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Pairing in the Weyl semimetal appearing on the surface of a topological insulator is considered. It is shown that
due to an “ultrarelativistic” dispersion relation there is a quantum critical point governing the zero-temperature
transition to a superconducting state. Starting from the microscopic Hamiltonian with local attraction, we
calculated using the Gor’kov equations, the phase diagram of the superconducting transition at arbitrary chemical
potential, and its magnetic properties and critical exponents close to the quantum critical point. The Ginzburg-
Landau (GL) effective theory is derived for small chemical potential, allowing us to consider effects of spatial
dependence of order parameters in a magnetic field. The GL equations are very different from the conventional
ones reflecting the chiral universality class of the quantum phase transition. The order-parameter distribution of
a single vortex is found to be different as well. The magnetization near the upper critical field is found to be
quadratic, not linear as usual. We discuss the application of these results to recent experiments in which surface
superconductivity was found for some three-dimensional topological insulators, and we estimate feasibility of
the phonon pairing.

DOI: 10.1103/PhysRevB.90.054517 PACS number(s): 74.20.Fg, 74.90.+n, 74.20.De

I. INTRODUCTION

A topological insulator (TI) is a novel state of matter
in materials with strong spin-orbit interactions that create
topologically protected surface states [1]. The electrons (holes)
in these states have a linear dispersion relation and can
be described approximately by a (pseudo) relativistic two-
dimensional (2D) Weyl Hamiltonian. The system with the
chemical potential above or below the Weyl point realizes
an “ultrarelativistic” 2D electron or hole conducting liquid.
It has been known for a long time that similar 2D and
quasi-2D metallic systems, like the surface metal on twin
planes [2] and layered materials (strongly anisotropic high
Tc cuprates [3] or organic superconductors [4]), may develop
2D (surface) superconductivity. This phenomenon became
known as “localized superconductivity” [5]. Since the most
studied TIs possess a quite standard phonon spectrum [6], it
was predicted recently [7] that they become superconducting
TIs (STIs) [this should be distinguished from “topological
superconductors” (TSCs), in which superconductivity appears
in the bulk [1]]. The predicted critical temperature of 1 K is
rather low (despite a fortunate suppression of the Coulomb
repulsion due to a large dielectric constant ε ∼ 50); the nature
of the “normal” state (the so-called 2D Weyl semimetal)
might make the superconducting properties of the system
unusual. The ultrarelativistic nature manifests itself mostly
when the Weyl cone is very close to the Fermi surface.
Especially interesting is the case (originally predicted for the
[111] surface of Bi2Te3 and Bi2Se3 [8]) when the chemical
potential coincides with the Weyl point. Although subsequent
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angle-resolved photoemission spectroscopy experiments [1]
show the location of the cone of surface states to be on the order
of tenths of eV off the Fermi surface, there are experimental
means to shift the chemical potential, for example, by the bias
voltage [9].

Unlike the more customary poor 2D metals with several
small pockets of electrons or holes on the Fermi surface (in
semiconductor systems or even some high Tc materials [3]),
the electron gas STI has two peculiarities that are especially
important when pairing is contemplated. The first is the bipolar
nature of the Weyl spectrum: there is no energy gap between
the upper and lower cones. The second is that the spin degree of
freedom is a major player in the quasiparticle dynamics. This
degree of freedom determines the pairing channel. The pairing
channel problem was studied theoretically on the level of the
Bogoliubov-de Gennes equation [10]. Both s and p waves are
possible and compete due to the breaking of the bulk inversion
symmetry by the surface. The spectrum of Andreev states of
the Abrikosov vortex was obtained [11] in a related problem
of a TI in contact with an s-wave superconductor [12]. Various
pairing interactions were considered to calculate the density
of states measured in CuxBi2Se3 to discriminate between STIs
and TSCs using self-consistent analysis [13]. As mentioned
above the most intriguing case is that of the small chemical
potential that has not been addressed microscopically. It turns
out that it is governed by a quantum critical point (QCP) [14].

The concept of a QCP at zero temperature and varying
doping constitutes a very useful language for describing the
microscopic origin of superconductivity in high Tc cuprates
and other “unconventional” superconductors [3] . Supercon-
ducting transitions generally belong to the U (1) class of
second-order phase transitions [15], however it was pointed
out a long time ago [16] that, if the normal state dispersion
relation is ultrarelativistic, the transition at zero temperature as
a function of parameters like the pairing interaction strength
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is qualitatively distinct and belongs to chiral universality
classes classified in [17]. Attempts to experimentally identify
second-order transitions governed by a QCP included quantum
magnets [14], superconductor-insulator transitions [18], and
more recently chiral condensates in graphene [19,20].

In this paper we study the thermodynamic and magnetic
properties of the surface superconductivity in a TI with local
attraction, pairing a Hamiltonian characterized by the coupling
strength g and cutoff parameter TD within the self-consistent
approximation. The phase diagram for s-wave pairing is
obtained for arbitrary temperature T and chemical potential
μ < TD . The latter condition is the main difference from the
conventional BCS model in which μ � TD . We found a quan-
tum critical point at T = μ = 0 when the coupling strength g

reaches a critical value gc dependent on the cutoff parameter.
We concentrate on properties of the superconducting state in a
part of the phase diagram that is dominated by the QCP. Various
critical exponents are obtained. In particular, the coupling
strength dependence of the coherence length is ξ ∝ (g − gc)−ν

with ν = 1, and the order parameter scales as � ∝ (g − gc)β ,
β = 1. It is found that near the QCP the Ginzburg-Landau
(GL) effective model is rather unconventional. The structure
of the single vortex core is different from the usual Abrikosov
vortex, while the magnetization curve near the upper critical
magnetic field Hc2 is quadratic: M = (H − Hc2)2, not linear.

