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Abstract In this article, we attempt to quantify the variability of water pressure head in
response to temporally correlated fluctuations in infiltration rate in partially saturated het-
erogeneous formations. This study concentrates on the unsaturated case of predominantly
vertical movement of moisture. A closed-form solution is developed to analyze the impacts
of the temporal correlation scale of infiltration fluctuations and the spatial correlation scale
of log-saturated hydraulic conductivity (InKs) field on the variability in water pressure head.
Our result indicates that the temporal correlation scale of infiltration process or the spa-
tial correlation scale of InK field takes a role in increasing the variability in the pressure
head.

Keywords Stochastic analysis - Unsaturated flow - Water pressure head variance

1 Introduction

Surface water from various sources moves downward through the unsaturated zone to the
water table. The understanding of the movement of soil moisture in the unsaturated zone is
essential to determine the replenishment of phreatic aquifers. In addition, contaminants from
sources at ground surface travel down with the infiltrating water towards the water table. The
prediction of the movement of moisture in the unsaturated zone is needed if the subsurface
remediation is necessary.

It is well known that the movement of unsaturated flow is affected profoundly by the
existence of natural variability of hydrological phenomena, such as temporal fluctuations in
infiltration rate or spatial variation in hydraulic conductivity. Since the detailed description of
the complex natural phenomena is impossible, a possible approach is to represent the natural
heterogeneity in terms of random processes characterized by a finite number of statistical
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parameters (e. g., Mantoglou and Gelhar 1987; Mantoglou 1992; Russo 1995; Foussereau
et al. 2000; Lu and Zhang 2002; Zhang and Lu 2002; Li et al. 2009). As such, the stochastic
approach leads to solutions for describing the field-scale mean flow behavior in terms of
effective hydraulic conductivity and quantifying the variability of pressure head in response
to natural heterogeneity in terms of pressure head variance. Comprehensive overviews of the
construction of the stochastic approach and its application for modeling the field-scale flow
processes in heterogeneous media may refer to Dagan (1989), Gelhar (1993), Zhang (2002),
and Rubin (2003).

It has been recognized that the introduction of infiltration impacts the head gradient (e.g.,
Yoo etal. 1998; Liand Graham 1999; Settin etal. 2007). In other words, the infiltration forcing
plays a key role influencing the soil moisture dynamics. Infiltration events exhibit consider-
able variability on temporal scales (e.g., Veneziano and Iacobellis 2002; Rodriguez-Iturbe et
al. 2006; Rupp et al. 2009). Their heterogeneities can significantly affect groundwater move-
ment in soils. As expected, there will be a great deal of uncertainty anticipated in applying
the classical unsaturated flow model. Motivated by that, quantification of the uncertainty
associated with the conversion of infiltration into the groundwater flow process is the focus
of this study.

Existing field observations of unsaturated flow are very limited because of the com-
plexity of the problem. Natural heterogeneity plays an important role in the field-scale
unsaturated flow process. Laboratory (i.e., small or local scale) models cannot realistically
produce the natural heterogeneity exhibited in the field. It is, therefore, difficult to draw
conclusions from small-scale models for the processes occurring in the field. In order to
produce realistic results for field applications, the development of field-scale unsaturated
flow model and the quantification of its variability are indeed needed. Motivated by that,
this study is, therefore, devoted to providing an analytical basis for quantifying the vari-
ability of field-scale unsaturated flow processes in response to temporally correlated fluctu-
ations in infiltration rate and the spatial variability of soil properties. Although with some
simplified assumptions, to the best of our knowledge, the closed-form expression of the
head variance for the field-scale temporal vertical movement of soil moisture has so far
not been reported regarding the application of the perturbation-based nonstationary spectral
techniques.

The stochastic approach based on the representation of natural heterogeneity as a ran-
dom field will lead to a simple head variance relationship in terms of statistical properties
of input parameters. The approach thereby provides a basis for analyzing the influence of
those parameters on the field-scale unsaturated flow processes. In addition, the closed-form
expression for the variance of head, as developed here, could serve as a calibration target
when applying the traditional model to field situations. It may be more reasonable to present
the conclusions, say, for the head solution of traditional model with one standard deviation
(square root of variance) representing the uncertainty of the head solution.

