−4.95].

Here we do not penalize selection of redundant
groups. So in a particular run two groups may be
selected which are highly correlated (linear or non-
linear). In Sec. 2.2, we address this problem of redun-
dancy control between feature-groups.

2.2. Controlling redundancy

Let us now clarify the notion of redundancy between
two groups of features or between two sensors. Sup-
pose feature F is a useful feature and feature F ′

is strongly related (dependent) to feature F . By
“related/dependent” we mean that any one of two
features would suffice. So clearly, the dependency
between two features is symmetric. On the other
hand, suppose there are two groups of features G

and G′, and for every feature in G, there is a strong
dependent feature in G′. In addition, G′ also has
some extra features. In this case, G is highly corre-
lated to G′ whereas G′ is less correlated to G. Then
with respect to group G′, G is redundant but the
converse is not true. An extreme example could be
when G ⊂ G′. In such a case when G′ is selected,
we do not need G, but when G is selected G′ may
also be needed. Thus, group dependency or sensor
dependency is asymmetric. The dependency could be
linear or nonlinear. Note that, redundancy between
groups is relevant for our purpose only if they are
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useful groups of features. A group is called use-
ful if there exists at least one useful feature in the
group. Let G and G′ be two groups, G consists of
only one feature which is a useful feature say F

and G′ consists of two derogatory features and F .
Then group G is more useful than G′ as the num-
ber of features is less in G than G′ with the same
utility.

We want to modify our group-feature selection
scheme so that the redundancy can be controlled
while selecting features. So, the learning must penal-
ize selection of redundant groups. A natural way is
to augment the system error E in (8) by a penalty
term so that use of many redundant groups of fea-
tures increases the system error as in (11):

TE = E + λP (X). (11)

In (11), P defines the penalty for using redundant
groups and λ is a regularizing constant that deter-
mines the severity of the penalty term. The term
P (X) should be defined in such a way that the redun-
dancy between groups is captured.

Let there be g groups of features. One possible
choice of P (X) is

P (X) =
1

g(g − 1)

g∑
l=1

F (βl)

×
∑
m �=l

F (βm)dep(Sl, Sm). (12)

In (12), dep(Sl, Sm) ≥ 0 is a measure of depen-
dency between the set Sl and Sm. As a simple mea-
sure of dependency, we have used dep(Sl, Sm) =
G1i∈Sl

{G2j∈Sm
{ρ2(xi, xj)∀ j ∈ Sm}∀ i ∈ Sl}, where

ρ(xi, xj) is the Pearson’s correlation coefficient
between xi and xj . G1 and G2 are aggregation func-
tions. Note that, in this work we have used G1 as the
min and G2 to be the max functions. This depen-
dency measure is asymmetric, i.e. dep(Sl, Sm) �=
dep(Sm, Sl). Also, note that dep(Sl, Sl), ∀ l is 1 which
is the highest possible level of dependency.

As mentioned before, a gate is associated to every
feature-group (sensor). So, if a group Sl is important,
the associated gate would be open, i.e. Fl would be
close to 1. Now if another group Sm is redundant
with respect to group Sl, then we do not want the
gate for Sm to be open. Thus, when Fl is close to 1,
and dep(Sl, Sm) is high, then if Fm is also open, it
will add a high penalty to the system error. Thus the

training based on gradient descent technique, pre-
vents opening of both gates Fl and Fm. Whereas, if
dep(Sl, Sm) is high but the two groups are not useful,
then the selection of them will not reduce the system
error which in turn assures that these groups are not
selected. We start our training with all gates almost
closed. The factor g(g − 1) is used just to make the
penalty term independent of the number of groups.
This will make the choice of λ a bit easier. Here, if
we set λ = 0, then (11) reduces to our original sys-
tem and higher the value of λ higher is the effect of
redundancy on the system error.

Consequently, this will change the learning rules.
Since the penalty function does not involve any
term containing weights, the learning rule for weights
remains unchanged. While the learning rule for
attenuator parameters changes slightly. It is given by,

∆βl = −µ
∂TE
∂βl

= −µ

(
∂E

∂βl
+ λ

∂P

∂βl

)
,

where
∂P

∂βl
=

1
g(g − 1)

F ′
l

×
∑
m �=l

Fm[dep(Sl, Sm) + dep(Sm, Sl)].

We note here that our scheme is a generalized
feature selection scheme and hence can be applied
as a feature selection scheme treating every feature
as a sensor or a group. The dependency measure,
dep(SlSm) is a very general one and it does not have
to be based on correlation. For example, it could be
defined using a measure of mutual information. Dur-
ing learning, β’s will change in such a manner that
they will facilitate selection of those groups that help
to solve the learning problem and at the same time
control the use of redundant groups.

2.3. Experimental results

In this investigation, sigmoidal function is used as
both attenuator and activation functions. The batch
mode learning is used. We consider a group to be use-
ful if its attenuation is below 90%; in other words,
the gate is opened more than 10%. In this work, as
the main concern is to control redundancy among
groups, the threshold for the attenuation value is
decided in an ad hoc manner. One can use the
cross-validation mechanism for choosing an appro-
priate threshold value. But in practice, for a real
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application, it will depend on the user and the prob-
lem. For example, if we want to design an intelli-
gent weld inspection system, we can use sensors like
X-ray images, thermal images, visual images, eddy
current and acoustic emission. In this particular case,
the cost of design, the decision making time as well
as physical constraints (size of the equipment) will
determine the desired set of sensors that the user
would use.

