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This investigation studies nonemptiness problems of plane edge coloring with three colors. 
In the edge coloring (or Wang tiles) of a plane, unit squares with colored edges that have 
one of p colors are arranged side by side such that the touching edges of the adjacent tiles 
have the same colors. Given a basic set B of Wang tiles, the nonemptiness problem is to 
determine whether or not Σ(B) �= ∅, where Σ(B) is the set of all global patterns on Z2

that can be constructed from the Wang tiles in B . Wang’s conjecture is that for any B of 
Wang tiles, Σ(B) �= ∅ if and only if P(B) �= ∅, where P(B) is the set of all periodic patterns 
on Z2 that can be generated by the tiles in B .
When p ≥ 5, Wang’s conjecture is known to be wrong. When p = 2, the conjecture is 
true. This study proves that when p = 3, the conjecture is also true. If P(B) �= ∅, then 
B has a subset B ′ of minimal cycle generators such that P(B ′) �= ∅ and P(B ′′) = ∅ for 
B ′′ � B ′. This study demonstrates that the set C(3) of all minimal cycle generators contains 
787, 605 members that can be classified into 2, 906 equivalence classes. N (3) is the set of 
all maximal non-cycle generators: if B ∈ N (3), then P(B) = ∅ and P(B̃) �= ∅ for B̃ � B . 
Wang’s conjecture is shown to be true by proving that B ∈N (3) implies Σ(B) = ∅.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The coloring of Z2 using unit squares has been studied for many years [1–14]. In 1961, Wang [14] started to study the 
square tiling of a plane to prove theorems by pattern recognition. Unit squares with colored edges are arranged side by side 
so that the touching edges of the adjacent tiles have the same color; the tiles cannot be rotated or reflected. Today, such 
tiles are called Wang tiles or Wang dominos [4,7].

The 2 × 2 unit square is denoted by Z2×2. The set of p colors is {0, 1, · · · , p − 1}. Therefore, the total set of Wang tiles is 
denoted by Σ2×2(p) ≡ {0, 1, · · · , p − 1}Z2×2 . A set B of Wang tiles is called a basic set (of Wang tiles). Let Σ(B) and P(B)

are the sets of all global patterns and periodic patterns on Z2, respectively, that can be constructed from the Wang tiles 
in B .
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Given a finite set B of Wang tiles, the nonemptiness problem concerning tiling with of Wang tiles is to determine 
whether or not

Σ(B) �= ∅. (1.1)

Clearly, P(B) ⊆ Σ(B), meaning that if P(B) �= ∅, then Σ(B) �= ∅. In [14], Wang conjectured that any set of tiles that can 
tile a plane can tile the plane periodically:

if Σ(B) �= ∅, then P(B) �= ∅. (1.2)

If (1.2) holds, then the nonemptiness problem that is specified by (1.1) is reduced to the much easier problem of deter-
mining whether or not

P(B) �= ∅. (1.3)

However, in 1966, Berger [4] proved that Wang’s conjecture was wrong and the nonemptiness problem concerning 
Wang’s tiling is undecidable. He presented a set B of 20426 Wang tiles that could only tile the plane aperiodically:

Σ(B) �= ∅ and P(B) = ∅. (1.4)

Later, he reduced the number of tiles to 104. Thereafter, smaller basic sets were found by Knuth, Läuchli, Robinson, Pen-
rose, Ammann, Culik and Kari. Currently, the smallest number of tiles that can tile a plane aperiodically is 13, with five 
colors: (1.4) holds and then (1.2) fails for p = 5 [5].

Recently, Hu and Lin [8] showed that Wang’s conjecture (1.2) holds if p = 2: any set of Wang tiles with two colors that 
can tile a plane can tile the plane periodically.

In that study, they showed that statement (1.2) can be approached by studying how periodic patterns can be generated 
from a given basic set. First, B is called a cycle generator if P(B) �= ∅; otherwise, B is called a non-cycle generator. Moreover, 
B ⊂ Σ2×2(p) is called a minimal cycle generator (MCG) if B is a cycle generator and P(B ′) = ∅ whenever B ′ � B; B ⊂
Σ2×2(p) is called a maximal non-cycle generator (MNCG) if B is a non-cycle generator and P(B ′′) �= ∅ for any B ′′ � B .