The rest of the paper is organized as follows. The model and
the method of its solution (in the Gor’kov equations form) are
presented in Sec. II. The phase diagram in the homogeneous
case (no magnetic field) is established, and the unusual nature
of the phase transition is discussed. The novel case of zero
chemical potential (tuning to the Weyl point) is studied in
detail. The Ginzburg-Landau energy is derived in Sec. III
and exploited to determine magnetic properties of STIs. The
Hc2 line and magnetization curves for a dense vortex lattice
as well as the single vortex texture are obtained. Section IV
contains discussion on experimental feasibility of the phonon
mediated surface superconductivity in TIs, comparison with
more familiar Bose-Einstein condensate (BEC) and BCS
scenarios, and conclusion.

II. THE s-WAVE PAIRING MODEL: THE PHASE DIAGRAM

A. TI in magnetic field with a local pairing interaction:
Gor’kov equations

Electrons on the surface of a TI perpendicular to the z axis
(see Fig. 1) are described by a Pauli spinor ψα(r), where the
upper plane, r = {x,y}, is considered, with spin projections
taking the values α =↑ , ↓ with respect to the z axis. The
Hamiltonian for electrons in a TI subjected to a perpendicular
external homogeneous magnetic field, and interacting via a
four-Fermi local coupling of strength g, is

H =
∫

d2r

{
ψ+

α (r)Ĥαβψβ(r)

− g

2
ψ+

α (r)ψ+
β (r)ψβ (r) ψα(r)

}
+ Hmag. (1)

Here the surface Weyl Hamiltonian matrix [1,10] is defined as

Ĥαβ = vF εij P̂iσ
j

αβ − μδαβ ,
(2)

X

y H

Topological Insulator

Superconducting surface

FIG. 1. (Color online) Topological insulator plate in magnetic
field. Surfaces are populated by Weyl quasiparticles and holes that
both can be paired by interactions. The magnetic field creates vortices
with normal cores (dark areas on the surfaces) of the radius of order
of coherence length ξ .

P̂ ≡ −i�∇ − e∗

c
A(r),

where i,j = x,y; vF is the Fermi velocity of the TI; and μ

is the surface chemical potential. σ j are the Pauli matrices,
and εij is the antisymmetric tensor. Only one valley is
explicitly considered (generalization to several “flavors” is
trivial). Vector potential A describes the three-dimensional
(3D) magnetic induction B = ∇ × A with magnetic energy
given by

Hmag = 1

8π

∫
d2rdz [B (r,z) − Hext]

2 . (3)

The effective local interaction might be generated by a
phonon exchange or perhaps other mechanisms and will be
assumed to be weak coupling. Therefore the BCS type ap-
proximation can be employed. Using the standard formalism,
the Matsubara Green’s functions (τ is the Matsubara time),

Gαβ(r,τ ; r′,τ ′) = −〈Tτψα(r,τ )ψ†
β(r′,τ ′)〉,

(4)
F

†
αβ(r,τ ; r′,τ ′) = 〈Tτψ

†
α(r,τ )ψ†

β(r′,τ ′)〉,

obey the Gor’kov equations [21]:

−∂Gγκ (r,τ ; r′,τ ′)
∂τ

−
∫

r′′
〈r|Ĥγβ |r′′〉Gβκ (r′′,τ ; r′,τ ′)

−gFβγ (r,τ ; r,τ )F †
βκ (r,τ,r′,τ ′) = δγ κδ(r − r′)δ(τ − τ ′),

∂F †
γ κ (r,τ ; r′,τ ′)

∂τ
−

∫
r′′

〈r|Ĥ t
γβ |r′′〉F †

βκ (r′′,τ ; r′,τ ′)

−gF
†
γβ(r,τ ; r,τ )Gβκ (r,τ,r′,τ ′) = 0. (5)

In the presence of a magnetic field these equations are
complicated by emergence of inhomogeneity pertinent to
type-II superconductors. This will be addressed in Sec. III.
Here we solve the homogeneous case when no magnetic field
is present.
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B. Uniform condensate

In the homogeneous case the Gor’kov equations for Fourier
components of the Green’s functions simplify considerably:

D−1
γβ Gβκ (ω,p) − �̂γβF

†
βκ (ω,p) = δγ κ ,

(6)
D−1

βγ F
†
βκ (ω,p) + �̂∗

γβGβκ (ω,p) = 0,

where ω = πT (2n + 1) is the Matsubara frequency
and D−1

γβ = (iω − μ)δγβ − vF εijpiσ
j

αβ . The matrix gap func-
tion can be chosen as (� real)

�̂βγ = gFγβ(0) =
(

0 �

−� 0

)
. (7)

These equations are conveniently presented in matrix form
(superscript t denotes transposition, and I denotes the identity
matrix):

D−1G − �̂F † = I ,
(8)

Dt−1F † + �̂∗G = 0.