We have used altogether 10 data sets as summa-
rized in Table 1. This includes two variants of Iris
data set denoted by Iris 1, Iris 2. In the Iris data
set53 (this data set is also used by Chakraborty and
Pal12), the four features are sepal length (f1), sepal
width (f2), petal length (f3) and petal width (f4).
We group sepal length and width as the first group
and the remaining two features as the second group.
This is a natural grouping. This data set is denoted
by Iris 1. The second variant of the Iris dataset, i.e.
Iris 2 contains three groups. The first group con-
tains two features f1 and f2, the second group con-
sists of three features f1 ± N(0, 0.05), f3 and f4.
The last group has two features f3 ± N(0, 0.05) and
f4 ± N(0, 0.05).

The electroencephalography (EEG) data are used
in many applications.55–63 The problem of selection
of useful channels/independent components arises in
most of the applications of EEG. To investigate the
effect of dual task on EEG while driving, we collected
EEG data by a virtual-reality (VR) based on high-
way driving environment. The VR driving environ-
ment has 3D surrounded scenes projected by seven

Table 1. Summary of all data sets used.

Data set
Data set #Class #Features size

Iris 1 3 4 150
Iris 2 3 7 150
Distraction 5 70 393
RS-Data 1 8 7 262,144
RS-Data 2 8 9 262,144
RS-Data 3 8 14 262,144
RS-Data 4 8 18 262,144
LandSat 6 44 6435
LRS 10 93 531
Gas sensor 6 128 13,790

projectors and a real car mounted on a platform with
6-degree-of-freedom to provide the kinesthetic stim-
uli to make the subject feel realistic driving con-
ditions. The subjects are given stimulus which are
similar to what they would face in a real driving sce-
nario. During driving, all scenes move according to
the displacement of the car and the subject’s maneu-
vering of the wheels, which make the subject inter-
act directly with the virtual environment. For this
dual-task study, the drivers are asked to respond to
two different kinds of events: unexpected car devia-
tion and simple mathematical questions. Five cases
(conditions) are used to investigate the interaction of
these two tasks and their effect on the brain waves.
The five cases are as follows.

• Case-1 – A math question is asked at 400ms
before the occurrence of the car deviation (math-
400ms-deviation)

• Case-2 – Two tasks (deviation and math ques-
tion) appear simultaneously (deviation and math)

• Case-3 – A math question is asked at 400ms after
the occurrence of the deviation (deviation-400ms-
math)

• Case-4 – Only the math question is asked (single
math)

• Case-5 – The car is subjected to only sudden
deviance (single deviation)

In the actual experiment, each subject took part in
four sessions, each of 15min duration. Here we can
accommodate a total of about 100 trials in each con-
dition. Subjects are given a break between every two
sessions to avoid fatigue. The EEG data used in this
paper are collected from 11 healthy subjects who are
students of the National Chiao Tung University, Tai-
wan. The standard ethics protocol was followed and
consent of each student was taken. The physiologi-
cal data are collected by a 32-channel EEG module
(Neuronscan, Inc.) arranged according to interna-
tional 10-20 system. The reference channels used
are A1 and A2. The EEG data are recorded with
16-bit quantization levels at 500Hz sampling rate.
The collected EEG data are first pre-processed to
remove noise. To reduce the computational overhead,
we lower the sampling rate of EEG data from 500
to 250Hz. Since the five different cases appear in a
randomly mixed order, we first separate the EEG
signals related to different cases from the raw EEG
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data. An epoch is defined as the length of EEG sig-
nals corresponding to a particular case (trial), and it
includes data from a baseline to the end of response
by the subject. Here, each epoch is of 6s and thus con-
sists of 1500 sample points. For this work, we took
only 1000 samples by removing the first and last 250
sample points. After extracting all epochs, ICA is
applied to separate independent brain sources. To
reduce the effect of blinking of eyes, we have ignored
the 2 channels which are near the eye position. The
remaining 30 of the 32 channels are used for the
IC analysis. From this 30 independent components,
we have chosen seven components, namely, Frontal,
Central, Parietal, Right Occipital, Left Occipital,
Left Motor and Right Motor. We treat these seven
components as seven sensors. Sensors are numbered 1
through 7 in the order in which they are listed. Fea-
tures computed from the ith senor will be referred
to as either ith senor data or ith group features. On
each of the seven components, we have applied multi-
class common spatial patterns (CSP) to extract 10
features. The two-class CSP technique is extended
to multiclass paradigm by using joint approximate
diagonalization (JAD) (see Ref. 54 and the refer-
ences therein). Thus, from each of the seven com-
ponents, we have extracted 10 features resulting a
7-sensor (groups of features) problem with each sen-
sor (group) consisting 10 features. We denote this
data set by Distraction having 393 points distributed
in 5 classes.

The next four data sets are different variations
of RS-Data.65 This is also a true sensor selection
problem. RS-Data set is generated from a 256 level
satellite image of size 512× 512 taken by seven sen-
sors operating in different spectral bands. Thus, the
data set consists of 262,144 data points. The gray
values of a pixel from the seven images (channels)
correspond to a 7–D feature vector. There are eight
classes in this data set. Our first variant of the
RS-Data, denoted by RS-Data 1, consists of seven
groups (each group corresponds to one sensor) with
one feature in each group. The second variant used
is RS-Data 2, which has two more sensors over the
first variant. These two sensors, namely, groups 8
and 9, consist of one feature each which are the noise
added values of features 4 and 6, respectively. So, RS-
Data 2 consists of nine groups with one feature per
group.

The next variant is denoted by RS-Data 3. Here
the number of groups is the same as that of RS-
Data 1. In addition to the pixel(p) values (the first
feature), another feature is introduced per group,
which is the standard deviation of the pixel val-
ues over the 3 × 3 neighborhood centered at the
pixel p under consideration. So RS-Data 3 consists
of seven groups, each with two features per group.
Note that the same RS-Data 1 and RS-Data 3 were
used in Chakraborty and Pal,12 there these data sets
were named as RS-Data and RS14, respectively. The
fourth variant, RS-Data 4 is an augmented version
of RS-Data 3. As in case of RS-Data 2, here groups
8 and 9 are added, which are the noise added ver-
sions of group 4 and 6, respectively. Thus, there are
two redundant sensors. For each of these variants we
have used 1600 points for training taking 200 ran-
domly selected points from each class (as several ear-
lier studies used this protocol). The remaining points
are used for testing classification accuracy.