Given p ≥ 2, denote the set of all minimal cycle generators by C(p) and the set of maximal non-cycle generators 
by N (p). Clearly,

C(p) ∩N (p) = ∅. (1.5)

Statement (1.2) follows for p ≥ 2 if

Σ(B) = ∅ for any B ∈ N (p) (1.6)

can be shown. Indeed, in [8], it is shown that C(2) has 38 members; N (2) has nine members, and (1.6) holds for p = 2. This 
paper studies the case of p = 3. Now, C(3) and N (3) have close to a million members and cannot be handled manually. 
After the symmetry group D4 of Z2×2 and the permutation group S p of colors of horizontal and vertical edges, respectively, 
are applied, C(3) still contains thousands of equivalent classes. Hence, computer programs are utilized to determine C(3)

and N (3) and finally (1.6) is shown to hold for p = 3. Therefore, the conjecture (1.2) is true for p = 3. Moreover, if P(B) �= ∅, 
P(B) contains a periodic pattern with horizontal period m ≤ 35.

For p = 4, C(4) is enormous. Therefore, the arguments and the computer program need to be much efficient to handle 
this situation.

Corner coloring with p = 3 can be treated similarly. The result will be presented elsewhere.
The rest of paper is arranged as follows. Section 2 introduces the ordering matrix of all 81 local patterns and classifies 

them into three groups. The recurrence formula for patterns on Σm×n are derived. It is important in proving (1.6) – that the 
maximum non-cycle generators cannot generate global patterns. Section 3 will introduce the procedure for determining the 
sets C(3) and N (3). The main result is proven using a computer.

2. Preliminary

This section introduces all necessary elements for proving (1.6). First, let Σm×n(B) be the set of all local patterns on 
Zm×n that can be generated by B . Clearly,

if Σm×n(B) = ∅ for some m,n ≥ 2, then Σ(B) = ∅. (2.1)
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2.1. Symmetries

The symmetry of the unit square Z2×2 is introduced. The symmetry group of the rectangle Z2×2 is D4, which is the 
dihedral group of order eight. The group D4 is generated by rotation ρ through π

2 and reflection m about the y-axis. 
Denote the elements of D4 by D4 = {I, ρ, ρ2, ρ3, m, mρ, mρ2, mρ3}.

Therefore, given a basic set B ⊂ Σ2×2(p) and any element τ ∈ D4, another basic set (B)τ can be obtained by transforming 
the local patterns in B by τ .

Additionally, consider the permutation group S p on {0, 1, · · · , p − 1}. If η ∈ S p and η(0) = i0, η(1) = i1, · · · , η(p − 1) =
ip−1, we write

η =
(

0 1 · · · p − 1
i0 i1 · · · ip−1

)
.

For η ∈ S p and B ∈ Σ2×2(p), another basic set (B)η can be obtained.
In edge coloring, the permutations of colors in the horizontal and vertical directions are mutually independent. Denote 

the permutations of colors in the horizontal and vertical edges by ηh ∈ S p and ηv ∈ S p , respectively. Now, for any B ⊂
Σ2×2(p), define the equivalence class [B] of B by

[B] = {
B ′ ⊂ Σ2×2(p) : B ′ = ((

(B)τ
)
ηh

)
ηv

, τ ∈ D4 and ηh, ηv ∈ S p
}
. (2.2)

In [8], whether or not Σ(B) = ∅ and P(B) = ∅ is shown to be independent of the choice of elements in [B]. Indeed, for 
any B ′ ∈ [B],

Σ
(

B ′) �= ∅ (
or P(B ′) �= ∅)

if and only if Σ(B) �= ∅ (
or P(B) �= ∅)

.

Moreover, for B ′ ∈ [B], B ′ is an MCG (MNCG) if and only if B is an MCG (MNCG). Therefore, groups D4 and S3 can be used 
efficiently to reduce the number of cases B ⊂ Σ2×2(3) that must be considered, greatly reducing the computation time.

