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1 Introduction

In an inspiring paper [1], Bern, Carrasco and Johansson (BCJ) have made a remarkable
observation that the Yang-Mills tree-level scattering amplitude can be rearranged into a
summation over Feynman-like diagrams constructed by cubic vertices only,

Cinyg

-Atot - i Dz

(1.1)

where its kinematic dependent numerators n; satisfy the same algebraic identities as the
color factors ¢, i.e.,

antisymmetry : C; = —¢Cj = n; = —n;

Jacobi — like identity : ¢; +¢j + ¢ = 0 = n; +n; +n; = 0. (1.2)

This duality between the color and kinematic factors was later found to be present in
a variety of Yang-Mills theories [2-10] and, perhaps most surprisingly, was shown to be
valid at least for the first few loop levels [2, 3, 5-9, 11-19]. The apparently symmetrical
structure also suggests mirror versions of the existing color decomposition formulations. In
particular that studies of the BCJ duals of the Del Duca-Dixon-Maltoni(DDM) form [20]
and the original trace form of color decomposition formulations can be found in [11, 21-26].
For example at tree-level, the full Yang-Mills amplitude were shown to be expressible in



terms of Kleiss-Kuijf basis [27] color-ordered scalar amplitudes A(1,,n)" multiplied by
BCJ numerators nj 4, [11, 23]

-Atot - Z nl,o’,nZ(17 ag, n): (13)
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This can be regarded as a result of exchanging the roles of color factors and BCJ numerators
in the DDM form [20]

Aot = Z Cl,o,nA(Laa n)v (1-4)
€S2
where ¢y 5, = f1O1%1 fr20223  f@n-39n—2" and A(1,0,n) are color-ordered Yang-Mills am-
plitudes. The BCJ dual of the original trace form of color decomposition was studied
in [22, 24-26].

In addition to the apparently equal-footing treatment of the color and the kinematic
dependent factors, another interesting aspect of the BCJ duality is that once we replace
the color factors ¢; in the BCJ form (1.1) by yet another copy of the kinematic dependent
numerator (BCJ numerator) n; of the Yang-Mills theory, we get the gravity amplitude, i.e,
nin;

D;

ASR(1,2,. .. n—1,n) =

7

(1.5)

The above expression of the gravity amplitude as two copies of numerators resembles an
earlier discovered amplitude relation by Kawai, Lewellen and Tye (KLT) [28] in string
theory, where it was suggested that the closed string tree amplitude can be expanded
in terms of products of two copies of open string tree amplitudes. When taking field
theory limit, KLT relation states that the tree-level gravity amplitudes can be given by
the “square” of the tree-level color-ordered Yang-Mills amplitudes. More explicitly, various
forms of KLT relation for gravity amplitudes have been proposed and proved in [31-33].
Among these forms, a formulation with manifest (n — 3)! symmetry was given in [33] as

ASR(1,2,..  n—1,n)
= (=) Y AML o2, —2),n=1,0)S[6(2,...,n—2))[0(2,...,n —2))],

0,0€Sn-3
x AM(n —1,n,5(2,...,n—2),1), (1.6)
where AYM and AYM are two copies of color-ordered Yang-Mills amplitudes. However, if

one goes through the original derivation in [28], one finds that we can replace the closed
string theory by heterotic string theory, where one part of the heterotic string is an open
string while the other part carries color information [29]. Thus it is imaginable that there
is a KLT-like relation for full Yang-Mills amplitudes. In fact the KLT-like construction for
full Yang-Mills amplitudes was proposed long time before in [30] and has later been system-
atically proved in [13] using BCFW-recursion relation. Explicitly the relation is given by

AM1 2, n—1,n)

abc

The color-ordered scalar theory is ¢-scalar theory with f°¢ as coupling constant for color-ordered

cubic vertices.



