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one of p colors are arranged side by side such that the touching edges of the adjacent tiles
have the same colors. Given a basic set B of Wang tiles, the nonemptiness problem is to
determine whether or not X(B) # #, where X (B) is the set of all global patterns on Z?

that can be constructed from the Wang tiles in B. Wang's conjecture is that for any B of

Keywords:

Nonemptiness Wang tiles, X' (B) # ¢ if and only if P(B) # ¥, where PP (B) is the set of all periodic patterns
Wang tiles on Z2 that can be generated by the tiles in B.

Decidability When p > 5, Wang’s conjecture is known to be wrong. When p = 2, the conjecture is

Edge coloring

true. This study proves that when p = 3, the conjecture is also true. If P(B) # @, then

Periodic patterns B has a subset B’ of minimal cycle generators such that P(B’) # ¢ and P(B") = for
Transition matrix B” ; B’. This study demonstrates that the set C(3) of all minimal cycle generators contains
787,605 members that can be classified into 2, 906 equivalence classes. A'(3) is the set of
all maximal non-cycle generators: if B € A'(3), then P(B) =% and P(B) # § for B 2 B.

Wang's conjecture is shown to be true by proving that B € A(3) implies X (B) = .
© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The coloring of Z2 using unit squares has been studied for many years [1-14]. In 1961, Wang [14] started to study the
square tiling of a plane to prove theorems by pattern recognition. Unit squares with colored edges are arranged side by side
so that the touching edges of the adjacent tiles have the same color; the tiles cannot be rotated or reflected. Today, such
tiles are called Wang tiles or Wang dominos [4,7].

The 2 x 2 unit square is denoted by Z,.>. The set of p colors is {0, 1, ---, p — 1}. Therefore, the total set of Wang tiles is
denoted by X5,2(p) ={0,1,---,p — 1}22x2_ A set B of Wang tiles is called a basic set (of Wang tiles). Let ¥ (B) and P(B)
are the sets of all global patterns and periodic patterns on Z2, respectively, that can be constructed from the Wang tiles
in B.

* Corresponding author.
E-mail addresses: hhchen.am00g@nctu.edu.tw (H.-H. Chen), wghu@mail.nctu.edu.tw (W.-G. Hu), werre216asfe87dirk@gmail.com (D.-]. Lai),
sslin@math.nctu.edu.tw (S.-S. Lin).
1 The second author would like to thank the National Science Council, R.0.C. and the S.T. Yau Center for partially supporting this research.
2 The fourth author would like to thank the National Science Council, R.O.C. (Contract No. NSC 98-2115-M-009) and the S.T. Yau Center for partially
supporting this research.

http://dx.doi.org/10.1016/j.tcs.2014.06.015
0304-3975/© 2014 Elsevier B.V. All rights reserved.


http://dx.doi.org/10.1016/j.tcs.2014.06.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:hhchen.am00g@nctu.edu.tw
mailto:wghu@mail.nctu.edu.tw
mailto:werre216asfe87dirk@gmail.com
mailto:sslin@math.nctu.edu.tw
http://dx.doi.org/10.1016/j.tcs.2014.06.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2014.06.015&domain=pdf

H.-H. Chen et al. / Theoretical Computer Science 547 (2014) 34-45 35

Given a finite set B of Wang tiles, the nonemptiness problem concerning tiling with of Wang tiles is to determine
whether or not

X (B) #4. (11)

Clearly, P(B) € ¥ (B), meaning that if P(B) # @, then X' (B) # @. In [14], Wang conjectured that any set of tiles that can
tile a plane can tile the plane periodically:

if X(B)##, thenP(B)#0. (1.2)

If (1.2) holds, then the nonemptiness problem that is specified by (1.1) is reduced to the much easier problem of deter-
mining whether or not

P(B) # 0. (1.3)

However, in 1966, Berger [4] proved that Wang’s conjecture was wrong and the nonemptiness problem concerning
Wang's tiling is undecidable. He presented a set B of 20426 Wang tiles that could only tile the plane aperiodically:

Y(B)#0® and P(B)=40. (14)

Later, he reduced the number of tiles to 104. Thereafter, smaller basic sets were found by Knuth, Liuchli, Robinson, Pen-
rose, Ammann, Culik and Kari. Currently, the smallest number of tiles that can tile a plane aperiodically is 13, with five
colors: (1.4) holds and then (1.2) fails for p =5 [5].