The next data set is a variant of Statlog (Land-
sat Satellite) data set.53 This data set consists of
multi-spectral values of pixels in 3 × 3 neighbor-
hoods in a satellite image. There are six classes and
the class label corresponds to the center pixel. The
data set contains images in four spectral bands, each
band has nine features correspond to nine pixel val-
ues. We modified this data set by augmenting with
two additional features, mean and standard devia-
tion of the pixel values of the 3 × 3 neighborhood.
Thus, the data set used here, named as LandSat,
contains 4 groups each with 11 features. There are
6435 sample points distributed in 6 classes. We have
used 4435 samples in the training set and 2000 sam-
ples to test the classification accuracy as suggested
in Ref. 53.

The data set,53 low resolution spectrometer
(LRS) contains 531 high quality spectra derived from
IRAS-LRS database. This data set contains features
from two bands namely blue and red bands. These
two bands consist of 44 and 49 flux measurements,
respectively. Thus, LRS is a 93-dimensional data set
having two groups/sensors.

The last data set is the Gas Sensor data, which
consists of 13,910 measurements from 16 chemical
sensors. From each gas sensor 8 features have been
extracted forming a 128-dimensional data set gen-
erated by 16 sensors and divided into 6 classes. We
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removed the missing values from this original data
set which results in a data set consisting of 13,790
points.

For all our experiments with GFSMLP-RoC, we
use just one hidden layer. To make our results more
reliable, we use two-level cross-validation mechanism
as explained next. In the outer level, first we ran-
domly partition the data into 10 folds, each of equal
size (to the extent possible), X = X1 ∪ X2 ∪ · · · ∪
X10, Xi ∩ Xj = Φ∀ i �= j. One of the folds, say Xj ,
is kept out for testing. While the remaining 9 folds
data, Y =

⋃
i,i�=j Xi, are now used for selection of

features as well as for designing a network to test
the effectiveness of the selected features on the data
left out in the outer loop, i.e. on Xj . This is repeated
for all j = 1, . . . , 10.

In the inner loop, we use only Y and perform
two tasks. First, we again use the cross-validation
mechanism on Y to find the desirable architecture for
a conventional MLP. Let n1 be the optimal number
of hidden nodes found using Y by varying n1 from 2–
20. Now we run the feature selection MLP (with n1

hidden neurons) on Y . After the groups of features
are selected, we project Y on the selected feature
space to obtain Y ′.

In order to assess how good these selected fea-
tures are, we train a conventional MLP using the
selected groups of features, i.e. using the data set Y ′.
In the reduced feature space, we again use the 10-fold
cross validation mechanism on Y ′ to find the most
desirable architecture, n2 for Y ′. For this, we vary the
number of hidden nodes from 2 to 15. Next, we train
an MLP with n2 hidden nodes using data set Y ′ and
test it on X ′

j , where X ′
j is the projected version of

Xj that was left out in the outer loop. This process
is repeated for all Xj ; j = 1, . . . , 10 in the outer loop
to get the misclassification rate using the selected
features. Finally, the entire process is repeated 10
times, every time using a different random partition
in the outer loop. We report the average of the error
rates.

The training is terminated when either the mis-
classification error reduces to less than 10% or the
number of iterations reaches 1000. We have followed
this protocol for all data sets. Note that, such a uni-
form principle may not be best for all data sets. A
group of features (sensor) is considered useful if the
associated gate opens more than 10%. If for more
than one choice of number of hidden nodes, the error

Table 2. Selection of Groups(%) for Iris 1 data for
different values of penalty.

Groups
Average

Misclassification no. of
Penalty 1 2 error (%) groups

All
groups 100.00 100.00 3.33 2.00

0 70.00 90.00 4.00 1.60
2 40.00 60.00 4.67 1.00
5 30.00 70.00 4.67 1.00

10 50.00 50.00 6.67 1.00

(number of misclassifications) attains the minimum
value, then the smallest number is selected as the
number of hidden nodes.

For Iris 1 data, we conducted our experiments
with four different penalty levels: λ = 0, 2, 5, 10. We
have mentioned earlier that for λ = 0, the proposed
method reduces to the method by Chakraborty and
Pal12 and hence it compares our results with those
of Chakraborty and Pal.12 We note from Table 2
that for λ = 0, on an average 1.6 groups are selected
resulting 96% classification accuracy, whereas, the
classification accuracy taking all groups is 96.67%.
This insignificant compromise in classification accu-
racy results from 20% reduction in group selection.
In Table 2, we find that group 2 usually has a higher
frequency than the first group, which is intuitive as
group 2 comprises features 3 and 4, the best two fea-
tures of the Iris data set. With increase in λ value,
the two groups are selected mutually exclusively. For
this data set, the correlation between Group 1 and
Group 2 is 0.18 and that between Group 2 and Group
1 is 0.67. With further increase in λ value, i.e. with
λ = 10, both groups 1 and 2 get selected 50% of time,
which results in an increase in misclassification error
rate.

If we use a very high value of λ, no groups may be
selected because then the penalty term will dominate
over the error term. Figure 2 depicts how the β values
change with iterations. We find that with iteration,
β value for group 1 becomes more negative, on the
contrary, group 2’s β value becomes more positive.
The variation of total error (TE) with iterations is
shown in Fig. 3. Comparing Figs. 2 and 3 we find
that with iteration as group 2 is selected, i.e. as the
attenuator value of group 2 becomes close to one, the
error rate decreases rapidly.
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Fig. 2. Gate Opening with iteration for Iris 1 data set
with penalty 2.
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Fig. 3. Variation of Misclassification Error with itera-
tion for Iris 1 data set with penalty = 2.