= (=) Y AML o2, —2),n—1,0)S[6(2,...,n—2))[0(2,...,n —2))],,

0',56577.—3

x ASS(n —1,n,5(2,...,n —2),1), (1.7)

ACS s in fact, exactly the same A in equation (1.3).

where

Now let us have a look at how to understand KLT relation (1.7) from the angle of
BCJ duality (1.2). In (1.6), AY™ and AYM are two copies of color-ordered Yang-Mills
amplitudes, which are respectively expressed by two sets of BCJ numerators n; and 7n; in
the forms 3, 7 and %i(i.e, the form of (1.1) without color factor ¢; and the sum over
compatible topology with given color order). From the perspective of BCJ duality, if we
replace one copy of numerators n; by corresponding color factors ¢;, AYM will become ASS
thus formula (1.5) goes back to (1.1), while formula (1.6) becomes the formula (1.7).

Ever since the discovery of BCJ duality, a considerable amount of endeavor has been
devoted to the systematic construction of the kinematic numerators. An explicit construc-
tion was given by Mafra, Schlotterer and Stieberger using the pure spinor language [34].
Alternatively, it was shown that the kinematic factors can be interpreted in terms of dif-
feomorphism algebra [23, 35-37]. In a series of recent papers [38-40] another interesting
construction was provided by Cachazo, He and Yuan (CHY) using the solutions to the scat-
tering equations. At the moment of writing it is not yet clear how to construct kinematic
numerators for the most generic configuration and to arbitrary loop order.

Instead of attempting to decipher the analytic structure responsible for the possible
algebraic behavior, another line of thoughts is to solve the kinematic numerators reversely
in terms of scattering amplitudes, and indeed, it was discussed in [36, 41] that such ex-
pression for the numerators can always be derived in suitable basis. A technical issue lies
with this approach is that because of the complexity involved, along with the ambiguity
introduced by generalized gauge invariance, it is practically difficult to write down an ana-
lytic expression for generic numerator. Nevertheless at tree level, explicit numerators were
worked out by Broedel and Carrasco [42] at 4 and 5-points, and 6-points in the case of four
dimensions, which satisfy the following three properties:

1. The numerators satisfy Jacobi identity, and this property is referred as BCJ repre-
sentation.

2. All external state information such as particle species and helicity is coded inside the
color-ordered partial amplitudes. In other words, we have n; = )" ciaAq, Where ¢jq
is helicity blind. This property is called amplitude-encoded representation.

3. Expressions for numerators sharing the same topology are relabeling related. In other
words, for each topology, if we know the BCJ numerator for a particular ordering of
external legs, we know all others simply through relabelings. This property is called
symmelric representation.

In this paper we present a systematic construction of the kinematic numerators at generic
n-points by comparing average of different Kawai-Lewellen-Tye (KLT) expressions with the
dual DDM-form (1.3). The numerators under this construction satisfy all the above three



properties of Broedel and Carrasco. As examples we derive the explicit formulas for 4, 5 and
6 points. In particular that the 6-point expression here does not assume spinor identities.

The paper is organized as follows. In section 2 we discuss the basic idea used to
determine the BCJ numerators in the dual DDM-form (1.3). In sections 3 and 4 we present
explicit expressions for numerators at 4 and 5-points. Due to complexity we present the
6-point result in appendix A. We show that the numerators produced by the algorithm
discussed in this paper satisfy all three properties of Broedel and Carrasco in section 5.
Finally, a conclusion is given in section 6.

2 General framework

Our starting point is the KLT expression (1.7) of the total Yang-Mills amplitude, which
we rewrite down here ( see eq. (6.3) and eq. (6.4) in [13]),

ABLT(1.9 .. n—1,n)
= ABLT(1 {2,...,n—2},n—1,n)
= (=" ST Ao, n—2),n—1L,n)S[E(2,...,n—2)]o(2,...,n —2))]p
0,065y 3
X Ap(n—1,n,5(2,...,n—2),1)
= (=" ST A - 10,52, n - 2)S[E(2,. .. n - 2))]o(2,...,n — 2))]p
0,0€5n—3

x Ap(1,0(2,...,n—2),n—1,n) (2.1)