Solving these equations, one obtains

G−1 = D−1 + �̂Dt�̂∗,
(9)

F † = −Dt�̂∗G,

with the gap function found from the consistency condition:

�̂∗ = −g
∑
ωq

Dt�̂∗G. (10)

The off-diagonal component of this equation is

� = g�
∑
ωq

(
�2 + v2

F p2 + μ2 + �
2ω2

)
× 1

(�2 + �2ω2 + (vF p − μ)2)(�2 + �2ω2 +(vF p + μ)2)
.

(11)

The spectrum of elementary excitations obtained from the
poles of the Green’s function coincides with that found within
the Bogoliubov-de Gennes approach [10]:

Ep = ±
√

�2 + (vF p − μ)2. (12)

The solutions of the gap equation are presented in the next
subsection for a general chemical potential and zero tem-
perature, while more general situations (arbitrary temperature
and magnetic field) in the most interesting case of μ = 0 are
addressed in the next section.

C. Zero-temperature phase diagram and QCP

At zero temperature the integrations over frequency and
momentum limited by the UV cutoff � result in (see
Appendix A for details)

U� = �

(√
�2 + μ2 − μ

2
log

√
�2 + μ2 + μ√
�2 + μ2 − μ

)
, (13)

where the dependence on the cutoff is incorporated in the
renormalized coupling with the dimension of energy defined

U�0
U�0.1

U�0.2

U�0.3

U��0.2

U��0.6

0.00 0.05 0.10 0.15 0.20 0.25 0.30 Μ

0.1

0.2

0.3

0.4
�

FIG. 2. (Color online) Order parameter at zero temperature as a
function of chemical potential of the TI surface Weyl semimetal at
various values of coupling parametrized by the renormalized energy
U , Eq. (14). For positive U (blue lines) the superconductivity is strong
and does not vanish even for zero chemical potential. There exists
the critical coupling, U = 0 (the red line), at which the second-order
transition occurs at quantum critical point μ = 0. For negative U the
superconductivity still exists at μ > 0 but is exponentially weak.

as

U = vF � − 4π�
2v2

F

g
. (14)

This can be interpreted as an effective binding energy of
the Cooper pair in the Weyl semimetal. For concreteness
we consider only μ > 0, although the particle-hole symmetry
makes the opposite case of the hole doping, μ < 0, identical.
Of course the superconducting solution exists only for g > 0.
In Fig. 2 the dependence of the gap � as a function of the
chemical potential μ is presented for different values of U .

For an attractive coupling g stronger than the critical one,

gc = 4π�
2vF

�
(15)

(when U > 0, blue lines in Fig. 2), there are two qualitatively
different cases.

(1) When μ  U the dependence of � on the chemical
potential is parabolic (see Appendix B):

�

U
≈ 1 +

(
μ

U

)2

. (16)

In particular, when μ = 0, the gap equals U . As can be seen
from Fig. 2, the chemical potential makes a very limited impact
in the large portion of the phase diagram.

(2) For the attraction just stronger than critical—g > gc,
namely, for small positive U—the dependence becomes linear
(see the red line in Fig. 2), � = 0.663 μ. So that the already
weak condensate becomes sensitive to μ.

Case 1 is more interesting than case 2, since it exhibits
stronger superconductivity (larger Tc, see below). Finally,
for g < gc , namely, negative U (green lines in Fig. 2), the
superconductivity is very weak with exponential dependence
similar to the BCS one:

� ≈ μ exp[−(|U |/μ − 1)]. (17)
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FIG. 3. (Color online) Transition temperature as a function of
chemical potential at supercritical (U > 0, in blue), critical (U = 0,
in red), and subcritical values of coupling.

More detailed comparisons will be performed in Sec. IV. As
was mentioned above, in the more interesting cases of large
� the dependence on the chemical potential is very weak. A
peculiarity of superconductivity in TIs is that electrons (and
holes) in Cooper pairs are created themselves by the pairing
interaction rather than being present in the sample as free
electrons. Therefore it is shown that it is possible to neglect
the effect of weak doping and consider directly the μ = 0
particle-hole symmetric case. This point in parameter space
is the QCP [14] and will be studied in detail in what follows.
Of course, at finite temperature at any attraction, g > 0, there
exists a (classical) superconducting critical point at certain
temperature Tc, calculated next.

D. Dependence of the critical temperature Tc

on strength of pairing interaction

Summation over Matsubara frequency and integrations over
momenta in the gap equation, Eq. (13), at finite temperature
and arbitrary chemical potential are performed in Appendix B.
The critical temperature as a function of μ and (positive)
U is obtained numerically and presented in Fig. 3. Again
at relatively large U the dependence of Tc on the chemical
potential is very weak and parabolic. When 0 < g < gc the
critical temperature is exponentially small albeit nonzero.

E. Zero chemical potential μ = 0

At zero chemical potential the Hamiltonian Eq. (1) pos-
sesses a particle-hole symmetry. Microscopically, Cooper
pairs of both electrons and holes are formed. The system is
unique in this sense since the electron-hole symmetry is not
spontaneously broken in both normal and superconducting
phases. The supercurrent in such a system does not carry
momentum or mass. Performing the sum and integral over
momenta in the gap equation, Eq. (13), analytically (see
Appendix A), it becomes [using the definition of U given
in Eq. (14)] for U > 0

U = 2T log

[
2 cosh

�

2T

]
. (18)

QCP

WSM

SC

�0.2 0.2 0.4 0.6 0.8 1.0
U

0.2

0.4

0.6

0.8

�

FIG. 4. (Color online) Phase diagram of the STI and order pa-
rameter as a function of U describing the deviation from criticality
near the quantum critical point at � = 0, μ = 0. The critical line is a
straight line in mean-field approximation.