In this article, we concentrate on the case where the vertical movement of the soil moisture
in response to temporally correlated fluctuations in infiltration rate is dominant in the vadose
zone. The unsaturated flow domain is in a formation of infinitely horizontal extent, bounded
above at a certain depth below the soil surface and below by prescribed pressure heads. The
initial head in the flow domain is assumed constant. To simplify the analysis, the variabilities
of the initial and boundary conditions are neglected (i.e., they are treated as deterministic).
Perturbation-based nonstationary spectral techniques and the superposition principle will be
adopted to develop the closed-form solution for the head variance. Based on the closed-
form expression, the impact of statistical properties of input aquifer parameters on the head
variability will also be assessed.
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2 Stochastic Formulation

The governing equation of unsaturated flow at the local scale may be expressed as (e.g.,
Zhang 2002)

9 9
c _
at 0X;

q) i=1,2,3, (2.1)

[K(W) 310] IKW) _

0X; X1

where C = df/dy is the specific moisture capacity (e. g., Mantoglou and Gelhar 1987; Gelhar
1993; Zhang 2002), 6 is the moisture content, ¥ is the water pressure head, ¢ is the transient
infiltration rate representing as a source term, K () is the unsaturated hydraulic conductivity,
and X designates the vertical coordinate measured upward. Note that the dependence of the
unsaturated hydraulic conductivity and the moisture content on the fluid pressure leads to
strong nonlinearity in flow processes. Furthermore, the parametric description of K —
relationship involves empirical parameters. In this work, we parameterize the functional
form for K () by (Gardner 1958)

K(y) = Kgexplay], 2.2)

where « is a parameter associated with soil pore-size distribution and K is the saturated
hydraulic conductivity.

The local soil properties (namely InK g and C) and v are considered as random fields.
The source ¢ is considered to represent the temporally correlated zero-mean fluctuations in
infiltration rate. To simplify the analysis of field-scale unsaturated processes, the variability
in Gardner’s parameter « is neglected and replaced by its mean. As such, Eq. (2.1) may
then be viewed as a stochastic differential equation with parameters described by random
processes, and therefore a resulting stochastic output .

The random processes C, InKg and { are expressed as

C=E[Cl+C =I+C (2.3a)
InKs =E[InKs]+ f=F+f (2.3b)
v =EYl+h=H+h (2.3¢)

in the manner that E[C'] = 0, E[f] = 0, and E[h] = 0, where E[—] denotes the expected
value. Following the approach of Gelhar (1993), after introducing the random field decom-
positions (Egs. (2.3a)—(2.3¢)) into Eq. (2.1) and subtracting the resulting mean equation from
Eq. (2.1), one gets the first-order equation describing the fluctuations in pressure head

F8h+C’ OH (h+f)H 82h+ J+8H s af g

— 0t — o

Kyt Ky 3t Ky dr  3X? 3X; ) 3X; aX; Ky’
(2.4)

where J; = 0(H + X1)/0X; and InK )y is simply the expected value of the unsaturated log
conductivity (Gelhar 1993).

Note that the validity of the small perturbation approximation (i.e., the convergence of
Egs. (2.4) and (2.5)) is preserved by that O'j% (the variance of log-saturated hydraulic con-
ductivity) should be small compared to unity (Gutjahr and Gelhar 1981). However, the study
of Monte Carlo simulations of two-dimensional flow through heterogeneous formations by
Zhang and Winter (1999) confirmed the accuracy of the head moment solutions obtained
from the application of the small perturbation approximation in o2 at the variance up to 4.38.
Similar comparison with Monte Carlo simulations presented in Guadagnini and Neuman
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(1999) yields accurate results (namely, the statistics of hydraulic head) even for 012, as high
as 4 to 5 (strongly heterogeneous media).

It is worth noting that a new numerical approach, Karhunen-Loe ‘ve-based moment equa-
tion (KLME) technique, has been proposed to solve groundwater-related problems in het-
erogeneous media (Zhang and Lu 2004; Liu et al. 2007; Li and Zhang 2007; Li et al. 2009;
Chen et al. 2013). The KLME approach combines Karhunen—Loe‘ve (KL) expansion of a
medium property and orthogonal polynomial decompositions of dependent variables. In the
KLKF method, the covariance of the medium property is efficiently approximated by a small
set of eigenvalues and eigenfunctions attributed to the mean square convergence of the KL
decomposition. The KLME approach is able to accurately estimate the statistical moments
of the dependent variable and provides considerable computational advantages as compared
with the classical Monte Carlo simulations.