Table 3. Selection of Groups(%) for Iris 2 Data for dif-
ferent values of penalty.

Groups Misclassifi-
cation Average #

Penalty 1 2 3 error (%) groups

All 100.00 100.00 100.00 4.00 3.00
0 100.00 80.00 80.00 4.00 2.60
2 10.00 100.00 0.00 4.67 1.10
5 0.00 50.00 50.00 6.67 1.00

10 30.00 40.00 30.00 10.00 1.00

For Iris 2, the effect of λ values on redundancy
control is shown in Table 3. When the λ value is zero,
the first group is selected in all runs, while each of the
second and third groups is selected 80% times. When

Table 4. Group correlation (Eq. (13)) values and alter-
native correlation (Eq. (14)) values (shown in ()) for the
Iris 2 Data.

Groups 1 2 3

1 1.00 0.18 (0.47) 0.17 (0.43)
2 0.67 (0.71) 1.00 0.49 (0.76)
3 0.53 (0.61) 0.80 (0.86) 1.00

λ = 2, the first and second groups got selected with
frequency 10% and 100%, respectively whereas group
3 is not selected at all. The correlation in Table 4
depicts that groups 2 and 3 have significant corre-
lations with all others. As a result on an average a
single group is selected with higher λ value. Group 1
is completely rejected when λ value is 5 as this group
is less discriminative than the other two.

The results for the four variants of RS data sets
are given in Table 5. From this table, we can see that
with a positive penalty value, the average number of
groups selected decreases. By inspecting the correla-
tion table of RSData 1 (Table 6), we find five pairs of
significantly correlated groups, namely, {1, 2}, {1, 3},
{3, 7}, {2, 3} and {5, 7}. And by inspecting Fig. 4,
we see that with no control on redundancy groups
{1, 2}, {1, 3} are selected together for few runs.
But with a positive λ value, inspection of detailed
results (data not shown) reveals that those groups

Table 5. Selection of features for RS datasets using
GFSMLP-RoC.

Penalty Average no. Misclassification
Dataset (λ) of groups error (%)

RSData 1 0 3.80 16.92
2 2.80 20.71
5 2.50 21.23

10 1.90 23.03

RSData 2 0 5.50 17.01
2 2.80 18.42
5 2.40 22.94

10 2.50 20.63

RSData 3 0 3.90 19.80
2 2.90 20.67
5 1.90 23.23

10 1.60 23.66

RSData 4 0 5.40 19.10
2 3.50 20.42
5 3.10 23.23

10 2.70 25.05
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Table 6. Group correlation matrix for RS-Data 1.

Groups 1 2 3 4 5 6 7

1 1.00 0.93 0.84 0.07 0.27 0.21 0.55
2 0.93 1.00 0.93 0.13 0.38 0.26 0.66
3 0.84 0.93 1.00 0.19 0.51 0.32 0.78
4 0.07 0.13 0.19 1.00 0.67 0.17 0.40
5 0.27 0.38 0.51 0.67 1.00 0.37 0.84
6 0.21 0.26 0.32 0.17 0.37 1.00 0.45
7 0.55 0.66 0.78 0.40 0.84 0.45 1.00

Fig. 4. Selection Frequency of different groups for the
RSData 1 data set.

are selected in a mutually exclusive manner, which
proves the effective control of redundancy. Similarly,
from the information about simultaneous selection of
different features (data not shown) for RSData 2, we
find that group 9 and group 6 are selected together
when there is no redundancy control but since they
are highly correlated (group 9 is a noise-added ver-
sion of group 6) they are selected mutually exclu-
sively with positive penalty values. Similar results

Table 7. Selection of Groups(%) for distraction data for different values of penalty.

Groups
Misclassification Average no.

Penalty 1 2 3 4 5 6 7 error (%) of groups

All groups 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.11 7.00
0 62.00 68.00 32.00 44.00 48.00 43.00 30.00 0.33 3.27
2 35.00 58.00 7.00 14.00 42.00 16.00 17.00 0.56 1.89
5 23.00 44.00 3.00 13.00 16.00 8.00 4.00 0.31 1.11

10 20.00 32.00 6.00 10.00 17.00 7.00 8.00 0.56 1.00

are observed for RSData 3 and RSData 4. In case of
RSData 3, like RSData 1, group 1 and group 3 have
a high correlation value. Analogously, groups 1 and
3 are selected in an alternate manner with increase
in the penalty factor.

For the distraction Data set, the sensor/group
selection result is given in Table 7. Consulting this
table, we see that without any redundancy control,
our scheme reduces the average number of groups
(components) to more than 50% with a marginal sac-
rifice in the misclassification error rate. By inspec-
tion, we found that in case of penalty value 0,
groups 1 (Frontal component) and 7 (Right Motor
component) got selected together for a few runs.
But they got selected mutually exclusively with
increase in penalty value. Analyzing the pairwise
group correlation values we find that those two
groups are highly correlated (the correlation value
is of 0.93). For a penalty factor of 5, the misclassi-
fication error value is improved with less number of
groups on an average, which in turn suggests that
there might be some derogatory group(s) present in
the data set which are removed with higher penalty
values.

The average number of groups selected for the
LandSat data with different penalty level are given
in Table 8. This table reveals that with increase
in penalty, the average number of groups decreases
with a slight increase in misclassification error. For
instance, with penalty value 2, on an average 43%
groups are selected with an increase of 7% misclas-
sification error. For the Land Sat data, group 1 and
group 2 have the highest correlation of 0.65. So, with
an increase in the penalty value, the selection fre-
quency of group 2 decreased drastically, as found in
Fig. 5, which suggests the importance of group 1 over
group 2 and also the effectiveness of control of redun-
dancy by the proposed method.
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Table 8. Selection of groups for Land Sat data.