At zero temperature � = U , while � → 0 as a power of the
parameter U ∝ g − gc, describing the deviation from quantum
criticality:

Tc = 1

2 log 2
Uzν, zν = 1. (19)

Here z is the dynamical critical exponent [14]. Therefore, as
expected, the renormalized coupling describing the deviation
from the QCP is proportional to the temperature at which the
created condensate disappears.

The temperature dependence of the gap reads (see Fig. 4)

�(T ) = 2T cosh−1

(
1

2
exp

U

2T

)
. (20)

This it typical for chiral universality classes [14,16].
It is interesting to compare this dependence with the

conventional BCS for transition at finite temperature, namely,
away from the QCP. At zero temperature �(0)/Tc = 2 log 2
= 1. 39 (within BCS, 1.76), while near Tc one gets �/Tc =
23/2 log1/2 2

√
1 − t = 2. 35

√
1 − t (within BCS, 3.07

√
1 − t),

where t = T/Tc. To describe the behavior of the STI in
inhomogeneous situations like the external magnetic field,
boundaries, impurities, or junction with metals or other
superconductors, it is necessary to derive the effective theory
in terms of the order parameter �(r), where r varies on the
mesoscopic scale.
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III. GINZBURG-LANDAU EFFECTIVE THEORY AND
MAGNETIC PROPERTIES OF THE
SUPERCONDUCTOR NEAR QCP

A. Coherence length and the condensation energy

Using the well-known Gor’kov method [21], the quadratic
term of the Ginzburg-Landau energy F2 = ∑

p �∗
p�(p)�p is

obtained exactly from expanding the gap equation to linear
terms in � for arbitrary external momentum. The result derived
in Appendix B reads

�(p) = − U

4π�2v2
F

+ |p|
16vF �2

. (21)

The dependence on p is nonanalytic, and within our approx-
imation higher powers of p do not appear. The second term
is very different from the quadratic term in the GL functional
for conventional phase transitions at finite temperature [15]
or even quantum phase transitions in models without Weyl
fermions [14] and has a number of qualitative consequences.
Comparing the two terms in Eq. (21), one obtains the coherence
length as a power of parameter U ∝ g − gc describing the
deviation from criticality:

ξ (U ) = π

4
vF �U−ν , ν = 1. (22)

This is different from the dependence in nonchiral universality
classes that is [15] ξ (T )∞ (Tc − T )−ν , ν = 1/2 in the mean
field. Of course in the regime of critical fluctuations this
exponent is corrected in both nonchiral [15] and chiral [17]
universality classes.

Local terms in the GL energy density are also calculable
exactly (within our approximation, see Appendix C):

fcond = 1

4π�2v2
F

{
−U�∗� + 2

3
(�∗�)3/2

}
. (23)

It is quite nonstandard compared to the customary quartic term
(�∗�)2 in conventional universality classes. The GL equations
in the homogeneous case for the condensate give �0 = Uβ

with critical exponent β = 1, different from the mean-field
value β = 1/2 for the U (1) universality class [15]. The
condensation energy density is f0 = − 1

12π�2v2
F

U 2−α with α =
−1. The free-energy critical exponent at the QCP therefore is
also different from the classical α = 0.

Having calculated both the local terms and the momentum
dependence of the quadratic term in the Ginzburg-Landau
energy, one is ready to formulate the GL energy in an
inhomogeneous situation including the magnetic field.

B. GL equations in the presence of magnetic field

In view of the local gauge invariance principle, replacing
the momentum by a covariant derivative, the gradient term of
the GL energy becomes

Fgrad =
∫

d2r
1

16vF �
�∗(r)

√[
−i∂i − e∗

c�
Ai(r)

]2

�(r).

(24)

This should be supplemented by the condensation energy
Eq. (23) and magnetic energy Eq. (3). The GL equations

are obtained by minimization with respect to the 2D order
parameter and 3D vector potential. In the present case the
equation for the order parameter is nonlocal and nonanalytic:⎧⎨⎩ξ

√(
−i∂i − e∗

�c
Ai

)2

− 1

⎫⎬⎭ � + �

U
(�∗�)1/2 = 0. (25)

The supercurrent in the Maxwell equation,

c

4π
∇ × B = J (r) δ (z) , (26)

is also nonlocal: Ji(r) = 1
c

δF
δAi (r) .

C. Upper critical field and the magnetization curve

The upper critical field is found from the spectrum of the
gradient term operator in Eq. (25). The lowest eigenvalue
of the operator for homogeneous induction B = {0,0,B} is
ξ
√

e∗B/c� (the eigenvalue of the square root of an operator is
a square root of the eigenvalue), and therefore the bifurcation
occurs at

Hc2 = �0

2πξ 2
, (27)

with the coherence length ξ found in Sec. II, Eq. (22). The
formula is the same as in a more customary situation despite
the fact that the coherence length has a different origin and
different critical exponent at QCP.