Recently, Hu and Lin [8] showed that Wang's conjecture (1.2) holds if p =2: any set of Wang tiles with two colors that
can tile a plane can tile the plane periodically.

In that study, they showed that statement (1.2) can be approached by studying how periodic patterns can be generated
from a given basic set. First, B is called a cycle generator if P(B) # @; otherwise, B is called a non-cycle generator. Moreover,
B C X5x2(p) is called a minimal cycle generator (MCG) if B is a cycle generator and P(B’) = @ whenever B C B; B C
X2x2(p) is called a maximal non-cycle generator (MNCG) if B is a non-cycle generator and P(B”) # ¢ for any B” 2 B.

Given p > 2, denote the set of all minimal cycle generators by C(p) and the set of maximal non-cycle generators
by N(p). Clearly,

C(p) NN (p)=9. (1.5)

Statement (1.2) follows for p > 2 if

X (B)=@ forany B e N(p) (1.6)

can be shown. Indeed, in [8], it is shown that C(2) has 38 members; A/ (2) has nine members, and (1.6) holds for p = 2. This
paper studies the case of p = 3. Now, C(3) and N (3) have close to a million members and cannot be handled manually.
After the symmetry group D4 of Z3> and the permutation group S, of colors of horizontal and vertical edges, respectively,
are applied, C(3) still contains thousands of equivalent classes. Hence, computer programs are utilized to determine C(3)
and NV (3) and finally (1.6) is shown to hold for p = 3. Therefore, the conjecture (1.2) is true for p = 3. Moreover, if P(B) # ¢,
‘P(B) contains a periodic pattern with horizontal period m < 35.

For p =4, C(4) is enormous. Therefore, the arguments and the computer program need to be much efficient to handle
this situation.

Corner coloring with p =3 can be treated similarly. The result will be presented elsewhere.

The rest of paper is arranged as follows. Section 2 introduces the ordering matrix of all 81 local patterns and classifies
them into three groups. The recurrence formula for patterns on Xy« are derived. It is important in proving (1.6) - that the
maximum non-cycle generators cannot generate global patterns. Section 3 will introduce the procedure for determining the
sets C(3) and A/(3). The main result is proven using a computer.

2. Preliminary

This section introduces all necessary elements for proving (1.6). First, let Xy,«n(B) be the set of all local patterns on
Zmxn that can be generated by B. Clearly,

if Xnun(B) =0 forsomem,n > 2, then X (B) =4. (2.1)
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2.1. Symmetries

The symmetry of the unit square Z,> is introduced. The symmetry group of the rectangle Z,.» is D4, which is the
dihedral group of order eight. The group D4 is generated by rotation o through 7 and reflection m about the y-axis.
Denote the elements of D4 by Dy ={I, p, p%, p3,m, mp, mp?, mp3)}.

Therefore, given a basic set B C X242(p) and any element t € D4, another basic set (B); can be obtained by transforming
the local patterns in B by t.

Additionally, consider the permutation group Sp on {0,1,.--,p —1}. If n € Sp and n(0) =ip,n(1) =iy,---,n(p—1) =
ip_1, we write

(0 1 - p-1
n_<io i - ip71>'

For n € Sp and B € Xx2(p), another basic set (B); can be obtained.

In edge coloring, the permutations of colors in the horizontal and vertical directions are mutually independent. Denote
the permutations of colors in the horizontal and vertical edges by n, € Sp and 7, € Sp, respectively. Now, for any B C
XH«2(p), define the equivalence class [B] of B by

[Bl={B' C Z2.2(p): B'= (((B)f)nh)nv’ TeDgand np, 1y € Sp}. (2.2)

In [8], whether or not X (B) =@ and P(B) = ¢ is shown to be independent of the choice of elements in [B]. Indeed, for
any B’ € [B],

Z(B')#9% (orP(B)#¥) ifandonlyif X(B)+# ¢ (or P(B) #¥).