2.2. Ordering matrix

Now, the case p = 3 is considered. The vertical ordering matrix Y2×2 = [yi, j]9×9 of all local patterns in Σ2×2(p) is given 
by

Y2×2 = (2.3)

=
⎡
⎣ Y2;1 Y2;2 Y2;3

Y2;4 Y2;5 Y2;6
Y2;7 Y2;8 Y2;9

⎤
⎦ (2.4)
3×3
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The recurrence relation of Ym+1 is easily obtained as follows. Denote by

Y2 = [y2;p,q]3×3 =
9∑

i=1

Y2;i (2.5)

and

Y2;i = [y2;i;p,q]3×3, (2.6)

where

y2;i;p,q =

and i = 1 + α1 · 31 + α2 · 30, αi ∈ {0, 1, 2}. Here, the sum of (2.5) is the formal sum that means y2;p,q = ⋃9
i=1 y2;i;p,q . For 

m ≥ 2, denote by

Ym+1 =
9∑

i=1

Ym+1;i (2.7)

and

Ym+1;i = [ym+1;i;p,q]3m×3m , (2.8)

where ym+1;i;p,q is the set of all patterns of the form

where α, β , pk and qk ∈ {0, 1, 2}, 1 ≤ k ≤ m, such that
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

i = 1 + α · 31 + β · 30

p = 1 +
m∑

k=1

pk3m−k

q = 1 +
m∑

k=1

qk3m−k

(2.9)

and • ∈ {0, 1, 2}. Therefore, when i = 1, 4, 7,

Ym+1;i =

⎡
⎢⎢⎢⎣

∑3
j=1 y2; j+i−1;1,1Ym;3 j−2

∑3
j=1 y2; j+i−1;1,2Ym;3 j−2

∑3
j=1 y2; j+i−1;1,3Ym;3 j−2∑3

j=1 y2; j+i−1;2,1Ym;3 j−2
∑3

j=1 y2; j+i−1;2,2Ym;3 j−2
∑3

j=1 y2; j+i−1;2,3Ym;3 j−2∑3
j=1 y2; j+i−1;3,1Ym;3 j−2

∑3
j=1 y2; j+i−1;3,2Ym;3 j−2

∑3
j=1 y2; j+i−1;3,3Ym;3 j−2

⎤
⎥⎥⎥⎦

3m×3m

;

when i = 2, 5, 8,

Ym+1;i =

⎡
⎢⎢⎢⎣

∑3
j=1 y2; j+i−2;1,1Ym;3 j−1

∑3
j=1 y2; j+i−2;1,2Ym;3 j−1

∑3
j=1 y2; j+i−2;1,3Ym;3 j−1∑3

j=1 y2; j+i−2;2,1Ym;3 j−1
∑3

j=1 y2; j+i−2;2,2Ym;3 j−1
∑3

j=1 y2; j+i−2;2,3Ym;3 j−1∑3
j=1 y2; j+i−2;3,1Ym;3 j−1

∑3
j=1 y2; j+i−2;3,2Ym;3 j−1

∑3
j=1 y2; j+i−2;3,3Ym;3 j−1

⎤
⎥⎥⎥⎦

3m×3m

;

when i = 3, 6, 9,

Ym+1;i =

⎡
⎢⎢⎢⎣

∑3
j=1 y2; j+i−3;1,1Ym;3 j

∑3
j=1 y2; j+i−3;1,2Ym;3 j

∑3
j=1 y2; j+i−3;1,3Ym;3 j∑3

j=1 y2; j+i−3;2,1Ym;3 j
∑3

j=1 y2; j+i−3;2,2Ym;3 j
∑3

j=1 y2; j+i−3;2,3Ym;3 j∑3 y2; j+i−3;3,1Ym;3 j
∑3 y2; j+i−3;3,2Ym;3 j

∑3 y2; j+i−3;3,3Ym;3 j

⎤
⎥⎥⎥⎦

m m

.

j=1 j=1 j=1 3 ×3
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Given B ⊂ Σ2×2(3), the associated vertical transition matrix V2×2(B) is defined by V2×2(B) = [vi, j], where vi, j = 1 if 
and only if yi, j ∈ B .

The recurrence formula for a higher-order vertical transition matrix can be obtained as follows. Denote by

V2 =
9∑

i=1

V2;i,

with

V2;i = [v2;i;p,q]3×3.

For m ≥ 2, denote by

Vm+1 =
9∑

i=1

Vm+1;i.