Near Hc2 the Abrikosov hexagonal lattice is formed.
Its energy density is approximated well using the lowest
Landau level (LLL) approximation: �(r) = �Aϕ(r), where
the Abrikosov hexagonal lattice function ϕ is normalized
by 〈|ϕ(r)|2〉 = 1 (〈...〉 denotes here the space average). The
strength of the condensate is determined by minimizing the
energy (magnetic energy can be neglected):

〈f 〉 = |�A|2
16vF �

〈
ϕ∗

⎧⎨⎩
√[

−i∂i − e∗

c�
Ai(r)

]2

− 4U

πvF �

⎫⎬⎭ϕ

〉

+ |�A|3
6π�2v2

F

〈|ϕ|3〉

= − |�A|2
32vF �

√
e∗

c�
H

1/2
c2 (1 − H/Hc2) + β3|�A|3

6π�2v2
F

. (28)

The number β3 = 〈|ϕ|3〉 = 1.07 is analogous to βA for usual
fourth power GL energy. The optimal �A at external field H

close to Hc2 is

|�A| = U

2
√

2πβ3

(1 − H/Hc2)σ , σ = 1. (29)

This exponent for the transition on the Hc2 line is different
from the ordinary Abrikosov lattice [22], for which σ = 1/2.

The magnetization, calculated from the averaged energy
density for the optimal �A given in Eq. (29), is (B � H )

f (B) = −
√

2π

3 × 210β3

UHc2

�0
(1 − H/Hc2)3. (30)
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The dependence is quadratic:

M = − π3/2

27
√

2β3

U

�0
(1 − H/Hc2)τ , τ = 2, (31)

which should be contrasted with the usual linear depen-
dence [22], τ = 1. For smaller fields the vortex lattice becomes
less dense and eventually the LLL approximation [23] breaks
down. However, since the superconductivity is confined to an
atomic-width layer, there is no Hc1, and at small fields vortices
become independent. Consequently the parabolic increase is
halted and perfect diamagnetism appears only at H = 0. Under
these conditions we turn to a single vortex solution next.

D. Core structure of a single vortex

The single vortex solution for the order parameter can be
found using the rotational symmetry in polar coordinates: � =
Uf (r) eiφ with the homogeneous condensate value � = U

found in Sec. II, so that at large distances the dimensionless
order parameter f (r) → 1. At the center of the vortex, f

vanishes. The effects of the magnetic field, other than the phase
rotation, are small in this extreme type-II case of a surface
superconductor [22]. In this case the GL equation Eq. (25),
using the coherence length ξ , Eq. (22) as the unit of length,
and r → ξr , takes the form

(
√

L̂ − 1)f (r) + f (r)2 = 0. (32)

The operator L̂ ≡ −∂2
r − 1

r
∂r + 1

r2 has Bessel functions as its
eigenvectors:(

−∂2
r − 1

r
∂r + 1

r2

)
J1(αr) = α2J1(αr). (33)

Looking for the solution expanded in the full set of these
functions for all α satisfying our boundary conditions (Hankel
transform) in the form

f (r) = 1 −
∫ ∞

α=0
αF (α)J1(αr), (34)

the equation becomes∫ ∞

α=0
F (α)α(α + 1)J1(αr) =

(∫ ∞

β=0
βF (β)J1(βr)

)2

.

(35)

To obtain an iterative form we multiply by rJ1 (γ r) , and
integrating over r using explicit formulas [24] given in
Appendix D results in

F (γ ) = 1

π (γ + 1)

∫ ∞

α,β=0

F (α)F (β)(α2 + β2 − γ 2)√
[γ 2 − (α − β)2][(α + β)2 − γ 2]

.

(36)

The iteration converges very fast with the result presented
in Fig. 5 (dots). The asymptotic at small r is linear, f (r) = r,

while at large r as expected it approaches the “bulk” value
f (r) → 1 and can be approximated by a formula f (r) = r

r+1
(the green curve in Fig. 5), simpler than the usual interpolation
formula, f (r) = r√

1+2r2 (the orange curve in Fig. 5). One
observes that the relaxation of the order parameter away from
the center of the vortex is much slower in the STI.

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

r Ξ

�
��
0

FIG. 5. (Color online) Vortex core structure near the QCP and
order parameter in units of the bulk gap �0 as a function of distance
from the center in units of coherence length ξ . The dash line is the
approximate formula, while the top line (red) is the usual Abrikosov
vortex profile.

IV. DISCUSSION AND CONCLUSIONS

A. Comparison of renormalization of the coupling with BEC
and BCS in two dimensions

Let us contrast the coupling renormalization in a 2D Weyl
semimetal with momentum cutoff � (for definiteness one can
assume the phonon mechanism so that � is the Debye cutoff
TD , under the condition that the deviation from the Weyl point
μ  TD) with that in a 2D parabolic band, Ep = p2

2m∗ . The
renormalized coupling, Eqs. (14) and (15), can be written in
the form

1

gren
= 1

g
− �

4π�2vF

, (37)

where gren ≡ −4π�
2v2

F /U . The linear renormalization (rather
than the customary logarithmic cutoff dependence) of 1

g

in a Weyl semimetal is pertinent to the so-called “chiral
universality classes” that sometimes appear in description of
quantum critical points in two dimensions [14]. It corresponds
to finite coupling gc fixed points in Eqs. (14) and (15). This is
the main difference from the more conventional cases that are
briefly summarized next.