where A, is the color ordered partial amplitude of Yang-Mills theory and Zn is the color
ordered partial amplitude of color-ordered scalar theory appearing in the dual DDM-
form (1.3). Notice that although the total amplitude is totally symmetric under per-
mutations of all n legs, the expressions in the second and the third lines are not manifestly
so. In particular that legs 1,n — 1,n are kept fixed, while the ordering of the rest (n — 3)
legs appear in AXLT(1,2,... n — 1,n) has no effect on the expression. To emphasize this
feature, we write the parameter of amplitude AXFT as (1,{2,...,n —2},n — 1,n). The
momentum kernel S appears in (2.1) is defined as [31, 43]

k k
Slivyiz, - yiglits jos - dwlpr = [ [(siar + D 00t ig)sini,) (2.2)

t=1 q>t

where (i, i,) is zero when pair (i,%,) has same ordering at both sets Z =
{i1,i2,...,ix}, T = {Jj1,J2,--,Jk}, otherwise it is one. A few examples are the follow-
ing:

8[2, 3, 4‘2, 4, 3] = $91 (831 + 834)841, 8[2, 3, 4‘4, 3, 2} = (821 + So3 + 824)(831 + 834)841.

In this definition momentum p; plays a distinct role, in the sense that for each leg i there
is always one term s;1. In the case when different choices of p; are encountered, we should
write S[Z|J]p, to avoid confusions.



Since our goal is to obtain a symmetric representation for BCJ numerators, as a second
step we symmetrize expression (2.1)2,

1
AS = o > AR (01, {02, ..., 0n 2}, 00 1,00) (2.3)
T oeS,

However note that since KLT expression is already manifestly (n — 3)!-symmetric, equa-
tion (2.3) reduces to averaging over nm-choices for oy, then (n — 1)-choices for o,_; and
(n — 2)-choices for oy,

n

1 ~ ~ ~
S KLT . > > .
- 1,2, 0,0,.0,0,.., k.. k 2.4
An n(n—l)(n_Q);l-An (Z’{a ’ 3T, »Js y vy ,n},j, )7 ( )
], k=
RSN

where {1,2,... TN U ,n} denote the permutation {1,2,...,n} with the three
legs 4, j, k deleted.

As a third step, we expand A, using Kleiss-Kuijf(KK)-basis by KK relation [27] (KK
relation for color ordered scalar amplitude was proved in [13]), with, for example, 1, n fixed
at the first and the last position

An(1,{a},n, {8}) = (-1)#® > An(1,0,n), (25)
oceOP({a}U{B}T)
where we have summed over all the possible permutations with keeping ordering in {«}

set and reversing the ordering in {3} set, #(3) denotes the number of elements in {3} set.
Thus A becomes

AT = > T nnAn(l,0(2,... n—1),n), (2.6)

oESH_2

where the 71,2, n—1)n here is a collective factor of color-ordered amplitude A, and kine-
matic factors. Comparing with the dual DDM-form (1.3) of the total Yang-Mills amplitude,
we propose that the desired BCJ numerator ng satisfying the three properties of [42] to be

nia’(Q,...,nfl)n = ﬁ10'(2,...,71—1)71' (27)
To summarize, the basic idea is as follows:

e We construct only the BCJ numerator n; in dual DDM-form (1.3). The rest numera-
tors are given by Jacobi identity. By this construction, the expression is automatically
BCJ representation.

e We consider constructing the numerators using KLT relation, where the helicity in-
formation is automatically coded inside the partial amplitude.

e The Aﬁ (2.3) is averaged over all permutations of n external legs, thus the relabeling
property is manifestly constructed.

2Considering the average of KLT relations was firstly suggested in the work [44]. However, the numerator
suggested in [44] by taking (n — 2)! cannot satisfy the relabeling property.



