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Abstract—It is desirable to infer cellular dynamic regulation
networks from gene expression profiles to discover more
delicate and substantial functions in molecular biology,
biochemistry, bioengineering, and pharmaceutics. The S-system
model is suitable to characterize biochemical network systems
and capable of analyzing the regulatory system dynamics. To
cope with the problem “multiplicity of solutions”, a sufficient
amount of data sets of time-series gene expression profiles were
often used. An efficient newly-developed method iTEA was
proposed to effectively obtain S-system models from a large
number (e.g., 15) of simulated data sets with/without noise. In
this study, we propose an extended optimization method (named
iTEAP) based on iTEA to infer the S-system models of genetic
networks from a time-series real data set of gene expression
profiles (using SOS DNA microarray data in E. coli as an
example). The algorithm iTEAP generated additionally multiple
data sets of gene expression profiles by perturbing the given
data set. The results reveal that 1) iTEAP can obtain S-system
models with high-quality profiles to best fit the observed profiles;
2) the performance of using multiple data sets is better than that
of using a single data set in terms of solution quality, and 3) the
effectiveness of iTEAP using a single data set is close to that of
iTEA using two real data sets.

I. ITRODUCTION

iving cells contain several levels of networks, such as
genetic networks, protein-protein networks and
metabolic pathway. Advancements in technologies such

as DNA microarrays now allow us to measure gene
expression patterns on a genomic scale [1]. By using gene
arrays in a time series paradigm, we are able to observe the
emergence of coherent temporal responses of many
interacting components. In order to understand the regulation
of cells, time series expression profiles provide a more
complete picture than single time point expression profile [2].
The inference of genetic networks is a problem in which
mutual interactions among genes are estimated using
time-series data of gene expression patterns.

Given a dynamic model of gene interaction, the problem of
gene network inference is equivalent to learning the structural
and functional parameters from time series representing the
gene expression kinetics [3].

Noman and Iba [4] employed Trigonometric Differential
Evolution as the optimization engine algorithm for capturing
the decoupled S-system formalism. Using an S-system based
model for the transcription and translation process, Thomas et
al. [5] proposed a heuristic method for resolving networks. A
hybrid method of Genetic Programming and Least Mean
Square method [6] were combined to identify concise form of
regulation between S-system based models. Yamanaka et al.
[7] used toxic genomics for identifying gene interaction
networks with Bayesian model selection. Xu et al. [8]
proposed a recurrent neural network and particle swarm
optimization approach to infer genetic regulatory networks.
Ho et al. [9] proposed an intelligent two-stage evolutionary
algorithm (iTEA) to efficiently infer the S-system models of
genetic networks from a number of time-series data sets of
gene expression profiles.

The S-system model [10] of gene networks is based on the
Biochemical System Theory (BST) – a generalized
framework for modeling and analyzing biological systems
[11, 12]. S-system is a dynamic model for biochemical
pathways, having a good compromise between accuracy and
mathematical flexibility. The model is a set of non-linear
differential equations of the following form [4-6]:
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jX i=1, …, N, (1)

where Xi represents the expression level of gene i and N is the
number of genes in a genetic network. �i and �i are rate
constants which indicate the direction of mass flow and must
be positive. gij and hij are kinetic orders which reflect the
intensity of interaction from gene j to i. For inferring an
S-system model, it is necessary to estimate all the 2N(N+1)
S-system parameters (�i, �i, gij, hij) from experimental
time-series data of gene expression.

In this paper, we propose an effective optimization method
(named iTEAP) based on iTEA to infer the S-system models
of genetic networks from a time-series real data set of gene
expression profiles (using SOS DAN microarray data in E.
coli as an example). The algorithm iTEAP generated
additionally multiple data sets of gene expression profiles by
perturbing the given data set. High performance of iTEAP
arises mainly from 1) an intelligent genetic algorithm (IGA)
of iTEA, and 2) the technique of generating perturbed data
sets to effectively confine the search space of candidate
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solutions.
The effectiveness of iTEA was evaluated using simulated

expression patterns with and without noise [9]. It had been
shown that: 1) IGA is efficient enough to solve subproblems;
2) IGA is significantly superior to the existing method
SPXGA [13] in solving subproblems, and 3) iTEA performs
well in inferring S-system models of genetic networks from
small-noise gene expression profiles.