Within the parabolic case two cases are generally distin-
guished [25]: the BCS, where the chemical potential μ is well
above the bottom of the band (see Fig. 6) so that TD  μ (like
in metallic superconductors), and the BEC when �2/2m∗ � μ

(like in cold atoms).
In the BEC, that is closer to the STI considered here, the

gap equation reads

1

gBEC
= 1

2π

∫ �

k=�/L

k√
(k2/2m∗ − μ)2 + �2

= m∗

4π�2
log

�2

m∗(√μ2
ren + �2 − μren

) . (38)

Here L is an infrared cutoff (needed in two dimensions) that is
incorporated in μren = μ − �

2

2L2m∗ . The corresponding renor-
malized coupling depends on the reference (normalization)

054517-6



QUANTUM CRITICAL POINT IN THE SUPERCONDUCTING . . . PHYSICAL REVIEW B 90, 054517 (2014)

FIG. 6. (Color online) Schematic picture of the band reconstruction due to phonon pairing in three different 2D fermionic systems. (a)
Weyl semimetal. (b) BCS with parabolic dispersion law. (c) Classic BEC.

point Eren [26]:

1

gBEC
ren

= 1

gBEC
− m∗

4π�2
log

�2

m∗Eren
. (39)

In terms of this coupling the theory becomes cutoff indepen-
dent. For example, the gap equation reads

1

gBEC
ren

= m∗

4π�2
log

Eren√
μ2

ren + �2 − μren

. (40)

In the BCS the gap equation, under the simplifying
conditions μ � TD > � (the dispersion relation near the
Fermi level can be approximated by a “flat” one [21]), is

1

gBCS
= 1

2π

∫ √
2m∗(μ+TD )

k=√
2m∗(μ−TD )

k√
(k2/2m∗ − μ)2 + �2

� m∗

2π�2
log

2TD

�
. (41)

The renormalized coupling is again dependent on an arbitrarily
chosen normalization scale, Eren:

1

gBCS
ren

= 1

gBCS
− m∗

2π�2
log

TD

Eren
.

In both parabolic cases the coupling is logarithmically “run-
ning” toward weak coupling [26] gBCS → gc = 0 (marginally
irrelevant or asymptotically free) at large �. In the Weyl
semimetal (where the dispersion is linear) with local inter-
action the criticality appears at small U when g approaches
finite value gc. Despite the fact that the UV cutoff does not
appear logarithmically, the theory is still renormalizable [16]
and any physical quantity can be expressed via renormalized
coupling U .

B. Criticality beyond the Gaussian approximation

Critical (quantum) fluctuations are expected to be sig-
nificant in this relatively low-dimensional (relativistic 2+1-
dimensional) system. Generally they are not as strong as
in a 2D statistical system at finite temperature but stronger
than in a 3D one. The approximation we made describes
reasonably well “Gaussian” fluctuation beyond the region
where stronger critical fluctuations in these systems appear
and should be treated nonperturbatively [16] typically using
variants of the renormalization-group (RG) approach. The
critical exponents in this region differ from the one called
“quantum gaussian (BCS)” in [14], and available results
are obtained using either ε expansion [27,28] (ε = 4 − d,
where d = 2 + 1 is the space-time dimension); 1/N , where
N is the number of fermionic species on the surface [17];
or functional (strong-coupling) RG [29] and Monte Carlo
simulations [30,31] (with reservations specified below). The
universality class according to classification proposed in [17]
is the chiral XY [symmetry of order parameter U (1)] with
N = 1. The large N expansion is not reliable for the one
component system considered here (but the number might
be larger in similar systems for which our approach trivially
generalizes), so let us use the ε expansion.

Using the formulas for the anomalous dimensions of the
order parameter [27], γ� = η = 1/4ε + 0.044ε2 + O(ε3) ≈
0.294 and its square γ�2 = (1 + √

11)/10ε + 0.065ε2 �
0.43ε + 0.065ε2, critical exponents are obtained from the hy-
perscaling relations, α = 2 − d/(2 − γ�2 ) = (ε − 2γ�2 )/(2 −
γ�2 ) = −0.353 and β = (1 + γ�)/2(2 − γ�2 ) = 0.515, and
can be compared with those in Table I.The exponents from
the ε expansion were found to be consistent for larger values
of N with the latest Monte Carlo simulations [31], while for

TABLE I. Critical exponents of the chiral universality class of the Abrikosov transition in external magnetic field at QCP.

Critical exponent Order parameter Coherence length Energy Temperature

QCP U1 (1) definition � ∝ Uβ ξ = U−ν f ∝ U 2−α Tc ∝ Uzν

Quantum Gauss β = 1 ν = 1 α = −1 zν = 1
Classical U (1) definition � ∝ (Tc − T )β ξ ∝ (Tc − T )−ν f ∝ (Tc − T )2−α

Classical Gauss β = 1
2 ν = 1

2 α = 0
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Ising (Z2) and Heisenberg [SU (2)] chiral universality classes
are consistent with the functional RG [29].