Moreover, for B’ € [B], B’ is an MCG (MNCG) if and only if B is an MCG (MNCG). Therefore, groups D4 and S3 can be used
efficiently to reduce the number of cases B C ¥,42(3) that must be considered, greatly reducing the computation time.

2.2. Ordering matrix

Now, the case p =3 is considered. The vertical ordering matrix Y22 =[¥i jloxg of all local patterns in X.2(p) is given

by

e B e B B e B e

R A A D
R R B S W R D

O N S A D >

bbb (M OE(E E R "
I A B S A

O D I A S I S D N S
O B I I R I

O R S R <

LB MO X KK K X
Y2;_1 Y22 Ya3 )

[ " } -



The recurrence relation of Y11 is easily obtained as follows. Denote by
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9

Yo =[y2,pql3x3 = ZYz;i

and

Yo.i =1[y2

where

Y2iipg =

i=1

;i;p,q]3x3,

ay ay

p-1

37

(2.5)

and i=1+a-3" + a3 - 3% «; € {0,1,2}. Here, the sum of (2.5) is the formal sum that means Y2.p.q = U?:l Y2:i;p.q- For
m > 2, denote by

9

Y1 =) Yuiui
i=1

and

Ym+1;i = [Ym+1;i;p.gl3mx3m,

where ym41:i;p,q i the set of all patterns of the form

q1
a [ BN ]
P

2 am
° e ° 8
P2 Pm

m tiles

where «, B, pr and gy € {0,1,2}, 1 <k <m, such that

i=1+

oa-31+8-30
m

p=1+) p3"*

k=1

m
qg=1+ qu3m—k

and e €{0,1,2}.

Ymi1,i =

when i=2,5,8,

Ymi1;i =

when i=3,6,9,

Ymi1,i =

k=1

Therefore, when i =1, 4, 7,

M §3 . Y. oa;
Zj:] Y2:j+i-1;1,1¥m;3j-2
3

> i=1 Y2 j+i-1:21Ym;3j-2

3
| 21 Y2 j+i-1:3,1Ym;3j-2

B
> im1 Y2ij+i-2:1.1Ymi3j-1
3

> ic1 Y2jiti-22,1Ym;3j-1

3
| 21 Y2 j+i-2:3,1Ym;3j-1

3

> jm1 Y2ijio1:1,2Ymi3j2
3

> im1 Y2j+ic1:2,2Ymi3j-2

3
> ie1 YV2j+ic1:3,2Ym3j2

3

> i=1 Y2 j+i-21,2Ym;3j-1
3

> ic1 Y2jiti-2:2,2Ym;3j-1

3
Zj:] Y2;j+i-2;3,2Ym;3j-1

3

> je1 Y2ijio1:1,3Ymi3j2
3

> i=1 Y2 j+i-1:2,3Ym;3j-2

3
> i1 Y2 j+i-1:33Ym3j-2 |

, _
> i=1 Y2 j+i-21,3Ym;3j-1

3
> ic1 Y2jii-2:2,3Ym;3j-1

3
Zj:] Y2:j+i-2:3.3Ym:3j-1 |

M3 3 3
Yic1 Y2j+i-311Ym3j 2jo1 V2ijrio312Ym3j X1 Y2j+i-3i1,3Ym;3)

3 3 3
Yic1 Vajrio321Ym3j Xjg V2ij+i-3:2.2Ym3j D joq V2ij+i-3:2,3Ymi3)

3 3 3
_Zj:]YZ;j+i—3;3,1Ym;3j Dim1Y2j+i-3:32Ym3j Djo1 V2 j+i-333Ym3j 3 3m

3Mm % 3m

3Mm % 3m

(2.7)
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Given B C X»,2(3), the associated vertical transition matrix V,.2(B) is defined by Vayx2(B) =[v; j], where v; j =1 if

and only if y; j € B.