The above-mentioned methods often detect important
patterns, but cannot definitively identify the targets of
transcriptional regulators. Moreover, because of high costs of
the experiments and due to the fact that the investigated
processes are too short and do not allow for more sampling
points in time. To solve this problem of “multiplicity of
solutions” [14], additional data sets have to be acquired like
knock-out, over-expression experiment data or data sets with
different starting conditions that decrease the uncertainties.

From a given real data set of gene expression profiles only,
it is desirable to infer accurate S-system models of genetic
networks by coping with the problem of “multiplicity of
solutions”. The proposed iTEAP aims to improve the
solutions of iTEA to reconstruct the regulatory pathway by
generating a number of perturbed data sets for each of real
experimental data. Then, we extend the capabilities of iTEA
to predict regulatory pathways by applying the S-system
network to time series gene expression data from SOS DAN
microarray data in E. coli. The results of iTEAP on the SOS
DAN microarray data in E. coli reveal that 1) the S-system
models obtained by iTEAP can generate high-quality profiles
to best fit the experimental profiles; 2) the performance of
using multiple data sets is better than that of using a single
data set in terms of solution quality, and 3) the effectiveness
of iTEAP using a single data set is close to that of iTEA using
two data sets.

II. METHOD

A. Data Preprocessing

The genetic network inference problem using S-system
model suffers from many difficulties, such as high degree of
freedom, high dimensionality, multimodality, strong
interaction among parameters of the S-system model, and
measurement noise. Some of above difficulties can be solved
using a large number of real experimental profiles. However,
conventional experiments generally produce few real
experimental data due to limited resource and money. For this
reason, a preprocessing technique “adding noisy duplicates”
is introduced to cope with the difficulties caused by
insufficient real data.

To increasing the number of data, M-1 sets of additional
profiles are produced by adding k% random Gaussian noises
to each of the real experimental profiles using the following
equation,
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where Xobs,i,t is the experimental expression level of gene i at

time t, and is the l-th produced pseudo expression

data, N(0, 
2) is a normal distributed random number function
with zero mean and variance 
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B. Objective Functions

The optimization problem is first decomposed into N
subproblems having 2(N+1) parameters. To solve i-th
individual subproblem of gene i using IGA and refine the
combined solutions using OSA, the corresponding objective
function for guiding the searching process is required. At the
first stage of iTEA, the following objective function is
adopted:
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where Xinf,i,t is an inferred expression level of gene i at time t,
T is the number of sampling points of observed data, c is a
penalty weight, I is a maximum indegree that the maximal
number of genes which directly affect gene i. Gij and Hij are
given by rearrange gij and hij in ascending order of their
absolute values.

However, the objective function (3) may be biased,
especially when the experimental expression level is very
small. For this reason, the objective function is modified
using the absolute error instead of the relative error:
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To obtain a robust solution, the objective function used in
iTEAP is modified by adding a penalty term SDi:
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where M is the number of profiles of gene i, SDi is the
standard deviation of the squared errors for M sets of profiles
of gene i, c1 and c2 are penalty weights, and and

are the inferred and observed experimental expression

levels of gene i at time t using m-th profile, respectively.
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For the same reason above, the objective function of OSA
at the second stage is modified as follows:
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C. iTEAP for Reconstructing Genetic Networks

Besides dealing with the problem of insufficient
experimental data, reconstructing the genetic network still
needs an effective method to solve such a large-scale
optimization problem. In this paper, an intelligent two-stage
evolutionary algorithm (iTEA) [9] is adopted, which is able to
infer the S-system models of genetic networks from a large
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number of simulated small-noise gene expression profiles
with different starting conditions efficiently. In the following
paragraphs, a brief introduction of iTEA is presented.