Penalty Average no. Misclassification
(λ) of groups error (%)

All 4.00 12.10
0 2.90 15.05
2 1.70 19.00
5 1.30 22.00

10 1.20 24.98

Fig. 5. Selection frequency of different groups of Land
Sat dataset.

Table 9. Selection of groups for LRS Data.

Penalty Average no. Misclassification
(λ) of groups error (%)

All 2.00 11.11
0 2.00 11.11
2 1.00 12.24
5 1.00 12.43

For the LRS data, the two groups are moderately
correlated. So, with increase in the penalty value,
one group is selected on an average, with almost 1%
increase in the misclassification error (Table 9).

Table 10 depicts the significant correlation val-
ues for the gas sensor data. For this data set, with
no redundancy control, our scheme selects almost
33% sensors with 1.3% increase in misclassification
error; while with positive penalty values, the aver-
age number of groups decreases drastically with an
increase in error value, as can be seen from Table 11.

Table 10. Significant Group correlation values (≥ 0.7)
for gas sensor data.

F1 F2 ρ F1 F2 ρ

12 3 0.77 7 8 0.92
11 3 0.79 8 7 0.92
12 15 0.83 9 10 0.93
12 16 0.83 10 9 0.93
15 12 0.83 11 12 0.96
16 12 0.83 12 11 0.96
11 16 0.86 13 14 0.97
16 11 0.86 14 13 0.97
11 15 0.87 15 16 0.97
15 11 0.87 16 15 0.97

Table 11. Selection of groups for gas sensor data.

Penalty Average no. Misclassification
(λ) of groups error (%)

All 16.00 4.30
0 6.00 5.61
2 2.30 13.44
5 2.00 13.44

10 1.90 13.01

Fig. 6. Selection frequency of different groups for the
gas sensor data set.

This suggests that there are useful dependent sen-
sors. Consulting the Table 10, we do find that the
pairs {15, 16}, {13, 14}, {11, 12}, {9, 10}, {8, 7}
have high dependencies. So, with a positive penalty
value, members from these group pairs are usually
selected (Fig. 6) mutually exclusively (detailed data
are not shown). With λ = 0, groups 13 and 14 are
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selected together a few times (data not shown), but
with a penalty factor of 2, group 13 has been selected
with only 10% frequency whereas group 14 has not
been selected at all.

3. An Alternative Definition of Group
Dependency

In Eq. (12), we have defined dep(Sl, Sm) =
G1i∈Sl

{G2j∈Sm
{ρ2(xi, xj)∀ j ∈ Sm}∀ i ∈ Sl}, where

G1 and G2 are the two aggregation functions. Pre-
viously, we have used G1 and G2 as min and max,
respectively. Thus, the definition is as follows.

dep(Sl, Sm) = min
i∈Sl

max
j∈Sm

ρ2(xi, xj). (13)

We have also demonstrated that this definition
of group dependency works well. However, here we
point out an example where these definition of aggre-
gation functions behave differently than expected.
Then, we propose an alternative definition of aggre-
gation function G1 to address this issue.

Suppose there are two groups S1 and S2 consist-
ing of four features each. Let us denote these fea-
tures by f1, . . . f8 where first four belong to group S1

and the rest in S2. Also assume that the features in
the second group are the features in the first group
with some added random noise from N (0, 0.5). Addi-
tionally, we have the information that features 1, 2
and 3 (and therefore feature 5, 6, 7) are very impor-
tant features for the classification task. On the other
hand, feature 4 (therefore feature 8) is completely
random feature from N (0, 0.05). Thus, the feature
pairs {f1, f5}, {f2, f6}, {f3, f7} have high Pearson’s
correlation values whereas the feature pair {f4, f8}
has low correlation value. So, by going through the
group penalty definition, Eq. (13), both dep(S1, S2)
and dep(S2, S1) is very low due to {f4, f8} correlation
value. But, intuitively, the two groups are equally
good and selection of only one is sufficient. As by
definition (13), the dependency between them is low,
it might result in selection of both. This is not very
desirable and we do not want that. Note that, here
the system will work, but the redundancy control will
not be good. To resolve this problem, we have pro-
posed an alternative definition of group correlation
as follows.

dep(Sl, Sm) = avgi∈Sl
max
j∈Sm

ρ2(xi, xj). (14)

Now, we demonstrate the utility of this definition
on three variants of Iris data. The group dependency

Table 12. Alternative Group dependency matrix
for Iris 1 Data.

Groups 1 2

1 1.00 0.47
2 0.71 1.00

Table 13. Selection of features for datasets using the
old and new dependency measure.

Average no.
Penalty of groups Misclassification

Dataset (λ) (Grp. Freq.) error (%)

Iris 1 All 2.00 2.67
0 1.80 (80 +100) 3.33

{1.60 (70 +90)} 4.00
2 1.00 (20 +80) 4.67

{1.00 (40 +60)} 4.67
5 1.00 (20 +80) 5.33

{1.00 (30 +70)} 4.67
10 1.00 (30 +70) 9.33

{1.00 (50 +50)} 6.67

Iris 2 All 3.00 4.00
0 2.20 (100 + 70+ 50) 4.00

{2.60 (100 + 80+ 80)} 4.00
2 1.00 (30 +40 +30) 4.67

{1.10 (10 +100 + 0)} 4.67
5 1.00 (30 +60 +10) 6.67

{1.00 (0+50 +50)} 6.67
10 1.00 (50 +30 +20) 10.00

{1.00 (30 +40 +30)} 10.00

values for Iris 1 are displayed in Table 12; while
the same for Iris 2 are included in Table 4. The
average number of selected groups and misclassifi-
cation error using different penalty levels are given
in Table 13. The results using the old definition
are given in {}. For these two data sets, the new
definition works equally well as that of the old
definition.