It is apparent that the solution of Eq. (2.4) is dependent of the solution of the mean-head
equation. In other words, the perturbation and mean equations should be treated simultane-
ously. However, in many practical applications, the mean pressure head is generally regarded
to be slowly varying in time and space in relation to the scale of variation associated with the
perturbation equation (Gelhar 1993). We may, therefore, regard the coefficients involving the
mean-head solution in Eq. (2.4), such as Ky, J;, and d H/dX;, to be constant over spatial
scales corresponding to the perturbations when solving Eq. (2.4). In addition, the mean-head
time derivative will be very small in view of the slowly varying mean unsaturated flow (Gel-
har 1993) so that the products of the perturbation terms (namely C’, &, and f) and d H/d¢ in
Eq. (2.4) are negligible. As a consequence, the decoupling of the head-perturbation equation
from the mean-head equation can be accomplished under the condition of slowly varying
mean unsaturated flow. With this framework, Eq. (2.4) is simplified to

r ah  3%*h 9H\ 0oh af g
—— = tal\Jit+ Ji —.
Ky ot 8Xl. 0X;) 0X; 0X; Ky

(2.5)

Consider the case where the vertical movement of the soil moisture is dominant in the vadose
zone. The assumption of one-dimensional vertical flow reduces Eq. (2.5) considerable to

r oh  9%h of q(t)

—_— 2J —-1)—+J—+—= 2.6

Koot~ ax2 T ) + ax T Ky 26)
where / = J; and X = X;. We will seek an analytic solution of Eq. (2.6) subject to
deterministic boundary and initial conditions, which imply zero perturbed boundary and
initial conditions, i.€.,

hy(0,1) =0 (2.7a)
hy(L,1) =0 (2.7b)
hy(X,0) = 0. (2.7¢)

These will provide a basis to develop an analytical solution in quantifying the variability in
the pressure head.

3 Spectral Solution

Here, we proceed with developing the perturbation solution of Eq. (2.6) and then character-

izing the pressure head variation around the mean based on it. These will be performed by
applying the superposition principle and the Fourier—Stieltjes representation.
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Note that Eq. (2.6) describes the fluctuations in pressure head field in response to two inde-
pendent forcing terms, the last two terms on the right-hand side of Eq. (2.6), due to the spatial
variability of soil properties and the temporal variability of infiltration rate. Recognition of
each of the forcing terms in Eq. (2.6) presented in a linear manner, the principle of super-
position is, therefore, allowed to solve Eq. (2.6) by decomposing it into two subequations
according to the forcing terms, as

r dh,  9%hy, dhg  q(t)
-4 __1 27 —1)—2L 4 3.1
Ky ot~ axz % ax Tk, G-
and 5
I ohy  0°hy ohy af
— 7 20 —1)—L 4 J—L. 3.2
Ky o1~ axz T ax T ax (3-2)

We then find the response to each subpart at a time, and add the individual responses to obtain
the solution of the original equation,

h = hy + hy. (33)

Consequently, the pressure head variance to the original problem is the sum of variances of
hg and h .

Considering the stochastic processes of g and f to be second-order stationary and using
the Fourier—Stieltjes representation, both can be defined with respect to time and space,

respectively, as
o0

q(t):/exp[ia)t]qu(a)) 34

—00

and
o0

f(X) = / expli RX1dZ ¢ (R), (3.5)

—00

where w is the frequency; R is the wave number; and dZ, and dZ y are the Fourier amplitudes
of the fluctuations ¢ and f, respectively. The responses to two forcing terms in Egs. (3.1)
and (3.2) may, therefore, be expressed, respectively, as (e.g., Li and McLaughlin 1991)

o0

hy(X, 1) = / D, (X, 1, 0)dZ, () (3.6)

—0o0

and
o0

hp(X, 1) = / ® (X, 1, R)AZ;(R), (3.7)

—o0

where @, and @ ; are the unknown transfer functions. Substituting Eqgs. (3.4) and (3.6) into
Eq. (3.1) gives

r oo RR RX)  wt
L 9% _ 9% | oy - 1)2Pa  expUeD)