Now, for i = 1, 4, 7,

Vm+1;i =

⎡
⎢⎢⎢⎣

∑3
j=1 v2; j+i−1;1,1Vm;3 j−2

∑3
j=1 v2; j+i−1;1,2Vm;3 j−2

∑3
j=1 v2; j+i−1;1,3Vm;3 j−2∑3

j=1 v2; j+i−1;2,1Vm;3 j−2
∑3

j=1 v2; j+i−1;2,2Vm;3 j−2
∑3

j=1 v2; j+i−1;2,3Vm;3 j−2∑3
j=1 v2; j+i−1;3,1Vm;3 j−2

∑3
j=1 v2; j+i−1;3,2Vm;3 j−2

∑3
j=1 v2; j+i−1;3,3Vm;3 j−2

⎤
⎥⎥⎥⎦

3m×3m

;

for i = 2, 5, 8,

Vm+1;i =

⎡
⎢⎢⎢⎣

∑3
j=1 v2; j+i−2;1,1Vm;3 j−1

∑3
j=1 v2; j+i−2;1,2Vm;3 j−1

∑3
j=1 v2; j+i−2;1,3Vm;3 j−1∑3

j=1 v2; j+i−2;2,1Vm;3 j−1
∑3

j=1 v2; j+i−2;2,2Vm;3 j−1
∑3

j=1 v2; j+i−2;2,3Vm;3 j−1∑3
j=1 v2; j+i−2;3,1Vm;3 j−1

∑3
j=1 v2; j+i−2;3,2Vm;3 j−1

∑3
j=1 v2; j+i−2;3,3Vm;3 j−1

⎤
⎥⎥⎥⎦

3m×3m

;

for i = 3, 6, 9,

Vm+1;i =

⎡
⎢⎢⎢⎣

∑3
j=1 v2; j+i−3;1,1Vm;3 j

∑3
j=1 v2; j+i−3;1,2Vm;3 j

∑3
j=1 v2; j+i−3;1,3Vm;3 j∑3

j=1 v2; j+i−3;2,1Vm;3 j
∑3

j=1 v2; j+i−3;2,2Vm;3 j
∑3

j=1 v2; j+i−3;2,3Vm;3 j∑3
j=1 v2; j+i−3;3,1Vm;3 j

∑3
j=1 v2; j+i−3;3,2Vm;3 j

∑3
j=1 v2; j+i−3;3,3Vm;3 j

⎤
⎥⎥⎥⎦

3m×3m

.

Therefore, as in [1,8], it can be proven that

∣∣Σ(m+1)×n(B)
∣∣ = ∣∣Vn−1

m+1

∣∣. (2.10)

2.3. Periodic patterns

This subsection studies periodic patterns in detail.
For m, n ≥ 1, a global pattern u = (αi, j)i, j∈Z on Z2 is called (m, n)-periodic if every i, j ∈ Z,

αi+mp, j+nq = αi, j (2.11)

for all p, q ∈ Z.
Let PB(m, n) be the set of all (m, n)-periodic patterns and B-admissible patterns. Let ΓB (m, n) = |PB(m, n)| be the num-

ber of all (m, n)-periodic and B-admissible patterns.
As in [3], PB(m, n) can be expressed by trace operators as follows.
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From (2.9), the periodic patterns in Ym+1 are given by Ym+1;i , i = 1, 5, 9. Define

Tm ≡
∑

i=1,5,9

Vm+1;i . (2.12)

Tm is called the trace operator of order m, as in [3]. Therefore, the following result is obtained.

Proposition 2.1. Given B ⊆ Σ2×2(3), for m, n ≥ 1,

ΓB(m,n) = tr
(
Tn

m

)
. (2.13)

Proof. The proof is similar to that for corner coloring in [2]. The details of the proof are omitted. �
Notably, from Proposition 2.1, P(B) �= ∅ if and only if ΓB(m, n) > 0 for some m, n ≥ 1.
Recall some notation and terms from matrix theory. A matrix A is called nilpotent if Ak = 0 for some k ≥ 1. The property 

“nilpotent” can be used to specify whether B is a cycle generator or non-cycle generator.

Proposition 2.2. Given a basic set B ⊂ Σ2×2(3),

(i) B is a cycle generator if and only if Tm is not nilpotent for some m ≥ 1.
(ii) Σ(B) = ∅ if and only if Vm is nilpotent for some m ≥ 1.