In order to further demonstrate the usefulness of
our alternative definition of group dependency over
the earlier one, we took a third variant, Iris 3 data
consisting of three groups. The first group contains
the first two features of Iris data. The second group
consists of third and fourth features of Iris data with
a third random feature following N(0, 0.05) distribu-
tion. While, the last group is the noise added version
of group 2 with three features. In this case, there are
three groups in which the second and third groups
are almost equally good groups. The two groups
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Table 14. Alternative group dependency matrix for
Iris 3 Data, the values in () represent the group cor-
relation using Eq. (13).

Groups 1 2 3

1 1.00 0.47 (0.18) 0.47 (0.18)
2 0.48 (0.01) 1.00 0.67 (0.0)
3 0.48 (0.02) 0.68 (0.04) 1.00

should have a high dependency value as they con-
sist of practically the same features. But our earlier
definition fails to capture this situation as evident
from the dependency shown in () Table 14, which
also depicts the group dependency using the alter-
native definition. In Table 14, we see that groups
2 and 3 have a significant level of dependency as
per the new definition. This demonstrates that this
alternative definition of group dependency is quite
effective. The results of group selection using both
our old and modified definitions of group dependency
are shown in Table 15. This result reveals that using
our modified definition of dependency, with high λ

value, the dependent groups are selected mutually
exclusively. On the contrary, using the old definition,

Table 15. Selection of features for Iris 3 using the two
dependency measures.

Average no.
Measure of Penalty of groups Misclassification
dependency (λ) (Group Freq.) error (%)

Old
definition All 3.00 4.00

0 2.30 4.00
(70 + 80 + 80)

2 1.30 4.67
(20 + 40 + 70)

5 1.00 7.73
(10 + 50 + 40)

10 1.00 9.33
(10 + 30 +60)

Alternative
definition All 3.00 4.00

0 2.60 2.00
(100 + 70 + 90)

2 1.00 4.67
(20 + 40 + 40)

5 1.00 7.73
(10 + 20 + 70)

10 1.00 8.67
(10 + 40 +50)

with λ = 2, groups 2 and 3 got selected together 10%
of the time as the dependency between them is not
significant. Moreover, with λ = 2, using the old def-
inition the average number of groups selected is 1.3
which is reduced to 1.0 for the new definition. This
suggests that our new dependency definition matches
our intuition.

4. An Alternative to Pearson’s
Correlation

Here we describe an alternative to Pearson’s corre-
lation coefficient. Why an alternative to Pearson’s
correlation is needed? The Pearson’s correlation
measure between two random variables A and B

is linear and the corr(A, B) = 0 does not mean
that A and B are completely independent. In order
to address this independence issue, Gebelein66 had
introduced a new dependence coefficient:

ρGM(A, B) = sup
fg

ρ(f(A), g(B)),

where ρGM(A, B) is the Gebelein’s Maximal Corre-
lation (GMC)66 and ρ(·, ·) is the Pearson’s correla-
tion. Here, the supremum is taken over all possible
functions f , g with finite variance. Unlike Pearson’s
correlation, GMC has the independence property, i.e.
A and B are independent, iff ρGM(A, B) = 0. GMC
takes value between 0 and 1 with equality on either
side and it is also symmetric. This is a very general
definition of dependency.

Kursun and Favorov67 have shown that using
set of INteractive BAckpropagating Dendrities
(SIN-BAD) strategy,68,69 one can (approximately)
measure the GM correlation between two random
variables A and B. The detail of the SINBAD algo-
rithm is given in Ref. 67. This algorithm requires
Support Vector Machines, so we have used “SVM
light” toolbox70 for this purpose. Using the GM cor-
relation, we repeat the group selection experiment
on the two variants of Iris and report the results in
Table 17. As an illustration, we have provided the
group dependency using GMC definition for Iris 2
data in Table 16. As expected, the GMC between two
groups is usually higher than the measure of depen-
dency computed using Pearson’s correlation and
hence the impact of redundant groups is more severe
when we use GMC. From these limited results, we see
that our scheme works equally well to remove the
level of redundancy among selected feature-groups.
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Table 16. Group dependency Matrix using GMC for
Iris 2 Data.

Groups 1 2 3

1 1.00 0.95 0.89
2 0.95 1.00 0.97
3 0.89 0.97 1.00

Table 17. Selection of features for datasets using the
GM correlation in measure of dependency.

Average no.
Penalty of groups Misclassification

Dataset (λ) (Group Freq.) error (%)

Iris 1 0 1.80 4.67
(90 + 90)

2 1.00 8.00
(40 + 60)

5 1.00 8.00
(40 + 60)

Iris 2 0 2.30 6.00
(80 + 80 + 70)

2 1.00 9.33
(30 + 40 + 30)

5 1.00 9.33
(20 + 50 + 30)

The group correlation definition using GMC, is given
in Eq. (15).

dep(Sl, Sm) = min
i∈Sl

max
j∈Sm

ρ2
GM(xi, xj). (15)

Since we could not find much advantage using the
GMC and finding of GMC is computationally quite
expensive, we do not experiment with other data sets
using GMC.

5. An Alternative Learning Scheme

So far, we have learned the gate opening and net-
work weights simultaneously by gradient descent
technique. We began our training keeping all gates
almost closed. In this section, we use an alterna-
tive and more effective learning scheme, named as
mGFSMLP-CoR.