3 Four-point construction

Having discussed the general framework, let us present a few examples explicitly. We start
with averaging KLT relation over all 4! permutations,

1
Af(17273’4) = I Z AZIL(LT(O-)

oESy
= ;7;1[ (A(]-a 3743 2)512121(17 27 37 4) “I’ A(]., 4, 3, 2)81214(17 274, 3)
ot A(1,3,2,4)514(1,4,3,2)) (3.1)

Translating all A into KK-basis by the KK relation (2.5), and comparing equation (3.1)
with its dual DDM-form expression

As(1,2,3,4) = n1234A(1,2,3,4) + n1324A(1,3,2,4), (3.2)

we see that numerator njszq4 can be read off from the coefficient of Z(1,2,3,4) in the
symmetrized KLT expression (3.1), giving

N1234 = i (8124(2,3,4,1) — s12A(2,4,3,1) + s13A(3,2,4,1) — 5144(4,2,3,1) — 21 A(1,3,4,2)
+591A(1,4,3,2) — s93A(3,1,4,2) + 824 A(4,1,3,2) + s31A(1,4,2,3) — s324(2,4,1,3)
+534A(4,1,2,3) — s344(4,2,1,3) — s41A(1,3,2,4) + s420A(2,3,1,4) — s43A(3,1,2,4)
+5434(3,2,1,4)) (3.3)

The expression above can be further translated into BCJ basis [1] by considering KK [27]
and BCJ [1] relations for color-ordered Yang-Mills amplitudes,

_ s12(513 — 823)A

1
ni23s = =[s124(1,2,3,4) — 523A(1,3,2,4)]
3 3513

(1,2,3,4). (3.4)
which is simply the four-point result obtained by Broedel and Carrasco in [42]. The other
numerator njse4, obtained by collecting the coefficient of A(1,3,2,4), gives the same ex-
pression as (3.3) with legs (2, 3) swapped.

4 The 5-point case

The calculation at 5-points follows in a straightforward manner. Here we list the result for
Nn12345 in KK-basis.

1 1
n12345 = TOA(l’ 2,3,4,5)(s12(s13 + S23) + Sa5(s34 + 835)) + TOA(l’ 2,4,3,5)(—s12534 + S35545)

1
—&—1—014(1, 3,2,4,5)(s12513 — S45523)

1
+@A(1» 3,4,2,5)(s23(s24 — S25) + 512(3513 — S24 + S25) + S13(S14 — S15 + 2834 — 2835)
+545(—2814 — Sas + 3825 + 2834 + $35)

—(814 + S24 + $34)(S14 + S23 + 2(S24 + $34)))

1
+@A(1,4, 2,3,5)(s12(513 + 3514 — S15 + 2523 — 2525) + S24534 — 2513535 — S15535



+2523835 + S25835 — S24845 + 3835845 + S14(—S34 + S45))

1
+%A(1,4, 3,2,5)(s23524 + s12(513 + 2514 — S23 — 2525) — 23525 — S14534

42523534 + S24834 + S13(814 — S15 — 2835) — S15535 + S25835

—2514845 + 2825545 — S34S45 + S35845), (4'1)
which in BCJ basis simplifies to
112345 = (A(l, 2,3,4,5)(s14 + s24 + 834)(S§3(2814 + 2823 — 3(S24 + S34))+

353(3811 + 3825 — 524 + 3523534 — 6824534 — HSag — 514(3824 + 2534))

—514523(854 — 534 + 524534 + 2534 + 3514(523 + 534) + 523(—2824 + 3534))

+513(5?4 - 35?4323 + 533 + 2523534(S24 + S34) + 533(2524 + 5834)

—534(554+3524531+2534) — 514 (3553 + 554 + 3524534+ 3534 + 523 (3524 + 534))))
+A(1,2,4,3, 5)(3‘113314 — s14(s23 + s34)(S14 + S24 + 834)(834 — 834 + S24834 + 23§4

+3514 (823 + 534) + 523(—2524 + 3534)) + 15(214 + 3s14(523 — 524 + 3534)

—524(—3533 + 534 — 3523534 + 6524534 + 5554) +

514(2553 - 6334 — 3523(S24 — 2834) — 9524534 + 7534))

+3§3(35%4 + 3s14(823 — S24 + 2534) + S24(2523 — 3(S24 + $34)))

—s13(574(523 — 834) + 574(535 + (6524 — 534)834 + 3523 (524 + $34))

+S14(8§3(2824 + 834) + $24534(8524 + 9834) + 2823 (834 + 4524534 + 534))

+824(—833 —2593534(S24+834) — 8%3 (2824 +5834)+ 834 (834 43824534 +28§4))))>

1
X
30s13514(813 + S14 + S34))

(4.2)

and we do find that relabeling symmetry is satisfied at 5-points. This result is also same
with the one obtained by Broedel and Carrasco in [42] The explicit expression for 6-point
numerator is considerably more complicated and we leave the result to appendix A.