Proof. From (2.13) of Proposition 2.1, B is easily seen to be a cycle generator if and only if tr(Tn
m) > 0 for some m, n ≥ 1. 

Therefore, (i) follows immediately.
Similarly, from (2.10), (ii) follows.
The following proposition provides an efficient method to check the nilpotent for non-negative matrix and can be easily 

proven. The proof is omitted. �
Proposition 2.3. Suppose A is a non-negative matrix. Then, A is nilpotent if and only if A can be reduced to a zero matrix by repeating 
the following process: if the i-th row (column) of A is a zero row, then the i-th column (row) of A is replaced with a zero column.

3. Main result

3.1. Periodic pairs

This section firstly classifies all local patterns in {0, 1, 2}Z2×2 into three groups.

First, the local pattern α = = (α0, α1, α2, α3) is assigned a number by

ϕ
(
(α0,α1,α2,α3)

) = 1 +
3∑

j=0

α j3
j . (3.1)

Then, all 81 local patterns are listed in the following three groups G0, G1 and G2.

G0 = {1,11,21,31,41,51,61,71,81}
G1 = {2,3,4,7,10,12,14,17,19,20,24,27,28,32,33,34,38,40,

42,44,48,49,50,54,55,58,62,63,65,68,70,72,75,78,79,80}
G2 = {5,6,8,9,13,15,16,18,22,23,25,26,29,30,35,36,37,39,

43,45,46,47,52,53,56,57,59,60,64,66,67,69,73,74,76,77}
Clearly, every tile in G0 can generate a (1, 1)-periodic pattern. Furthermore, elements in Gi , i = 1, 2, form periodic pairs 
as in Fig. 3.1: two tiles that are connected by a line can generate a (2, 2)-periodic pattern. More precisely, the diagrams in 
Fig. 3.1 can be interpreted as follows.
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G0 =

G1 = G2 =

Fig. 3.1. Connections with one or two tiles in each group.

Proposition 3.1.

(i) Each tile e in G0 can generate a periodic pattern by repetition of itself: {e} is then a minimum cycle generator and is (1, 1)-periodic.
(ii) For each tile e in G1 , there exist exactly three tiles e1, e2, e3 ∈ G1 such that {e, ei} can form a periodic cycle, which is a 

(1, 2)-periodic or (2, 1)-periodic pattern, and {e, ei} is a minimum cycle generator for 1 ≤ i ≤ 3.
(iii) For each tile e in G2 , there exists exactly one tile e′ ∈ G2 such that {e, e′} is a minimum cycle generator and is (2, 2)-periodic.

These minimum cycle generators are the simplest.

Remark 3.2. From Fig. 3.1, the set G1 ∪ G2 with 72 tiles can be decomposed into 36 disjoint sets that each consists of two 
tiles such that each set is a minimal cycle generator. Therefore, the number of the tiles of maximal non-cycle generators 
in N (3) is equal to or less than 36. Indeed, elements in each pairs can be carefully picked up, and the maximum non-cycle 
generator with 36 elements thus obtained; see Table A.3. Moreover, from Proposition 2.2, for each element B in the eight 
equivalence classes of Table A.3, Σ(B) = ∅ can be verified.

3.2. Algorithms

Before the developed algorithms are presented, some notation must be introduced.

Definition 3.3.

(i) For a set A, let P(A) be the power set of A.
(ii) For B ⊆ P(Σ2×2(3)), let

[B] = {[B] | B ∈ B
}
.

(iii) For [B] ∈ [P(Σ2×2(3))], let 〈B〉 be a fixed chosen element of [B].
(iv) Let N ∗(3) be the set of all maximal non-cycle generators that cannot generate a global pattern. Indeed,

N ∗(3) = {
N ∈ N (3) | Σ(N) = ∅}

.

(v) For B ⊆ Σ2×2(3), let C(B) be the set of all minimal cycle generators that are contained in B .
(vi) For B ⊆ Σ2×2(3), let N ∗(B) be the set of all maximal non-cycle generators that cannot generate a global pattern and 

are contained in B .
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Now, the main idea of the algorithms is introduced, as follows.