C. Experimental feasibility of the surface superconductivity
due to phonon exchange

To estimate the pairing efficiency due to phonons, one
should rely on recent studies of surface phonons in TIs [7].
The coupling constant in the Hamiltonian, Eq. (1), is obtained
from the exchange of acoustic (Rayleigh) surface phonons
g = λv2

F �
2/2πμ, where λ is the dimensionless effective

electron-electron interaction constant of order 0.1 (somewhat
lower values are obtained in [32]). It was shown in [7] that
at zero temperature the ratio of λ and μ is constant with
a well-defined μ → 0 limit with value g = 0.23eV nm2 for
vF ≈ 7 × 105 m/s (for Bi2Se3). The critical coupling constant
gc, Eq. (15), can be estimated from the Debye cutoff TD =
200 K determining the momentum cutoff � = TD/cs , where cs

is the sound velocity. Taking the value to be cs = 2 × 103 m/s
(for Bi2Se3), one obtains gc = 4πvF cs�

2/ TD = 0.20 eV nm2.
Therefore the stronger superconductivity, g > gc, is realized
(see Fig. 3 and case 1 of Sec. II C, U > 0). Note that the
superconductivity appears even for 0 < g < gc (U > 0 in
Fig. 3), although, as discussed in Sec. II C case 2, it is weaker.

Of course the Coulomb repulsion might weaken or even
overpower the effect of the attraction due to phonons, so
that superconductivity does not occur. In a TI like Bi2Se3,
however, the dielectric constant is very large, ε = 50, so
that the Coulomb repulsion is weak. Moreover it was found
in graphene (that has identical Coulomb interaction) that,
although the semimetal does not screen [20], the effects of
the Coulomb coupling are surprisingly small, even in leading
order in perturbation theory.

Superconductivity was observed in otherwise nonsuper-
conducting TIs Bi2Te3 and Bi2Se3. It was noticed very
recently [6,33] that Bi nanoclusters naturally aggregate on the
surface of Bi2Te3 thin film, and an explanation was put forward
that the nanoclusters become superconducting and induce
surface superconductivity in TIs by the proximity effect. We
speculate that the nanoclusters are not superconducting and
their role might be to screen the Coulomb repulsion.

In this paper we focused on the qualitatively distinct case of
Weyl fermions with small chemical potential. Although in the
original proposal of TIs in materials [8] the chemical potential
was zero, in experiments one finds often that the Dirac point is
shifted away from the Fermi surface by a significant fraction
of eV [1]. There are, however, experimental methods to shift
the location of the point by doping, gating, pressure, etc. [9].
Note that a reasonable electron density of n = 3 × 1011 cm−2

in Bi2Te3 already conforms to the requirement that chemical
potential μ = √

n�vF /2π = 100 K is smaller than the Debye
cutoff energy TD = 200 K.

V. CONCLUSIONS

We have studied the s-wave pairing on the surface of
a 3D topological insulator. The noninteracting system is
characterized by (nearly) zero density of states on the 2D
Fermi manifold. It degenerates into a point when the chemical
potential coincides with the Weyl point of the surface states as

TABLE II. Critical exponents of the chiral universality class of
the TI QCP.

Critical exponent Magnetization OP magnetic

QCP U1(1) definition M ∝ (Hc2 − H )τ �A ∝ (Hc2 − H )σ

Quantum Gauss τ = 2 σ = 1
Abrikosov lattice definition M ∝ (Hc2 − H )τ �A ∝ (Hc2 − H )σ

Classical Gauss τ = 1 σ = 1
2

in the original proposal for a major class of such materials [8].
The pairing attraction (the most plausible candidate being
surface phonons) therefore has two tasks in order to create
the superconducting condensate. The first is to create a pair
of electrons (that in the present circumstances means creating
two holes as well), and the second is to pair them. To create the
charges does not cost much energy since the spectrum of the
Weyl semimetal is gapless (massless relativistic fermions); this
is effective as long as the coupling g is larger than the critical
gc [see Eq. (15)]. The situation is more reminiscent of the
creation of the chiral condensate in relativistic massless four-
fermion theory (a 2D version [16] was recently contemplated
for graphene [19,20]) than of the BCS or even BEC in
condensed-matter systems with parabolic dispersion law. Due
to the special ultrarelativistic nature of the pairing, transition
at zero temperature as a function of parameters like the pairing
interaction strength is unusual: even the mean-field critical
exponents are different from the standard ones that generally
belong to the U (1) class of second-order phase transitions.

To summarize, we calculated, using the Gor’kov theory, the
phase diagram of the superconducting transition at arbitrary
chemical potential μ, effective coupling energy U , and
temperature T (see Figs. 2 and 3). The quantum (T = 0)
critical point appears at μ = 0, U = 0 and belongs to the U1 (1)
chiral universality class (the subscript denotes the number
of massless fermions at the QCP) according to classification
in [14,17]. The critical exponents are summarized in Table I
for the “static” exponents and in Table II for response
to temperature and magnetic field (gauge coupling). The
Ginzburg-Landau effective theory near the QCP, Eq. (25), was
derived and is rather unusual. The magnetization curve near
Hc2 due to the vortex lattice is parabolic rather than linear.
This might be important for experimental identification of the
QCP. The vortex core structure was determined (see Fig. 5)
and has some peculiarities that can be tested directly.
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APPENDIX A: INTEGRALS AND SUMS FOR GAP
EQUATION

The bubble integral in the gap equation Eq. (10) at finite
temperature can be written as

b = T

2

∑
n,p

{
1

�2 + �2ω2
n + (vF p + μ)2 (A1)

+ 1

�2 + �2ω2
n + (vF p − μ)2

}
.