= 3.8
Ky ot X2 0X Ky (3-8)
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The analytical solution to Eq. (3.8) associated with the following boundary and initial con-
ditions

®,00,1,0) =0 (3.92)
@ (L, t,0) =0 (3.9b)
®,(X,0,0) =0 (3.9¢)

is in the form

’

2 > 1—exp(0.5¢L) cos(nm) . (nmX\ exp(iwt) —exp(—ﬂt)
&, = ﬁexp(—eX)Zn . sm( 7 ) Kovrile r

n=1

(3.10)

where ¢ = (2J — Do and v = (n*7%/L?) + €2/4. In the case of Ky t/(L*T") >> 1,
the summation in Eq. (3.10) converges rapidly (e.g., Haberman 1998) and is, therefore,
approximated as

_ 2w Km 1 +exp(0.5¢L) exp(iwt) — exp(—ut)

) P exp(=0.5¢ X) sin(§) e NN EREY

where & = X/L and u = Ky [(w?/L?) + ¢2/4]/T". Then, from Egs. (3.6) and (3.11), h,
takes the form

2n Ky 1+exp(0.5¢L) exp(iwt) — exp(—ut)

(o]
hy(X, 1) = 22 exp(—0.5¢X) sin( &) / o dZ4(w).

—0oQ0
(3.12)

Using the representation theorem leads Eq. (3.12) to
4r? K2 1+ exp(0.5¢L) 2
2 M )
%, = E[hth] = ?ﬁ[f] exp(—eX)sin~ (&)
7 1-2 2
— t —ut —2ut
x / cos(@ )exfz’( i 2) DU ¢ (wydo, (3.13)
n+ow
—00

where a,%qis the variance of /i, (the transient component of head variance), the asterisk

stands for the operation of complex conjugation, and S;, (@) is the spectrum of infiltration
rate perturbations.
On the other hand, the introduction of Egs. (3.5) and (3.7) to Eq. (3.2) results in

r ooy 020y
Ky 9t X2

0D
+a) — 1)87}(Jf +iJ Rexp(i RX). (3.14)

The forcing term, the last term on the right-hand side of Eq. (3.14), is independent of time.
Therefore, it is reasonable to expect that the transfer function @y becomes time invariant
after sufficient time has elapsed since the initial condition. With a negligible time-derivative
term, Eq. (3.14) associated with zero perturbed boundary conditions admits the following
solution:

J |:exp(—8X) —exp(—¢L) 1 —exp(—eX)
Pr =

— iRX) + —MM iRL)|.
e+iR 1 —exp(—¢L) exp(i RX) + 1 —exp(—¢L) exp(i )]

(3.15)

@ Springer



Stochastic Analysis of Unsaturated Flow Subject 295

Then, it follows from Egs. (3.7) and (3.15) that the head perturbation can be written as

he(X) = J / |:exp(—sX) —exp(—¢L) exp(i RX)

I —exp(—¢L)
1 —exp(—¢X) .
T exp(el) exp(zRL)] iR (3.16)

Equation (3.16) implies from applying the representation theorem that

7 1 exp(—eX) —exp(—¢L) 2 1 —exp(—¢eX) 2
ogf(X)=J2/82+R2[1+[ } +[ ]

1 —exp(—¢L) 1 —exp(—¢l)

_2exp(—8X) —exp(—¢L)
1 —exp(—¢L)
2exp(—sX) —exp(—eL) 1 —exp(—¢X)

cos(RX)

cos(RL)
1 —exp(—¢L) 1 —exp(—elL)
_21—exp(—8X) [RL—X]]S"RdR 317
T exp(er) T RIS UOAR: o

where U,%f is the variance of & ¢ (the steady component of pressure head variance) and S 77 (R)

is the spectrum of InKj.
In conclusion, the results of each part, Eqs (3.13) and (3.17), are summed to obtain the
general solution of pressure head variance to the original problem.

4 Pressure Head Variance

The computation of the variance of i, requires the expression of the spectrum of the infiltra-
tion rate fluctuations. In this study, we consider that the spectrum of temporally correlated
infiltration fluctuations takes the following form (Gelhar 1993; Zhang and Li 2006):

2
O’qT)

S0l = T )

4.1)

where ng is the variance and 7 is the temporal correlation scale of the infiltration process,
respectively. The time (space) interval for which the correlation coefficient drops to an
insignificant magnitude is referred to as the temporal (spatial) correction scale (e.g., Dagan
1989; Gelhar 1993; Rubin 2003). When the correction scale is larger, the data profile is
anticipated to be smoother, and vice versa.