5 Verifying symmetry properties of the numerators

In this section let us check whether the BCJ numerators constructed following the algorithm
outlined at the beginning of this paper indeed satisfy the three properties proposed in [42].
As remarked at the end of section 2, the n}’s defined by this algorithm satisfy the BCJ-
representation automatically since niU(Q,...,n—l)n works as a basis and other numerators
are constructed through antisymmetry and Jacobi identity. The nj’s are also amplitude-
encoded representation since nj is of the form > A, K, where K are kinematic factors
constructed by s;; and all helicity information is included in A,,.

The last property, i.e., the symmetric representation, is however not trivial. Note that
since all numerators corresponding to other topologies can be constructed by those in dual
DDM-form (with half ladder structure), if we can show the relabeling symmetry is true
for numerators in dual DDM-form, it must be true for other topologies. For the topology
of half ladder structure, there are n! different labelings. Among them (n — 2)! of the
numerators are directly given by the algorithm (2.7) and others can be constructed using
the Jacobi-identity and anti-symmetry. In our third step, we have fixed only two legs 1, n,



the relabeling property is manifestly true among (2,3,...,n — 1) by construction. Since all
permutations can be generated by successive permutations between the (n— 1) consequtive
pairs, we can reduce our checking to the following two permutations: (12) and (n — 1)n.
Now let us consider the numerators of dual-DDM form ng3 . (n—1), and nis3._pn-1). We
have two ways to get the same n, from basis numerators: one is by relabeling n123..(,—1)n
and another one, by using Jacobi relation and antisymmetry. If the expressions obtained
by these two ways are the same, the relabeling property is fully checked.

5.1 Permutation (12)

Now we consider the relabeling property under the permutation (12) for N123..(n—1)n- Lhe
BCJ numerator noi3. (n—1), can be obtained by two ways. The first way is by relabeling
from 1123, (n—1)n, Which we denote as

(n§13...(n—1)n)R = nio3..(n—1)n 162 (5.1)

The second way is by antisymmetry specially for this topology and we get

(ngl?)...(nfl)n)A = _ni23.‘.(n71)n (5.2)

To check they are the same, we notice that permutation (12) in equation (2.6) gives

Ay = Z 520(1,.‘.,7171)7112{71(2,0(1,...777,— 1),n)

0ESp—2
= (n2513.,.(n71)n)RA/n(27 L3,...on—1,n)+... (53)

where we have written the expansion at the second line and identify the coefficient of
An(2,1,3,...,n — 1,n) to be the (ngls...(n—l)n)R given in (5.1). The reason is simple:
because at our second step, symmetry among n external legs are manifest, thus when we
go to different KK-basis, their coefficients are related to each other by simple relabeling.
A relation between (ngl&..(n—l)n)R given in (5.1) and the original (1, n)-basis numera-

5
tors nYys (1

), can be obtained by translating the amplitude A(1,0,n) in equation (2.6)
into (2,n)-basis E(Q, p,n). Notice however, according to KK-relation (2.5),

A(1,0,2,8,n) = A2, 8,n,1,a) = (=) +# > A(2,p,n) (5.4)
pECOP(BU(aT 1))

On the right hand side we see that because of the presence of an extra o’ sitting on the left
of leg 1, we never get A,(2,1,3,...,n — 1,n) unless set « is empty. When that happens,
there is only one contribution with a (—) sign. Putting (5.4) back to (2.6) and we find

S

the coefficient of gn(Q, 1,3,...,n—1,n) is given by —N93._(n—1)n"

that (5.1) coincides with (5.2).