The recurrence formula for a higher-order vertical transition matrix can be obtained as follows. Denote by

9
Vy = sz;i,
i=1
with
Va.i = [V2;i;p,q)3%3-
For m > 2, denote by
9

Vi1 = vaJrl;i-
i=1

Now, fori=1,4,7,

3
> ie1 V2 ji+i-1;1,1Vm;3j2

3

> e V2 jri—1:1,2Vm;3j—2
3

21 V2 j+i-1;2,2Vm;3j-2

3
> im1 V2 jiti-1:32Vm3j-2

3

> e V2 jri-21,2Vm;3j-1
3

> i=1V2ij+i-2:2,2Vm;3j-1

3
> im1 V2 jiti-2:32Vm3j-1

3

2 i=1V2;ji+i-1;1,3Vm;3j—2
3

> i=1V2j+i-1;2,3Vm3j-2

3
2 i=1V2;j+i-1;33Vm;3j-2

3

2 ie1V2;ji+i-2:1,3Vm;3j-1
3

2 i=1 V2 j+i-2:2.3Vm;3j-1

3
2 i=1 V2 j+i-2;33Vm;3j-1

3 3 3
et Vajri-31Vmi3j Dioq Varj+i-3i12Vm3j 2ojoq V2j+i-3:1,3Vm;3j

Viny1i = 2?21 V2 jti-1:2,1Vm;3j—2
Z?:] V2. jt+i—1:3,1Vm:3j-2
fori=2,5,8,
Zizl V2 jt+i—2:1,1Vm:3j-1
Vit = Z';’:] V2 j+i=2:2,1Vm;3j-1
2?11 V2 j+i-2:3,1Vm;3j-1
fori=3,6,9,
Vint1:i =

3 3 3
D=1 V2jHi-331Vm3j 2joq Vaijki-33.2Vm3j o1 V2ij+i-3:33Vmi3) | gm g,

Therefore, as in [1,8], it can be proven that

Zm+nyxn(B)| = ‘Vnm_+11 .

2.3. Periodic patterns

This subsection studies periodic patterns in detail.
For m,n > 1, a global pattern u = (; j)i, jez On 72 is called (m,n)-periodic if every i, j € Z,

Hitmp, j+ng = A, j

for all p,qeZ.

Let Pp(m, n) be the set of all (m, n)-periodic patterns and B-admissible patterns. Let I's(m,n) = |Pg(m, n)| be the num-

ber of all (m, n)-periodic and B-admissible patterns.
As in [3], Pg(m,n) can be expressed by trace operators as follows.

3 3 3
Dim1V2j+i-321Vm3j D1 Vaijio322Vmi3j D j=1 Vaij+i-3:2,3Vm;3j

3Mmx3m

3Mmx3m
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From (2.9), the periodic patterns in Yp1 are given by Yp+1:, i = 1,5, 9. Define
Tn= > Vniui (212)
i=1,5,9

Ty, is called the trace operator of order m, as in [3]. Therefore, the following result is obtained.
Proposition 2.1. Given B C X5,>(3), form,n> 1,

Ig(m,n) =tr(Ty,). (2.13)
Proof. The proof is similar to that for corner coloring in [2]. The details of the proof are omitted. O

Notably, from Proposition 2.1, P(B) # @ if and only if I's(m,n) > 0 for some m,n > 1.
Recall some notation and terms from matrix theory. A matrix A is called nilpotent if A¥ = 0 for some k > 1. The property
“nilpotent” can be used to specify whether B is a cycle generator or non-cycle generator.

Proposition 2.2. Given a basic set B C X52(3),

(i) B is a cycle generator if and only if Ty, is not nilpotent for some m > 1.
(ii) X (B) =@ if and only if Vi is nilpotent for some m > 1.

Proof. From (2.13) of Proposition 2.1, B is easily seen to be a cycle generator if and only if tr(T},) > 0 for some m,n > 1.
Therefore, (i) follows immediately.