This learning scheme7 comprises two stages. In
the first stage, we learn only network weights keep-
ing all gates completely opened. In the second
stage, on the trained network we learn both net-
work weights and gates simultaneously starting with
all gates almost closed. This learning scheme bears
some advantages over the earlier scheme. First, this

learning scheme is less sensitive to initialization of
weights. Second, if there are some bad or derogatory
groups, those are easily removed in the second stage.
Also, the selection of groups is consistent over differ-
ent runs.

The result of mGFSMLP-CoR on several data
sets are given in Table 18. Consulting the results in
Table 18, we find that the results are very much com-
parable with that of the old learning scheme. Also,
it is evident that the distinct number of groups is
very close to the average number of groups selected.
This suggests selection of almost a fixed set of groups
over different runs. In other words, the new learning
scheme reduces the impact of the initialization signif-
icantly. The misclassification error value is also very
much comparable to the original method which sug-
gests the effectiveness of mGFSMLP-CoR.

Next, we adapt our method to a radial basis func-
tion (RBF) network.

6. RBF NETWORK for Group
Feature Selection with Controlled
Redundancy (GFSRBF-CoR)

In this section, we propose a RBF network for
group feature selection. Like MLP, RBF and other
probabilistic neural networks are useful in various
applications.63,64,75–84 Given a training data set
(X, Y ), where X = {x1,x2, . . . ,xN} ⊂ R

p, a typ-
ical RBF network computes the function F ∗(x) =∑N

i=1 wiΦi(x), where Φi is the ith basis function,
Φi(x) = exp{− ‖x−µi‖

σ2
i

} in case of a Gaussian basis
function. µi and σi are the center and spread
of the ith basis function, respectively. ‖ · ‖ is the
Euclidean norm. Let, x = [x1, x2, . . . , xp]T and µi =
[µi1, µi2, . . . , µip]T . then,

Φi(x) =
p∏

j=1

exp
{
− (xj − µij)2

σ2
i

}
. (16)

As discussed earlier, here also the data are col-
lected from g sensors. Let, for a data point x, the
features from the jth sensor be denoted by sj. Hence
x = [s1s2 · · · sg]T . Similarly, µi can be written as
µi = [m1

i m
2
i · · ·mg

i ], where sj and mj
i have the same

dimensionality, ∀ j ∈ {1, . . . , g}. Now, the jth com-
ponent of the ith basis function, i.e. the contribution
of jth group/sensor to the ith basis function, Cj

i can
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Table 18. Selection of features for datasets using mGFSMLP-CoR.

Penalty Average # Unique # Misclassification
Dataset (λ) of features of features error (%)

Iris 1 0 2.00 2 3.47
2 1.00 1 3.93
5 1.00 1 3.93

10 1.00 1 3.93

Iris 2 0 2.00 2 3.47
2 1.00 1 3.93
5 1.00 1 3.93

10 1.00 1 3.93

LRS 0 2.00 2 9.43
2 1.00 1 11.32
5 1.00 1 11.32

10 1.00 1 11.32

LandSat 0 3.90 4 13.06
2 2.30 3 13.53
5 2.00 2 15.56

10 1.90 2 18.35

Dist. Data 0 3.40 5 0.23
2 2.00 2 0.31
5 1.10 2 0.51

10 1.00 2 0.74

Gas Sensor 0 12.60 15 4.87
2 4.20 8 11.20
5 3.20 8 12.49

10 1.80 4 12.89

RSData 1 0 6.70 7 16.91
2 4.00 4 20.67
5 2.60 3 21.16

10 1.60 3 22.66

RSData 2 0 8.90 9 16.81
2 3.00 5 17.85
5 2.50 4 20.26

10 2.00 3 21.40

RSData 3 0 6.60 7 19.42
2 3.00 3 20.55
5 2.20 3 23.02

10 2.00 3 23.47

RSData 4 0 8.70 9 18.81
2 3.10 5 20.02
5 2.60 3 23.24

10 1.60 3 25.05

be written as

Cj
i = exp

{
−‖sj − mj

i‖2

σ2
i

}
. (17)

Then, Eq. (16) can be written as Φi(x) =
∏g

j=1 Cj
i .

Now, our goal is to eliminate the bad feature
groups or sensors, i.e. the effect of a bad group should

not be propagated into the network. So, if the jth
group is bad, Cj

i should have no effect on Φi(x), ∀ i.
In order to ensure that, we introduce attenuator/gate
function associated with each feature group12 like the
GFSMLP-CoR network discussed earlier.

Let, Fj is the attenuator function with the jth
sensor. As done in Ref. 12, here also the modulated
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output from the sensory basis function is written as

Cj
i =

[
exp

{
−‖sj − mj

i‖2

σ2
i

}]Fj

. (18)

For a bad feature group j, Fj should take the value 0,
so that Cj

i is 1 and hence it would not have any effect
on Φi(x). On the other hand, for a good feature j,
Fj should take the value 1, so that Eq. (18) reduces
to Eq. (17). As in case of GFSMLP-CoR, here also
we have taken

Fj =
1

1 + exp(−βj)
,

where βj is the tunable gate parameter.
This network is realized using four layers (Fig. 7)

as in Ref. 12. Here we follow the same notation as in
Ref. 12. We denote the output of the ith layer by z(i).

The first layer is the input layer that consists of
p nodes. The second layer is the component func-
tion layer. If there are m basis functions, then this
layer consists of g ×m nodes. Thus, z

(2)
ij denotes the

output of the component function related to the jth
group of the ith basis function. The third layer is the
basis function layer where the number of nodes is the
number of basis functions, m. The output of the ith
node is z

(3)
i =

∏g
j=1 z

(2)
ij .

Fig. 7. GFS-RBF: Group feature selection RBF network.