Let
N = 281,

P(Σ2×2(3)) = {B j | 0 ≤ j ≤ N − 1}, where B0 = ∅,

Initial state for C(3): CI (0) = ∅,

Initial state for N ∗(3): N ∗
I (0) = ∅,

Initial state for the set of aperiodic sets: UI (0) = ∅.

Algorithm 1 Main Algorithm
Main Algorithm
j = 0
repeat

j = j + 1
if P(B j) �= ∅,
CI ( j) = CI ( j − 1) ∪ {B j}

else
if Σ(B j) = ∅,
N ∗

I ( j) = N ∗
I ( j − 1) ∪ {B j}

else
UI ( j) = UI ( j − 1) ∪ {B j}

end
end

until j = N − 1

After Algorithm 1 has been executed, if UI (N − 1) = ∅, then Wang’s conjecture holds for p = 3. The methods to achieve 
the goal are introduced below:

(I) reduce the number of cases that must be considered in the computation,
(II) construct efficient initial states for C(3) and N ∗(3),
(III) construct an efficient process for determining whether or not P(B j) = ∅ and Σ(B j) = ∅.

With respect to (I), the decomposition Σ2×2(3) = G0 ∪ G1 ∪ G2 is used to reduce the number of cases that must be 
considered in the computation. Clearly, if B ⊆ Σ2×2(3) contains a tile e ∈ G0, then B is a cycle generator. Now, in studying 
Wang’s conjecture, only cases B ⊆ G1 ∪ G2 have to be considered.

Given B = A1 ∪ A2 with A1 ∈ P(G1) and A2 ∈ P(G2), if A1 or A2 is a cycle generator, then B immediately satisfies (1.2). 
By (2.2), the cases B ⊆ G1 ∪ G2 that have to be considered can be further reduced to the cases in I or I ′:

I ≡ {
A1 ∪ 〈A2〉

∣∣ A1 ∈ D1 and [A2] ∈ [D2]
}

= {
B j

∣∣ 1 ≤ j ≤ |I|} (3.2)

and

I ′ ≡ {〈A1〉 ∪ A2
∣∣ [A1] ∈ [D1] and A2 ∈ D2

}
, (3.3)

where

D j = {
A ∈ P(G j)

∣∣ A � C for any C ∈ C(G j)
}

(3.4)

for j = 1, 2. For brevity, the proof is omitted. From Table A.1, N ′ ≡ |I| ≈ 1.35075 ×1012 and |I ′| ≈ 1.38458 ×1012. Therefore, 
I is the better choice for reducing B ⊆ G1 ∪ G2. Notably, N ′ � |P(G1 ∪ G2)| = 272 ≈ 4.72237 × 1021; the reduction is 
considerable. Table A.1 presents the details.

With respect to (II), let UI (0) = ∅. The initial data for C(3) are given by the set CI (0) of all minimal cycle generators that 
are the subsets of G0, G1, or G2. Indeed,

CI (0) =
2⋃

j=0

C(G j). (3.5)

On the other hand, the initial data for N ∗(3) are given by

N ∗
I (0) = {

N ∈ N ∗(G1 ∪ G2) : |N| = 36
}
. (3.6)

From Remark 3.2, N ∗
I (0) equals the set of all maximal non-cycle generators in G1 ∪ G2 with 36 tiles. CI (0) and N ∗

I (0) can 
be easily found using a computer program. See Tables A.2a and A.3.

With respect to (III), the flowchart, which is based on (I) and (II), is as follows.
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Fig. 3.2. Flowchart of the computer program.

Remark 3.4. Suppose that the computation based on the flowchart has been completed. Let C = CI (N ′ −1), N ∗ =N ∗
I (N ′ −1)

and U = UI (N ′ − 1).

(i) If the set U = ∅, then Wang’s conjecture holds for p = 3; otherwise, every element in U is an aperiodic set.
(ii) It is easy to see that an element in C may be not a minimal cycle generator. However, C(3) can be obtained from 

C̃ ≡ ⋃
C∈C[C] by the following process. If C1, C2 ∈ C̃ with C1 � C2, then C2 must be removed from C̃ . Indeed,

C(3) = {
C ∈ C̃ | C does not contain any C ′ ∈ C̃ except itself

}
.