To handle the curse of dimensionality, iTEA uses a
divide-and-conquer strategy [15] to decompose the
optimization problem into N subproblems having 2(N+1)
parameters, and utilize the structure skeletalizing techniques
[16] to reduce computation cost in both stages. At first stage,
each subproblem is solved by using an intelligent genetic
algorithm (IGA) [17] which introduces an intelligent
crossover operation based on orthogonal experimental design
(OED) [18, 19]. At second stage, the obtained N solutions to
N subproblems are combined and refined using an orthogonal
simulated annealing algorithm (OSA) [20] which
incorporates an intelligent generation mechanism (IGM)
based on OED. Both IGA and OSA are based on orthogonal
experimental design to speed up the search by using a
systematic reasoning method instead of the conventional
random generation method. The detail description of
OED-based intelligent crossover and IGM can be found in
[9].

1) The Used IGA
The main difference between the used IGA and the

conventional genetic algorithms are chromosome encoding,
crossover operation, and Cauchy-Lorentz probability
distribution based mutation [21] mentioned in [9]. The used
IGA is described simply below.
Step 1: (Initialization) Generate an initial population with

Npop feasible individuals of 2(N+1) real-value
parameters randomly.

Step 2: (Evaluation) Evaluate fitness value of all individuals.
Step 3: (Selection) Use the simple ranking selection that

replaces the worst Ps�Npop individuals with the best
Ps�Npop individuals to form a new population, where
Ps is a selection probability. Let Ibest be the best
individual in the population.

Step 4: (Crossover) Select Pc�Npop individuals including Ibest

randomly, where Pc is the crossover probability.
Applying intelligent crossover operation on the
selected pairs of parents.

Step 5: (Mutation) Besides the best individual, the
Cauchy-Lorentz probability distribution based
mutation operation is applied on all other individuals
according to mutation probability Pm.

Step 6: (Termination test) If the prespecified number Neval of
fitness evaluation is achieved or some stopping
condition is met, then stop the algorithm. Otherwise,
go to Step 2.

2) The Used OSA
With the help of IGM, OSA can search for a good

candidate solution efficiently. OSA uses a simple geometric
cooling rule by updating the temperature at the (i+1)-th
temperature step using the formula:

1 , 0,1,i iTemp CR Temp i� � �� � , (7)

where CR is the cooling rate which is a constant smaller than

1 but close to 1 (e.g., CR=0.999). In the higher temperature, it
is more possible to accept the candidate solution worse than
current solution. The OSA used in iTEA is described below.
Step 1: (Initialization) Initialize Temp = Temp0 and CR. Set

the combined solution S as the initial solution and
compute fitness of solution S, F(S).

Step 2: (Perturbation) Perform an IGM operation using S to
generate a candidate solution Q.

Step 3: (Acceptance test) Accept Q to be the new solution S
with probability P(Q):
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Step 4: (Decreasing temperature) Let the new value of Temp
be CR�Temp.

Step 5: (Termination test) if a prespecified stopping criterion
is met, stop the algorithm. Otherwise, go to Step 2.

3) iTEAP Using IGA and OSA
The proposed algorithm iTEAP uses both IGA and OSA in

the Steps 1 and 2, respectively. IGA aims to obtain solutions
to subproblems with significant accuracy in terms of the
objective function value which can best fit the given gene
expression profiles. If noise is very small, IGA is effective
enough and the improvement of OSA in Step 2 is not
significant. When noise becomes larger, the best fit of the
observed gene expression profiles is leaved to OSA from the
aspect of global optimization. Fig. 1 illustrates the flowchart
of iTEAP based on the two-stage evolutionary algorithm
iTEA. The algorithm of iTEAP is given as follows:
Step 1: Using IGA to solve N individual subproblems

independently using the objective function (5). For
each subproblem, R>1 independent runs are
conducted and the best solution of each solution is
selected.

Step 2: Combine all N best solutions (�i, gi1,…, giN, �i, hi1,…,
hiN), i = 1, … , N as an initial solution of OSA. Then,
applying OSA to refine the solution with the
objective function (6).