Thus we have proven

5.2 Permutation ((n — 1)n)

The proof of ((n — 1)n) invariance is similar. Using relabeling we find

'A;S; = Z ﬁla(?,.,.,n—Z,n)(n—l)An(17 0(27 N =2, n)? n-— 1)
O'ESn—Q

= (095 (n-2m(m_1) BA(1,2,, .. ,n = 2,n,n = 1) + ... (5.5)



On the other hand expanding A(1,0,n) into (1,n — 1)-basis gives

g(laaan - Lﬁ?n) = (_>1+#(B) Z Z(17p7n - 1) (56)
peCOP(alJ(n,BT.1))

we see on the right hand side of the equation that because of the extra ordering 7 between
legs n and 1, we never get A,(1,2,3,...,n — 2,n,n — 1) unless [ is empty. When this
happens, there is only one contribution with a (—) sign, thus we get

(n§23...(n—2)n(n—1))R = _ni23...(n—l)n (5.7)

as required by anti-symmetry of the BCJ numerator.

6 Conclusion

In this paper we discussed a systematic construction of the BCJ numerator based on
matching KLT and dual DDM-form of the full Yang-Mills amplitude. Using this method
we explicitly calculated the numerators at 4, 5 and 6 points and verified the three sym-
metry properties proposed by Broedel and Carrasco [42] hold generically. Note the sim-
ilarity between the expressions discussed and the prescription proposed by Cachazo, He
and Yuan [40] despite the method used in this paper does not rely on the existence of the
solutions to scattering equations.

There are a few things one can proceed. First, although we have the general algorithm,
its computation takes a long time when the number of external leg increases. Thus it will
be nice if we can have a general patten of n, expanded into the KK-basis (or BCJ-basis).
Secondly, it will be natural to generalize above results to loop level. At loop-level the current
method does not seem to straightforwardly generalize because of the lack of support from
KLT relation, yet naively it might be possible to solve numerators by comparing integrands
in suitable basis. We leave this part of the discussion to future works.
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A 6-point numerator

In this appendix we present the explicit formula of the 6-point BCJ numerator in KK
basis. Note however, despite its complixity, this expression holds in all dimensions greater
or equal to three and does not depend on helicity except through color-ordered amplitudes.

1
120 {A(123456)2 [8(s12(813 + S23)(S14 + S24 + S34) + (S34 + S35 + S36) (845 + S46)556)]

+A(123546)4 [s12(s13 + 523)(S14 + S15 — S16 + S24 + S25 — S26 + S34 + S35 — S36)
+2(s34 + 535 + 536)546556)

+A(124356)8 [s35 + $36)(Sa5 + Sa6)Ss56 + 4512(2514523 + 2523524 + 2513(S14 + S24)
—(s15 + s16 + S25 + S26)S56]

+A(124536) [8536 (545 + 546)556 + S12(2515524 — 2516524 + 4523524 + 2524525

T123456 —

—2824826 — $23535 + S23536 + S13(4814 + 4524 — S35 + S36) + 3524545
+514(2515 — 2816 + 4523 + 2525 — 2826 + 3845 — 3546) — 3524546 — 3515856
—516556 — 3525556 — $26556)]

+A(125346) [8(s34 + 536)546556 + S12(4515523 — 2516523 + 2523524 + 4523525
—2823526+ 3523534+ 513(2514+4515 — 2516+ 2824 + 4525 — 2826 + 3534 — 3836
—3523836 — S15845 — S25545 + S14(2823 — 3S46) — S16546 — 3524546
—826S46 + S15856 + S25556)]

+A(125436) [8s36516556 + 512(2515523 + 2515524 — 2516524 + 2523524 + 2523525 + 2524525
—2824526 — S23S34 + $13(2814 + 2515 + 2824 + 2525 — S34 — 3S36) — 3523536
—515845 — S25845 + $14(2815 — 2816 + 2823 + 2825 — 2826 — 3S46) — S16546
—3824546 — $26546 — 3515556 — 3525856)]

+A(132456) [4(2512513(514 + S24 + 534) — (S14 4 515 + 516 — S24 — S25 — S26 — 534
—535 — 536) (545 + 546)556)]

+A(132546) [4(s12513(514 + S15 — S16 + S24 + 525 — S26 + S34 + S35 — S36)
+(—814 — S15 — S16 + S24 + S25 + S26 + S34 + S35 + $36)546556)]