The last layer is the output layer consisting of c

nodes where c is the number of classes in the data
set. This layer is fully connected with the previous
layer. Let wij be the weight associated with the link
between the jth node of the third layer to the ith
node of the output layer. Then the output of the ith
node in the output layer is

z
(4)
i = f


−

m∑
j=1

wijz
(3)
j


,

where f is the sigmoidal function in order to ensure
the value of f(·) between 0 and 1. Thus,

z
(4)
i =

1

1 + exp(
∑m

j=1 wijz
(3)
j )

.

6.1. Learning rules

Given a training data (X, Y ), let for a data point x
the output vector be y = [y1, y2, . . . , yc]T and Ex be
the instantaneous error for the data point x. Thus,
the total system error on the training data is

E =
∑
x∈X

Ex =
1
2

∑
x∈X

c∑
i=1

(z(4)
i − yi)2.
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In this work, we shall assume fixed center and
spread for the basis functions. We use gradient-
descent technique to learn group modulator βj

and wij .
Now, in order to control the redundancy among

the selected groups, we add a penalty term as in
Eq. (11). So, the total error, TE becomes

TE = E + λP (X),

where

P (X) =
1

g(g − 1)

g∑
j=1

Fj

∑
l �=j

Fl dep(Sj , Sl).

The learning rules can be derived in a straight-
forward manner by differentiating TE with respect
to wij and βj . Like the GFSMLP-CoR, the initial βs
are assigned random values between [−5.05,−4.95].

To obtain the spread and center parameters we
run the Fuzzy c-means (FCM)71 clustering algorithm
on X , with fuzzifier (m) value as 2, to get the cluster
centers. Then we assign the cluster centers to the
basis centers µi. The spread function, σi is calculated
as follows: σi = minj �=i ‖µi − µj‖. Note that, there
are other ways of initializing these parameters.

6.2. Experimental results

As an illustration, we use a few data sets to validate
our GFSRBF-CoR scheme. The group selection on
Iris 1 data is given in Table 19. From this table, we
see that the second group is selected consistently for

Table 20. Selection of Groups(%) for Iris 2 Data using GFSRBF-CoR.

Groups
Misclassification Average no.

Penalty 1 2 3 error (%) of groups

0 0.00 100.00 100.00 6.00 2.00
2 0.00 0.00 100.00 6.67 1.00

10 0.00 0.00 100.00 6.67 1.00

Table 21. Selection of Groups(%) for LRS Data using GFSRBF-CoR.

Groups
Misclassification Average no.

Penalty 1 2 error (%) of groups

0 100.00 100.00 14.88 2.00
2 60.00 40.00 14.50 1.00

10 40.00 60.00 18.83 1.00

Table 19. Selection of groups(%) for Iris 1 Data using
GFSRBF-CoR.

Groups
Misclassification Average no.

Penalty 1 2 error (%) of groups

0 0.00 100.00 4.00 1.00
2 0.00 100.00 4.00 1.00

10 0.00 100.00 4.00 1.00

all penalty values, even when the penalty is 0! So,
does it suggest that RBF network is more consistent
than the MLP in sensor selection? We shall address
this question after discussion of the results. In case of
Iris 2 data, with no penalty value, the top two impor-
tant groups (group 2 and group 3) are selected for
all runs. But as they are highly dependent on each
other, with a positive penalty value, only one of them
should get selected. And as group 3 contains only fea-
tures 3 and 4, group 3 is a better discriminator than
group 2. So it should select group 3. By looking at
the Table 20, we see that this is indeed the scenario,
i.e. only group 3 is selected consistently over differ-
ent runs. From Table 21 (along with inspection of
detailed results — data not shown), we find that for
LRS data with a positive penalty factor, one of the
two groups is selected as they are moderately cor-
related. The result on LandSat data set in Table 22
reveals that as groups 1 and 2 are maximally cor-
related (the correlation between them is indeed the
highest among all group pairs), they are selected
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Table 22. Selection of Groups(%) for LandSat Data using GFSRBF-CoR.

Groups
Misclassification Average no.

Penalty 1 2 3 4 error (%) of groups

0 100 100 60 80 16.16 3.40
2 10 60 30 40 23.43 1.40

10 40 0 50 10 28.52 1.00

disjointly with positive penalty values. Now, we are
in a position to address the question we raised earlier:
Is RBF network more consistent in selecting groups
than the MLP network? Unlike an MLP, we do not
initialize the RBF weight vectors randomly, rather
they are initialized using centroids of clusters. So if
the cluster centroids are not significantly affected by
the initialization, the performance of RBF is also not
going to be affected much. In this particular case, we
use the FCM algorithm to find the cluster centroids
and FCM centroids are less sensitive to initialization.

7. Conclusion

In this paper, we have proposed a group fea-
ture/sensor selection scheme which can control
redundancy. Group selection approach is very impor-
tant in many real-life application for reducing com-
plexity and cost. As an example, suppose there are
two sets (groups) of features, one from MRI scan and
the other from X-ray. But, for the target applica-
tion one is sufficient, so selection of the most impor-
tant image modality between the two is important
as it reduces the design cost and complexity of deci-
sion making for the target application. Chakraborty
and Pal12 proposed a scheme for group feature selec-
tion. Their scheme can select useful groups and
remove bad/derogatory groups. In this paper, we
have extended that work to control the redundancy
between groups. We have proposed our scheme in two
connectionist frameworks, MLP and RBF. We have
also used an alternative learning scheme for MLP
network which gives more consistent results than the
first scheme. Two alternative definitions of depen-
dency between groups have also been proposed. In
place of Pearson’s correlation, Gebelein’s correlation
has also been used to demonstrate the effectiveness of
our scheme. This correlation measure is nonlinear in
contrast to the linear Pearson’s measure. And using
this nonlinear measure, we have also shown the effec-
tiveness of our proposed scheme. In this work, the

penalty factors have been chosen in an ad hoc man-
ner, but any systematic method like cross-validation
scheme can also been used to select this parameter,
if needed.
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