Step 3: Use the Z-score [24] technique to determine the
structure of gene networks from the obtained
S-system models.

III. EXPERIMENTAL REAULTS

A. Material

We employed iTEAP to evaluate the SOS DNA repair
network in bacterium Escherichia coli depicted in Fig. 2 [22].
The well-known gene network responses for repairing the
DNA after damages. The SOS system consisting of around 30
genes regulates at the transcriptional level. The experimental
data can be downloaded from the website of Uri Alon Lab
[23]. For the data set, four experiments have been conducted
with difference light intensities (Exp. 1&2: 5 Jm-2, Exp. 3&4:
20 Jm-2). Each experiment includes the expression
measurements for eight major genes through 50 time points,
sampled every 6 minutes.
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Fig. 1. Flowchart of the proposed method iTEAP

B. Experiment Performance of gPT

We conducted some experiments to evaluate the proposed
perturbation approach. The used parameters for iTEAP are as
follows: population size = 20, number of OA factors = 7, N
(number of gene) = 8, stopping condition: Neval = 7000 x N, T

(number of time point) = 50, I (maximum degree of
regulation) = 5, c1 and c2 (penalty weights) = 1.0, and�s

(skeletal threshold) = 0.1.
In the experiment, the four types of subsets of all the data

from Alon’s four experiment data sets (Expi, i = 1, …, 4) are
list in Table. 1. We generated 14 sets (M=15) as the perturbed
real time-series microarray data for each 1-set type data
(named p-set), where 2% Gaussian noises was added. For all
types with t data sets (t-set), let M=t in the iTEAP. The values
of gene expression levels were normalized in the range (0, 1.0]
and all the zero expression levels were replaced with a very
small value. 30 independent runs were carried out to assure
the statistical significance of the probabilistic capture.

The results of total standard deviations of 8 genes from 30
independent runs are shown in Fig. 3. The results real that 1)
the more the real time-series data sets were used, the smaller
the total standard deviations (i.e., 1-set > 2-set > 3-set > 4-set),
and 2) the perturbed data set p14 using only one real
time-series data set is better than 1-set data set and
comparable to 2-set in terms of robustness quality.

We applied iTEAP to estimate the parameters of S-system
model. The fitness value of (6) reflecting the fitting quality of
time-series data is used to evaluate the ability of the used
optimization algorithm. However, the major concern is to
obtain a correct network structure with accurate parameter
values.

Fig. 4 (a) and (b) shows the given gene expression profiles
of the Exp1 dataset and the estimated profiles with the best
fitness value using iTEAP on 1-set (i.e., no perturbed profiles
were added). The evolutionary model can effectively capture
the dynamics of most of genes in the system, with the major
change trends of the gene expression levels reflected in the
evolutionary curve. We can see the final inferred profile is
very similar to the observed profiles.

The real time-series data sets are noisy and the results were
dispersed. We apply the Z-score technique [24] to determine
the structure of the gene network using the results of Fig. 4
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Fig. 3. Sum of standard deviations of 8 genes from 30 independent
runs.

TABLE 1
THE FOUR TYPES OF SUBSETS OF ALL THE DATA FROM ALON’S FOUR

EXPERIMENT DATA SETS.
TYPE NAME THE SELECTED SUBSETS FROM ALON’S DATA SETS

1-set (Expi), i = 1,…,4
2-set (Expi, Expj), i, j = 1,…,4, i�j
3-set (Expi, Expj, Expk), i, j, k = 1,…,4, i�j��
4-set (Exp1, Exp2, Exp3, Exp4)

Protein

Gene

LexA

RecA*RecA

lexA

recA

uvrD umuDC uvrA ruvA polBuvrY

LexA Cleavage

DNA Damage

Single Stranded DNA

Fig. 2. The bacterial E. coli SOS DNA repair netwok. Activations are
represented by arrows (�), while inhibitions are represented by T (�).
Genes (square) initials are in lower case, proteins (hexagon) in capital
letters.