+A(134256) [—(s23(s25 + s26) + s13(S15 + S16 + 3(535 + 536)) + (3514 + 2515 + 2516
—4595 — 4826 — 3834 — 2535 — 2536)(S45 + Sa6))Ss6 + S12(8513(S14 + S34)
+(s25 + s26)556)]

+A(134526) [—s23524525 + S23524526 — S23526S56 — 2514545556 — S15545556 — S16545 556
+4526545856 + 2534545556 + S35545556 + S36545556 — 514546556 — 515546556
— 516546556 +4526546 556 + $34 546 556 1 S35 546 556 + 536 546 556 + S12(S24 (825 — S26)
+513(4s14 — S25 + S26 + 4S34) + S26556) + S13(—S16534 + S34535 — 34536
42534845 + S14(S15 — S16 + S35 — S36 + Sa5 — Sa6) — 2534546 + S15(S34 — S56)
—2835556 — $36556)]

+A(135246) [s12(513(2514 + 4515 — 2516 + 3524 — 3526 + 2534 + 4535 — 2536) + S24546)
—513((s14 + 2834 + S36)S46 + $35(S45 — S56)) + Sa6(—S23524 + (—2514
—3815 — 2516 + 4824 + 4526 + 2834 + 3835 + 2536)S56)]

+A(135426) [—s23524525 + S23524526 — S23524545 — $23526556 + S15545556 — S35545S56
—814546556 — S15546556 — 516546556 + 4526546556 1 534546556 + S35546556
+536546556 + S12(513(2814 + 2515 — S24 — 3826 + 2834 + 2835)

+524 (825 — S26 + Sa5) + S26556) + S13(—S16534 + S34535 — 34836 — S35545
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+514(815—S16+ 535 — 36 — S46) — 2534546 — 36546+ 515 (534 — S56) — 2835556

+A(142356) [(—2516535 + 3523535 + 2525535 + 2526 535 — 2516536 + 3523536 + 2525536 + 2526536

—3513(535+536) —2515(535+ 536 ) + 514545 — 524545 + 4535 545 +4536 545+ 514546
— 824546 + 4535546 + 4536546) 556 + S12(8513514 + 8514523

—(s15 + s16 + 3(s25 + $26))556)]

+A(142536) [(—3s13536 — 2515536 — 2516536 1 3523536 + 2525536 1 2526536 + 514545 — 524845

+4536545 + 4536546)S56 + S12(4513814 — 23535 + S23836 + S14(2515 — 2516

+4523 + 2825 — 2826 + 3545 — 3S46) — S15556 — 2525556 — S26556)

+A(143256) [—(s23(s25 + S26) + 2515835 + 2516535 — 2525835 — 2526535 + 2515836 + 2516536

—28925836 — 2826536 + S13(S15 + S16 + 3(s35 + S36)) + 3514845 — 2525845
—2526545 + 534545 — 2835545 — 2536545 + 3514546 — 2525546 — 2526546 + 534546

—2835546 — 2536546) 556 + S12(8513514 — 3(S25 + S26)S56)]

+A(143526) [—s23524525 + 523524526 — 523525534 + 523526534 — 514534545 + 514534546

—523526556 — S15535556 — 516535556 + 2526535556 — 515536556 — 516536556
42526536556 — 2514545556 + 2526545556 — 534545556 + S35545556 1 536545556
— 814546556 + 2526546556 + S35546556 + S36546556 + S12(4S13514 + S23525
—523526+514(—S25+526) — 3526556 ) +513(S14(S15 — S16+ 535 — 536 + 545 — S46)

—(s15 + 2535 + $36)856)]

+A(145236) [— 523524536 — S23534536 — S14534545 — $14535545 — S14536546 — S15536S56

—516536556 + 3523536556 + 2526536556 + 2514545556 — 524545556 — 525545556
+3536545556 + 2536546556 — S13536(S14 + S56) + S12(2513514 — S23525 — S23S35

+2523536 + $14(2815 — S16 + 3523 — S26 + 3845 — S46) — S15556 — $26556)]