(iii) In a manner similar to that for (ii), let Ñ ≡ ⋃
N∈N ∗ [N]. Now,

N ∗(3) = {
N ∈ Ñ | N is not a proper subset of N ′ for all N ′ ∈ Ñ except itself

}
.

Moreover, if U = ∅, N (3) =N ∗(3).
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3.3. Main result

The computer program of Fig. 3.2 is written, and the computation is completed in finite time. Indeed, the cases that 
consume the most time are those in which the numbers of tiles in B ⊆ G1 ∪ G2 are 18 and 19. These cases can be computed 
completely within a week. The main result is as follows.

Theorem 3.5. The set U = ∅, and Wang’s conjecture holds for p = 3.

Remark 3.6.

(i) C(3) and N (3) can be obtained and their numbers are listed in Table A.4a.
(ii) The computational results reveal that the maximum orders m of Tm(B) and Vm(B) in applying Proposition 2.2 are 

m = 35 and m = 13, respectively. More precisely, for B ′ = {2, 5, 13, 36, 53, 60, 62, 64, 77}, T35(B ′) is not nilpotent but 
Tk(B ′) is nilpotent for 1 ≤ k ≤ 34. On the other hand, for B ′′ = {2, 4, 5, 6, 9, 13, 14, 16, 18, 27, 32, 39, 60, 67, 78, 79}, 
V13(B ′′) is nilpotent and Vk(B ′′) are not nilpotent for any 1 ≤ k ≤ 12. The analytic proof that these numbers are maximal 
is not available. A prior estimate of the upper bound of m does not exist.

For completeness, Tables A.4a and A.4b give the numbers of minimal cycle generators and maximal non-cycle generators.
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Appendix A

Table A.1 presents the numbers of D j and [D j], j = 1, 2. Denote by g j(k) the number of D j with k tiles and ḡ j(k) the 
number of [D j] with k tiles for 1 ≤ j ≤ 2 and 1 ≤ k ≤ 18.

Tables A.2a and A.2b present the equivalence classes of the minimal cycle generators in G1 and G2.
Table A.3 shows the equivalence classes of maximal non-cycle generators with 36 tiles.
Tables A.4a and A.4b show the numbers of C(3) and N (3). Firstly, denote by

Table A.1
Numbers of D j and [D j ] with k tiles for 1 ≤ j ≤ 2 and 1 ≤ k ≤ 18.

k g1(k) ḡ1(k) g2(k) ḡ2(k)

1 36 1 36 1
2 576 8 612 8
3 5304 31 6504 34
4 31 032 146 47 988 219
5 122 184 475 256 320 971
6 342 204 1290 998 136 3692
7 711 288 2581 2 812 752 10 043
8 1 129 896 4092 5 771 988 20 554
9 1 397 892 5005 8 886 612 31 338

10 1 361 448 4903 10 558 368 37 319
11 1 047 816 3763 9 807 336 34 539
12 635 580 2321 7 125 612 25 253
13 300 888 1106 4 007 484 14 203
14 109 080 423 1 708 632 6162
15 29 304 118 533 664 1945
16 5508 28 115 164 453
17 648 4 15 336 65
18 36 1 948 8

Table A.2a
Equivalence classes of the minimal cycle generators in G1.

k [C] ∈ [C(G1)] with k tiles

2 [{2,10}]
[{2,40}]

3 [{2,12,19}]
[{2,12,49}]
[{2,42,79}]
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Table A.2b
Equivalence classes of the minimal cycle generators in G2.

k [C] ∈ [C(G2)] with k tiles

2 [{5,37}]
3 [{5,45,73}]
4 [{5,13,30,46}]

[{5,16,30,73}]
[{5,16,39,74}]
[{5,9,46,64}]

[{5,13,35,64}]
5 [{5,13,30,43,74}]

[{5,15,30,52,73}]
[{5,9,39,46,76}]
[{5,6,35,52,64}]

[{5,15,35,46,66}]
6 [{5,13,35,43,57,73}]

[{5,6,43,53,66,73}]
[{5,13,36,53,66,73}]
[{5,9,39,52,67,74}]
[{5,9,39,43,74,76}]