Similarly, from (2.10), (ii) follows.

The following proposition provides an efficient method to check the nilpotent for non-negative matrix and can be easily
proven. The proof is omitted. O

Proposition 2.3. Suppose A is a non-negative matrix. Then, A is nilpotent if and only if A can be reduced to a zero matrix by repeating
the following process: if the i-th row (column) of A is a zero row, then the i-th column (row) of A is replaced with a zero column.

3. Main result

3.1. Periodic pairs
This section firstly classifies all local patterns in {0, 1,2}%22x2 into three groups.

&

First, the local pattern o =|e1 Xe3 | = (g, o1, ¢, &3) is assigned a number by
(l/o

3
(/)((Ol07a17052,a3)):1+Za]‘3j- (3.1)
j=0

Then, all 81 local patterns are listed in the following three groups Go, G1 and G».

Go ={1,11, 21, 31,41, 51,61, 71, 81}

G1=1{2,3,4,7,10,12,14,17,19, 20, 24, 27, 28, 32, 33, 34, 38, 40,
42,44,48,49, 50, 54, 55, 58, 62, 63, 65, 68, 70, 72, 75, 78, 79, 80}

G»=1{5,6,8,9,13,15,16, 18, 22, 23, 25, 26, 29, 30, 35, 36, 37, 39,

43,45,46,47,52,53, 56, 57, 59, 60, 64, 66, 67,69, 73, 74,76, 77}

Clearly, every tile in Go can generate a (1, 1)-periodic pattern. Furthermore, elements in G;, i = 1,2, form periodic pairs
as in Fig. 3.1: two tiles that are connected by a line can generate a (2, 2)-periodic pattern. More precisely, the diagrams in
Fig. 3.1 can be interpreted as follows.
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Fig. 3.1. Connections with one or two tiles in each group.

Proposition 3.1.

(i) Each tile e in Go can generate a periodic pattern by repetition of itself: {e} is then a minimum cycle generator and is (1, 1)-periodic.
(ii) For each tile e in G1, there exist exactly three tiles eq, ez, e3 € G1 such that {e,e;} can form a periodic cycle, which is a
(1, 2)-periodic or (2, 1)-periodic pattern, and {e, e;} is a minimum cycle generator for 1 <i < 3.
(iii) For each tile e in G, there exists exactly one tile e’ € G such that {e, e’} is a minimum cycle generator and is (2, 2)-periodic.

These minimum cycle generators are the simplest.

Remark 3.2. From Fig. 3.1, the set G1 U G, with 72 tiles can be decomposed into 36 disjoint sets that each consists of two
tiles such that each set is a minimal cycle generator. Therefore, the number of the tiles of maximal non-cycle generators
in A (3) is equal to or less than 36. Indeed, elements in each pairs can be carefully picked up, and the maximum non-cycle
generator with 36 elements thus obtained; see Table A.3. Moreover, from Proposition 2.2, for each element B in the eight
equivalence classes of Table A.3, ¥ (B) = ¢ can be verified.

3.2. Algorithms
Before the developed algorithms are presented, some notation must be introduced.

Definition 3.3.

(i) For a set A, let P(A) be the power set of A.
(i) For B C P(Z3x2(3)), let

[B] = {[B]| B € B}.

(iii) For [B] € [P(X2x2(3))], let (B) be a fixed chosen element of [B].
(iv) Let N*(3) be the set of all maximal non-cycle generators that cannot generate a global pattern. Indeed,

N*3)={NeN@)| Z(N)=0}.

(v) For B C X542(3), let C(B) be the set of all minimal cycle generators that are contained in B.
(vi) For B C X542(3), let N*(B) be the set of all maximal non-cycle generators that cannot generate a global pattern and
are contained in B.
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Now, the main idea of the algorithms is introduced, as follows.