+A(145326) [—s23524525 + S23524526 — S23525534 + $23526534 — S23524535 — S23534535

—514534845 — $14835545 — S14536546 — $23526556 — 515536556 — S16536556
42526536556 — 2514545556 + 2526545556 — 534545556 — S35545556 1 536545556
+526546556 1+ S36546556 + S12(2513514 + S23525 — 2523526 + S23535

+514(815 — S23 — S26 + 2845) — S26556) + S13(S14(S15 — S16 — S36 + S45 — S46)

—(s15 + 536)556)]

+A(152346) [~ 525535545 — 2513534546 — 514534546 — 516534546 + 2523534546 + 524534546

+S526534546 — S13536546 — S14536546 — S16536546 + 23536546 1+ S24536546
+526536546 + 525535556 — 525546556 + 4534546556 + 4536546556
+512(45155238 — S16523 + S23S24 — S23526 + 2523534 + S13(S14 + 4515 — S16
+524 — S26 + S34 — S36) — 2523836 — S15545 + S14(S23 — S46) — 2824546

—$26546 + S15856) + S15(835(S45 — S56) + S46S56)]

+A(152436) [—523534536 + S15534545 — S25534845 + S15535545 — S25535545 + S13536(S34 — S46)

—514536546 — S16536546 + S23536546 + S24536546 + S26536546 + S15536556
— 525536556 — S15545556 + 525545556 + 4536546556 + S12(2515523 + 2515524
— 816524+ S23524 — S24 526 — 23534 + 513 (814 + 2815+ S24 — S36) — 2523536

—515545 + 514(2515 — S16 + 523 — S26 — S46) — 2524546 — 526546 — 3515556)]

+A(153246) [—$23835545 — S25535545 — S13514546 — S$23524546 — 2513534546 — S14534546

—8516534546 1 S24534S46 + S26534546 — S13536S46 — S14536546 — S16S536546

4524536546 + S26536546 + 523535556 + S25535556 + 2524546556 + 2526546556
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+2534546556 — 35546556 + 2536546556 + S12(S23(—S24 + S26)
+513(8514+4515 — S16+ 524 — S26 + S34 — $36 ) — S15545 — 2524546 — S26 546 + S15556)
+515 (835 (845 — S56) — 3546556)]

+A(153426) [—s23524525 + 523524526 — 523524535 — 523524545 + 515535545 — 523535545
—824535845 — $25535545 — S14534546 — 516534546 T 526534546 — 514536546
— 516536546 + 526536546 + S12(S23524 + S23526 + S24526 + S13(S14 + 2515
—S26 + S34) — S15(S24 + S45) — S26546) + S13(—S16534 — S34536
+514(815 — S16 — S36 — Sa6) — 2834546 — S36S46 + S15(S34 — S56))
—823526556 + S15535556 — S26535556 + S15545556 + S35545556 — S15546556
+2526546556 + $34546556 1 S36546556)

+A(154236) [—523524536 — 523534536 + 515534545 — 524534545 — 525534545 + 515535545
—824535845 — S25535545 — S14536546 — S16536546 T 523536546 + 526536546
—813536(514 + 846) — 515536556 1 2523536556 + 526536556 — 2515545556
+524545556 + S25545556 — S36545556 + 2536546556 1+ S12(S13(S14 + S15)
+2515823 — S23524 — $23 534 — 2523536 — S15545+ 514 (2515 — S16+ 523 — S26 — S46)
— 526546 — S15556)]

+A(154326) [—s23524525 + 523524526 — 523525534 + 523526534 — 523524535 — 523534535
—523524545 + 515534545 — 2523534545 — 524534545 — 525534545 + $15535545
—823835845 — S24835545 — S25835545 — $14536546 — 516536546 + $26536546
+512(813(514 + S15) — S15523 + S23524 + S14(S15 — S26) + 2523526 + 23834
—S15545 — S26546) — S23526556 — S15536556 + 526536556 + 2515545556
—826545556 + S34545556 + S35545556 + S26546S56 + S36546S556

+513(514(815 — S16 — $36 — S46) — S36546 — S15556)] (A1)
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