At zero temperature after integration over frequencies, it
becomes (summation over momenta is replaced by the integral
with momentum cutoff � in polar coordinates)

b = 1

8π�2

∫ �

p=0
p

{
1√

�2 + (vF p + μ)2
(A2)

+ 1√
�2 + (vF p − μ)2

}
. (A3)

The integral is readily performed and expanded in 1/�:

b = 1

8π�2v2
F

{√
�2 + (vF � + μ)2 +

√
�2 + (vF � − μ)2

+μ log
(
√

�2 + μ2 + μ)(vF � − μ +
√

�2 + (vF � − μ)2)

(
√

�2 + μ2 − μ)(vF � + μ +
√

�2 + (vF � + μ)2)
− 2

√
�2 + μ2

}

� 1

4π�2v2
F

{
vF � −

√
�2 + μ2 + μ

2
log

μ +
√

�2 + μ2√
�2 + μ2 − μ

}
+ O

(
1

�

)
. (A4)

At finite temperature, using the sum,

T
∑

n

(ω2
n + m2)−1 = tanh[m/(2T )]

2m
, (A5)

one obtains

B = 1

8π

∫ �

p=0
p

{
tanh[

√
�2 + (vF p + μ)2/(2T )]√
�2 + (vF p + μ)2

(A6)

+ tanh[
√

�2 + (vF p − μ)2/(2T )]√
�2 + (vF p − μ)2

}
. (A7)

For μ = 0 it simplifies:

b = 1

4π�2

∫ �

p=0
p

tanh
[√

�2 + v2
F p2/(2T )

]√
�2 + v2

F p2

= 1

4π�2v2
F

{
vF � − 2T log

[
2 cosh

(
�

2T

)]}
. (A8)

This was used in Eq. (18). For � = 0 and μ �= 0,

b = 1

8π�2

∫ �

p=0
p

{
tanh[|vF p + μ|/(2Tc)]

|vF p + μ| (A9)

+ tanh[|vF p − μ|/(2Tc)]

|vF p − μ|
}

. (A10)

APPENDIX B: CRITICAL LINE AND CONDENSATE

The dependence of the gap on chemical potential is given
in Eq. (11). For positive U and μ  � the formula can be
expanded as

U =
√

�2 + μ2 − μ

2
log

√
�2 + μ2 + μ√
�2 + μ2 − μ

= � − μ2

2�
,

(B1)

from which Eq. (17) follows. In the case of U = 0 the equation
becomes homogeneous:√

�2 + μ2 = μ

2
log

√
�2 + μ2 + μ√
�2 + μ2 − μ

→ �

μ
= 0.663.

(B2)
In the negative U case � is exponentially small (so that μ �
�) and

U =
√

�2 + μ2 − μ

2
log

√
�2 + μ2 + μ√
�2 + μ2 − μ

(B3)

� μ − μ log
μ

�
,

from which Eq. (16) follows. The critical temperature for
arbitrary μ is obtained as the � → 0 limit of the gap equation
Eq. (18):

U = vF

2

∫ �

p=0
p

{
tanh[|vF p + μ|/(2Tc)]

|vF p + μ| (B4)

+ tanh[|vF p − μ|/(2Tc)]

|vF p − μ| − 2

|p|
}

. (B5)

This is presented in Fig. 3.

APPENDIX C: DERIVATION OF THE GL ENERGY FOR AT
QCP

1. Linear term in GL equation for arbitrary momentum p

Expanding the right-hand side of Eq. (10) to a linear term,
the expression for the kernel can be written as a trace:

� = 1

2
tr

{ ∑
ωq

σ yDt
ωqσ

yDω,q−p + 1

g
I

}

= 1

g
−

∑
ωq

�
2ω2 − v2

F pq + v2
F q2(

�2ω2 + v2
F q2

)(
�2ω2 + v2

F |q − p|2) . (C1)
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Integrating over ω (at zero temperature) one obtains

� = − U

4π�2v2
F

− 1

2vF

∑
q

pq − p2

q (q − p)2 + q2 |q − p|

= − 1

8π2�2vF

∫
q,φ

pq cos φ − p2

|q − p|2 + q |q − p| − U

4π�2v2
F

,

(C2)

where

|q − p|2 = q2 + p2 − 2pq cos φ.

The integral is homogeneous in momentum and therefore is
linear in p = |p|, and one arrives at Eq. (21).

2. Local terms in GL equation and energy

For p = 0 the gap equation Eq. (13) reads

�

4π�2v2
F

(−U +
√

�∗�) = 0. (C3)

This is obtained from the energy functional:

F = 1

4π�2v2
F

∫
d2r

{
−U�∗� + 2

3
(�∗�)3/2

}
. (C4)

APPENDIX D: SINGLE VORTEX

The basic integral of the Hankel transform is

I2 =
∫ ∞

r=0
rJ1 (ar) J1 (br) = δ (a − b)

1

a
. (D1)

This has been generalized by Auluck [24] to three functions:

I3 =
∫ ∞

r=0
rJ1(ar)J1(br)J1(cr)

= π

4c2
sin φP −1

1 (cos φ) = π

4c2
sin2 φ. (D2)

Here c < a + b, a < b + c, b < a + c, and φ is the angle
between sides a and b of the triangle formed by a, b,

and c:

sin2 φ = [c2 − (a − b)2][(a + b)2 − c2]

4a2b2
, (D3)

and P is the Legendre spherical harmonic. Consequently,

I3 = π
[c2 − (a − b)2][(a + b)2 − c2]

16a2b2c2
. (D4)
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