Let
N =281,
P(¥3%2(3)) ={Bj| 0 < j <N -1}, where By =0,
Initial state for C(3): C;(0) =0,
Initial state for N*(3): N[*(0) =,
Initial state for the set of aperiodic sets: 1/;(0) = @.

Algorithm 1 Main Algorithm

Main Algorithm
ji=0
repeat
j=i+1
if P(Bj) #4,
CiH=CiG—DU(B;}
else
if X(Bj) =4,
NG =Nj(—1DU(Bj)
else
U()=U(j—1)U{B;}
end
end
until j=N—1

After Algorithm 1 has been executed, if U;(N — 1) =, then Wang’s conjecture holds for p = 3. The methods to achieve
the goal are introduced below:

(I) reduce the number of cases that must be considered in the computation,
(II) construct efficient initial states for C(3) and N*(3),
() construct an efficient process for determining whether or not P(Bj) =¢ and X (B;) =0.

With respect to (I), the decomposition X5x2(3) = Gg U G U G, is used to reduce the number of cases that must be
considered in the computation. Clearly, if B C X»42(3) contains a tile e € Gg, then B is a cycle generator. Now, in studying
Wang'’s conjecture, only cases B € G1 U G have to be considered.

Given B = A1 U A, with A1 € P(G1) and A; € P(Gy), if A; or A, is a cycle generator, then B immediately satisfies (1.2).
By (2.2), the cases B C G U G, that have to be considered can be further reduced to the cases in Z or Z':

Z={A1U(A2) | A €D and [A;z] € [D]}

={Bj|1<j=|Tl} (32)
and
T'= (A1) U Az | [A1] € [D1] and Az € D2}, (3)
where
Dj={AeP(Gj)|AZ Cforany C eC(G))} (34)

for j =1, 2. For brevity, the proof is omitted. From Table A.1, N’ = |Z| ~ 1.35075 x 10!2 and |Z'| ~ 1.38458 x 10'2. Therefore,
T is the better choice for reducing B C Gi U G,. Notably, N’ <« |P(G1 U G2)| = 272 ~ 4.72237 x 102!; the reduction is
considerable. Table A.1 presents the details.

With respect to (II), let 2/ (0) = @. The initial data for C(3) are given by the set C;(0) of all minimal cycle generators that
are the subsets of Gg, G1, or G». Indeed,

2
e =[_Jc@p. (3.5)

j=0
On the other hand, the initial data for AN*(3) are given by

N0 ={N e N*(G1 UGy) : IN| = 36}. (3.6)

From Remark 3.2, /\f,*(O) equals the set of all maximal non-cycle generators in G; U G, with 36 tiles. C;(0) and ./\/,*(O) can
be easily found using a computer program. See Tables A.2a and A.3.
With respect to (IlI), the flowchart, which is based on (I) and (II), is as follows.
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Initial data: Cy(j - 1), N (j = 1) and Uy (j - 1)

Cosidereacth eI, 1<j<N

l

Crn=Cri-n e Check wheth B i 1 i~ 1
7)(3/);&0‘ N;(j)=N;(j*|) eck whether or not jcontamsaneementCECI(]— )
Ur(H=U(j-1
l No
Cip=Cri-1 Yes
X(B) = 0. N;(/) = N;(/— 1) Check whether or not Bj is a subset of some N € Nl*(j— 1)
. . —
U =UG=1)

Ci()=Crj-HUlB;] No o _
PBH 0. Ny(D=N{(G-1) < Check whether or not Ty.(B ) is nilpotent for all k > 1
U(D=UG=1

CrD=CrG-1
IB)=0.{ Ny()=NjG-DUIB;]
UGy =Up(j=1)

l Yes

S(Bj) # 0 and P(B}) = 0.

NFG) = NjG=1D)

Cip=CrG-1
Ur() =Up(j -1 VIB)]

Fig. 3.2. Flowchart of the computer program.

Remark 3.4. Suppose that the computation based on the flowchart has been completed. Let C = C;(N'—1), N'* :./\f,*(N/ -1
and U =U;(N' —1).

(i) If the set U = ¢, then Wang’s conjecture holds for p = 3; otherwise, every element in I/ is an aperiodic set.