With Eq. (4.1), the integration of Eq. (3.13) over the frequency domain produces the
variance of h, as

K2 5?2 .
a}%q = 47120[12#4/&[1 + exp(O.SeL)]2 exp(—eX)smz(rrS)

[1 +exp(=2ut) 26Xp(_w)em(—m) — [ eXP(—t/n)]
pn(1 + wn) un(l — u?n?) '

4.2)
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On the other hand, the following wave number spectrum
20%A3 R?
7'((1 + )LZRZ)Z

associated with a hole-type exponential correlation function of InKj field (Bakr et al. 1978)
is considered to compute the variance of / . In conjunction with Eq. (4.3), Eq. (3.17) implies
that

2 2.2 exp(—eX) —exp(—eL) 2 1—exp(—eX) 2 1
(B = er [[]+( [—exp(—eL) ) +(1—exp<—eL>) (+en)?

Sip(R) = 4.3)

exp(—eX) —exp(—¢eL) 1 —exp(—eX) ©O(L)
1 —exp(—¢L) 1 —exp(—eL) (1 — &212)2
exp(—eX) —exp(—eL) ©O(X) 1 —exp(—eX) (L — X)
2 - ,
1—exp(—¢L) (1—¢e2A2)2 1—exp(—&L) (1 — SZAZ)Z]

+2

4.4)

where v
O(Y) = —2ehexp(—Ye) + exp(—Y /) [K +1—-Yea+ 82/\2] (4.5)

Now, we are in a position to calculate the closed-form expression for pressure head variance
according to
? =0} +of (4.6)
Gh = Uhq Uh iy .

where Uﬁq, the transient component of pressure head variance, is defined in Eq. (4.2) and

ohz , the steady component of the pressure head variance, is defined in Eq. (4.4).

The graphical presentation of the dependence of the transient component of pressure head
variance upon the temporal correlation scale of infiltration field is illustrated in Fig. 1 based
on Eq. (4.2). As indicated in the figure, the temporal correlation scale has positive influence

M e xir=05
£ =275
400 |
o
&g
25
5
200
0 > 2 p 5 10

H7

Fig.1 Dimensionless transient component of the pressure head variance as a function of temporal correlation
scale of the infiltration process, where = = %4
(%)
A
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Fig.2 Dimensionless steady component of the pressure head variance as a function of dimensionless distance
from the bottom boundary

on the variation of pressure head. This is because a larger correlation scale introduces a larger
temporal consistency of fluctuations in the infiltration rate, and therefore a larger temporal
consistency of fluctuations in pressure head above or below the mean pressure head.

On the other hand, the plot of Eq. (4.4) as the function of position is demonstrated in Fig. 2.
It indicates that for a fixed value of &, the steady component of variability in pressure head
created by the spatial variability in soil properties is enhanced by the spatial correlation scale
of random log-saturated hydraulic conductivity (InK) processes at a given location. As the
value of spatial correlation scale is increased, the InK processes display more persistence,
having positively correlated increments. That is, positive increments tend to be followed by
other positive increments, while negative increments tend to be followed by other negative
increments. The profile of the InK; process is rough (i.e., more fluctuations in the InKj
around the mean), and therefore produces a higher variance of pressure.

5 Conclusions

This article presents a stochastic analysis of transient vertical movement of soil moisture
through a bounded, partially saturated heterogeneous porous medium subject to temporally
correlated fluctuations in infiltration process. The use of perturbation-based nonstationary
spectral perturbation techniques and the superposition principle leads to analytical solution
for the variance of water pressure head, which is used to analyze the effects of the temporal
correlation scale of infiltration process and the spatial correlation scale of the InK s processes.
It is found that the correlation scales of infiltration and InK; processes are crucial to enhance
the variability in water pressure head. As the correlation scale increases, the persistence of
correlation increases and the contributions of the smallest scales of variation decrease. This
implies that the fluctuations in head spend less time around their mean value of zero. As such,
a larger correlation scale introduces a higher variability in head.
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