Combine the N solutions

OSA for refining the combined
solution

Decomposition into N
subproblems

Solve the N-th
subproblem by IGA…

Solve the 1st
subproblem by IGA

Input a set of N gene
expression profiles

S-system models

Adding M-1 noisy
duplicates for each gene i

Z-score[24] for determining the
network structure

Inferred gene network
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(b). After analyzing the Z-score value with the threshold Zth =
1.0, the gene network is shown in Table 2. The result is not
very good because the lexA regulations of lexA and recA
were not identified, which had been identified in these works
[4, 8, 22, 25]. It induced some insufficient regulations, such
as polB, uvrA, and uvrY.

IV. CONCLUSIONS

We have proposed an efficient method iTEAP (using
the well-known SOS DNA microarray data in E. coli as a test
example) to infer cellular dynamic regulation networks from
gene expression profiles to discover more delicate and
substantial functions. The S-system model is suitable to
characterize biochemical network systems and capable of
analyzing the regulatory system dynamics. To cope with the
problem “multiplicity of solutions”, iTEAP uses noisy
duplicates to obtain a rather accurate and robust solution to
the gene reconstruction problem. The simulation results
reveal that iTEAP can obtain S-system models with
high-quality generated profiles to best fit the observed
profiles, and the effectiveness of iTEAP using a single data
set is comparable to that of iTEA using two real data sets. The
iTEAP is more useful when only one real data set of gene
expression profiles is available. Of course, iTEAP also
benefits from multiple real data sets for achieving more
accurate solutions. Furthermore, the proposed iTEAP can
also work efficiently for other biological systems such as
reconstruction and analyzes of metabolic pathway.

To examine the effectiveness of adding noisy duplicates,
Table 3 shows the regulation of genes in SOS repair network
identified by iTEAP applied on the Exp3 data set with
perturbed profiles. The result is more promising, compared
with the results in Table 2. We can find out the regulations
which have been identified in these works [4, 8, 22, 25], such
as:
1. Corresponding to inhibition of lexA on umuDC.
2. The inhibition of lexA on lexA , uvrD, recA, uvrA, and

polB.
3. recA��RecA�LexA�uvrA.
4. The activation of lexA by recA

TABLE 2.
RECONSTRUCTION OF THE GENE NETWORK USING FIG. 4 (B) BY APPLYING ITEAP ON THE EXP1 DATASET WITH NO PERTURBED PROFILES.

Activation Inhibition

uvrD lexA umuDC recA uvrA uvrY ruvA polB uvrD lexA umuDC recA uvrA uvrY ruvA polB

uvrD uvrA uvrY polB uvrD uvrY

lexA recA uvrA uvrY polB umuDC recA uvrA 0 ruvA polB

umuDC lexA recA uvrA ruvA polB lexA umuDC recA ruvA polB

recA lexA uvrA uvrY ruvA polB umuDC recA

uvrA uvrD uvrA uvrY ruvA polB umuDC recA uvrA polB

uvrY uvrD recA uvrY ruvA polB uvrD uvrA ruvA polB

ruvA uvrD uvrY ruvA uvrD uvrA ruvA polB

polB uvrD lexA recA uvrA polB umuDC recA uvrA ruvA polB
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(a) The given gene expression profiles. (b) The estimated profiles.
Fig.4 The comparison of profiles using iTEAP on the Exp1 dataset,
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TABLE 3.
THE REGULATION OF GENES IN THE SOS REPAIR NETWORK IDENTIFIED BY USING ITEAP ON EXP3 WITH NOISY DUPLICATES.

Activation Inhibition

uvrD lexA umuDC recA uvrA uvrY ruvA polB uvrD lexA umuDC recA uvrA uvrY ruvA polB

uvrD lexA uvrY polB uvrD lexA 0

lexA recA uvrY lexA uvrA

umuDC uvrD lexA umuDC recA lexA umuDC 0

recA uvrD recA lexA recA 0

uvrA uvrD recA uvrD lexA uvrA

uvrY uvrD 0 uvrD 0 uvrY 0

ruvA uvrD 0 recA polB

polB umuDC 0 ruvA lexA polB
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