(ii) It is easy to see that an element in C may be not a minimal cycle generator. However, C(3) can be obtained from
C =JceclCl by the following process. If C1, C; € C with C; € Cp, then C; must be removed from C. Indeed,

C(3) ={C €| C does not contain any C’ € C except itself}.

(iii) In a manner similar to that for (ii), let N = Unear=[N]. Now,

N*(3) = {N € N[ N is not a proper subset of N’ for all N’ € A/ except itself]}.

Moreover, if U =¥, N(3) =N*(@3).
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3.3. Main result

The computer program of Fig. 3.2 is written, and the computation is completed in finite time. Indeed, the cases that
consume the most time are those in which the numbers of tiles in B € G1 UG, are 18 and 19. These cases can be computed
completely within a week. The main result is as follows.

Theorem 3.5. The set U = ), and Wang’s conjecture holds for p = 3.

Remark 3.6.

(i) C(3) and N (3) can be obtained and their numbers are listed in Table A.4a.

(ii) The computational results reveal that the maximum orders m of Ty (B) and V,,(B) in applying Proposition 2.2 are
m = 35 and m = 13, respectively. More precisely, for B’ = {2, 5, 13, 36, 53, 60, 62, 64, 77}, T35(B’) is not nilpotent but
Ty (B’) is nilpotent for 1 < k < 34. On the other hand, for B” = {2,4,5,6,9, 13,14, 16, 18, 27, 32, 39, 60, 67, 78, 79},
V13(B”) is nilpotent and Vi (B”) are not nilpotent for any 1 < k < 12. The analytic proof that these numbers are maximal
is not available. A prior estimate of the upper bound of m does not exist.

For completeness, Tables A.4a and A.4b give the numbers of minimal cycle generators and maximal non-cycle generators.
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Appendix A

Table A.1 presents the numbers of D; and [Dj], j =1, 2. Denote by g;(k) the number of D; with k tiles and g;(k) the
number of [D;] with k tiles for 1 < j<2and 1<k <18.

Tables A.2a and A.2b present the equivalence classes of the minimal cycle generators in G; and G;.

Table A.3 shows the equivalence classes of maximal non-cycle generators with 36 tiles.

Tables A.4a and A.4b show the numbers of C(3) and N(3). Firstly, denote by

Table A.1
Numbers of D; and [D;] with k tiles for 1< j<2and 1 <k <18.
k g1(k) &1(k) g2(k) &2(k)
1 36 1 36 1
2 576 8 612 8
3 5304 31 6504 34
4 31032 146 47988 219
5 122184 475 256320 971
6 342204 1290 998136 3692
7 711288 2581 2812752 10043
8 1129896 4092 5771988 20554
9 1397892 5005 8886612 31338
10 1361448 4903 10558 368 37319
11 1047816 3763 9807336 34539
12 635580 2321 7125612 25253
13 300888 1106 4007484 14203
14 109080 423 1708632 6162
15 29304 118 533664 1945
16 5508 28 115164 453
17 648 4 15336 65
18 36 1 948 8

Table A.2a
Equivalence classes of the minimal cycle generators in Gi.
k [C] € [C(G1)] with k tiles
2 [{2,10}]
[{2,40}]
3 [{2,12,19}]
[{2,12,49}]
[{2,42,79}]
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Table A.2b
Equivalence classes of the minimal cycle generators in G;.
k [C] € [C(G2)] with k tiles
2 1(5.37)]
3 [{5.45,73}]
4 [{5, 13, 30, 46}]

5

6

7

8 {5,
[,
({5,

[{5. 16, 30, 73}]
[{5. 16, 39, 74}]
[{5,9, 46, 64}]

[{5., 13, 35, 64}]
[{5., 13, 30, 43, 74}]
[{5, 15,30, 52, 73}]

(5,9, 39, 46, 76}]