[{5,13,30,43,47,64}]
[{5,6,13,43,47,66}]
[{5,9,13,25,39,74}]
[{5,9,13,30,47,64}]
[{5,6,16,47,57,64}]
[{5,9,16,53,66,74}]
[{5,9,13,39,53,74}]
[{5,6,13,30,52,73}]
[{5,9,15,43,60,74}]

[{5,13,35,45,66,74}]
7 [{5,9,13,30,52,64,74}]

[{5,9,13,47,52,57,64}]
[{5,6,16,36,53,66,73}]
[{5,9,16,39,47,69,76}]
[{5,6,13,35,43,66,73}]
[{5,6,16,35,39,47,76}]
[{5,9,13,30,52,56,64}]
[{5,6,16,35,36,57,73}]
[{5,9,15,22,46,56,66}]

[{5,15,25,35,45,64,74}]
8 [{5,9,13,26,35,43,57,74}]

[{5,9,13,35,39,52,74,76}]
[{5,9,13,45,47,52,56,64}]

Table A.3
Equivalence classes of maximal non-cycle generators with 36 tiles.

1. [{2,3,4,5,6,7,8,9,12,13,14,15,16,17,18,22,23,24,25,26,27,32,33,34,35,36,42,43,44, 45, 52, 53, 54, 62, 63, 72}]
2. [{2,3,4,5,6,7,8,9,12,13,14,15,16,17,18,22,23,24,25,26,27,32,33,34,35,36,42,43,44, 45, 53, 54, 60,62,63,72}]
3. [{2,3,4,5,6,7,8,9,12,13,14,15,16,17,18,22,23,24,25,26,27,32,33,34,35,36,42,43,44, 45, 54, 60,62,63,69,72}]
4. [{2,3,4,5,6,7,8,9,12,13,14,15,16,17,18,22,23,24,25,26,27,32,33,34,35,36,42,44,45, 54, 59, 60,62,63,69,72}]
5. [{2,3,4,5,6,7,8,9,12,13,14,15,16,17,18,22,23,24,26,27,32,33,35,36,42,45,57,58,59, 60,62,63,68,69,72,78}]
6. [{2,3,4,5,6,7,8,9,12,13,14,15,16,17,18,22,23,24,26,27,32,33,35,36,42,57,58,59,60,62,63,68,69,72,77,78}]
7. [{2,3,4,5,6,7,8,9,12,13,14,15,16,17,18,22,23,24,26,27,32,33,36,42,57,58,59,60,62,63,67,68,69,72,77,78}]
8. [{2,3,4,5,6,7,8,9,12,13,14,15,16,17,18,22,23,24,27,32,33,36,42,45,57,58,59,60,62,63,66,67,68,69,72,78}]

Table A.4a
Numbers of C3(k) and C3,e(k) with k tiles.

k |C3(k)| |C3,e(k)|
10 2880 10

9 84 600 301
8 305 388 1094
7 264 384 952
6 105 012 406
5 21 060 102
4 3672 29
3 528 8
2 72 3
1 9 1
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Table A.4b
Numbers of N3(k) and N3,e(k) with k tiles.

k |N3(k)| |N3,e(k)|
36 1296 8
34 720 3
32 1152 4
31 3168 11
30 576 2
29 288 1
28 3168 12
27 3456 12
26 6048 21
25 5760 20
24 5184 18
23 6624 23
22 8640 30
21 12 672 44
20 20 160 70
19 35 280 123
18 50 256 175
17 90 000 313
16 93 024 324
15 108 720 379
14 120 384 422
13 148 536 522
12 163 512 576
11 157 536 556
10 186 480 657

9 133 200 483
8 42 624 156
7 2160 9

⎧⎪⎪⎨
⎪⎪⎩

C3(k) = {B ∈ C(3) : |B| = k},
N3(k) = {N ∈ N (3) : |N| = k},
C3,e(k) = {[B] ∈ [C(3)] : |B ′| = k for all B ′ ∈ [B]},
N3,e(k) = {[N] ∈ [N (3)] : |N ′| = k for all N ′ ∈ [N]}.

Clearly, from Proposition 3.1, C(3) = ⋃36
k=1 C3(k) and N (3) = ⋃36

k=1 N3(k). Only the cases for C3(k) �= ∅ and N3(k) �= ∅ are 
listed.
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