[
[{5. 6, 35, 52, 64}]
[{5, 15, 35, 46, 66}]
[{5, 13, 35,43, 57, 73}]
({5, 6,43, 53, 66, 73}]
[{5., 13, 36, 53, 66, 73}
[{5,9, 39, 52, 67, 74}
[{5,9, 39, 43, 74, 76}
[{5, 13, 30, 43, 47, 64}
[{5.6,13, 43, 47, 66}]
(5,9, 13, 25, 39, 74}]
[{5.,9, 13, 30, 47, 64}]
[{5, 6, 16,47, 57, 64}]
[{5.,9, 16, 53, 66, 74}]
[{5,9, 13, 39, 53, 74}]

1
]
]
1

—_ e e

Equivalence classes of maximal non-cycle generators with 36 tiles.

ONOUAWN =

2,3,4,5,6,7,8,9,12,13, 14, 15,16, 17, 18, 22, 23, 24, 25, 26, 27,32, 33, 34, 35, 36, 42, 43, 44, 45, 52, 53, 54, 62, 63, 72}
,3,4,5,6,7,8,9,12,13,14,15,16, 17, 18, 22, 23, 24, 25, 26, 27, 32, 33, 34, 35, 36, 42, 43, 44, 45, 53, 54, 60, 62, 63, 72}
,4,5,6,7,8,9,12,13,14,15,16, 17,18, 22, 23, 24, 25, 26, 27, 32, 33, 34, 35, 36, 42, 43, 44, 45, 54, 60, 62, 63, 69, 72}
4,5,6,7,8,9,12,13,14,15,16, 17, 18, 22, 23, 24, 25, 26, 27, 32, 33, 34, 35, 36, 42, 44, 45, 54, 59, 60, 62, 63, 69, 72}
4,5,6,7,8,9,12,13,14,15,16, 17, 18, 22, 23, 24, 26, 27, 32, 33, 35, 36, 42, 45, 57, 58, 59, 60, 62, 63, 68, 69, 72, 78}
,4,5,6,7,8,9,12,13,14,15,16, 17, 18, 22, 23, 24, 26, 27, 32, 33, 35, 36, 42, 57, 58, 59, 60, 62, 63, 68, 69, 72, 77, 78}
4,5,6,7,8,9,12,13,14,15,16, 17, 18, 22, 23, 24, 26, 27, 32, 33, 36, 42, 57, 58, 59, 60, 62, 63, 67, 68, 69, 72, 77, 78}
4,5,6,7,8,9,12,13,14,15,16, 17, 18, 22, 23, 24, 27, 32, 33, 36, 42, 45, 57, 58, 59, 60, 62, 63, 66, 67, 68, 69, 72, 78}

]
1
1
]
]
1
]
]

Table A4a
Numbers of C3(k) and Cs (k) with k tiles.
k 1C3(k)| IC3,e (k)]
10 2880 10
9 84600 301
8 305388 1094
7 264384 952
6 105012 406
5 21060 102
4 3672 29
3 528 8
2 72 3
1 9 1
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Table A.4b
Numbers of A3(k) and N3 (k) with k tiles.
k N3 ()| [N3e(R)]
36 1296 8
34 720 3
32 1152 4
31 3168 11
30 576 2
29 288 1
28 3168 12
27 3456 12
26 6048 21
25 5760 20
24 5184 18
23 6624 23
22 8640 30
21 12672 44
20 20160 70
19 35280 123
18 50256 175
17 90000 313
16 93024 324
15 108720 379
14 120384 422
13 148536 522
12 163512 576
11 157536 556
10 186480 657
9 133200 483
8 42624 156
7 2160 9

C3(k) ={BeC@3):|B| =k},

N3(k) ={N e N(3) : IN| =k},

Cs.e(k) = {[B] €[C(3)]:|B'| =k for all B’ € [B]}.
Nae(k) = {[N] € [N(3)]: |N'| =k for all N’ € [N]}.

Clearly, from Proposition 3.1, C(3) = i; C3(k) and N'(3) = 1321 N3(k). Only the cases for C3(k) # % and N3(k) # @ are
listed.
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