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Siegel’s analysis on membrane transport in the Laplace domain [J. Phys. Chem. 95 (1991) 2556] in terms

of transmission matrix, T(s), has been extended to a more useful formulation. This is achieved by combin-

ing uses of the matrix transport equations appropriate for void initial condition, or for saturated equilib-

rium, or of Dirac delta functional type and the theorem det[T(s)] = 1. This formulation enables us to ex-

pand T(s) in power series of the Laplace variable, s, with the expansion coefficients as the algebraic func-

tions of the experimentally measurable transport parameters. Utility of the formulation is illustrated in the

estimation of the experimentally inaccessible time moments for the first passage or residence times. It was

also applied to the percutaneous drug delivery to obtain from the experimental data. The higher moments

of the time lag or time lead using a graphic method.
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INTRODUCTION

Permeation transport across membranes is of great

importance in science and technology, and has played a

crucial role in such diverse fields as chemical sensors,1,2

controlled release,3,4 separation processes,5 protection

against pollution,6 electrodialysis,7 to name just a few. In

practical applications, three modes of membrane transport

are employed:8 (a) absorptive permeation, where the initial

activity within the membrane is zero and the activities at

the upstream and downstream faces are at a constant level

a0 and zero, respectively; (b) desorptive permeation, where

the initial condition is of saturated equilibrium with activ-

ity a0 throughout the whole membrane. If the activity is a0

at the upstream face, zero at the downstream face, then we

have forward desorptive permeation; and if, on the other

hand, the boundary conditions at two faces are exchanged,

then we have backward desorptive permeation; (c) desorp-

tion, where the initial activity a0 prevails throughout the

whole membrane and the boundary conditions at both faces

are kept at zero activity. For heterogeneous membranes,

where the diffusivity D(x) and partition coefficient K(x)

depending on position, the permeation can be mathemati-

cally described by the Smoluchowski equation,9-11 �
�t
�( , )x t

=
�
�x

D x( )K x( )
�
�x

�( , )

( )

x t

K x
. The complete knowledge about

the membrane permeation entails the full time-dependent

solution to the diffusion equation subject to appropriate

boundary and initial conditions. Unfortunately full, analyt-

ical solution is seldom obtained except for some simple,

trivial cases. Thus one is usually satisfied with obtaining a

few diffusion parameters characteristic of the permeation

such as permeation (P), time lag (t L ) for absorptive and

time lead (t � ) for desorptive permeation and their higher

moments.12,13 All these permeation parameters can be ob-

tained directly from the suitably designed experiments. For

details, see section 4 below. Theoretically, they can also be

formulated via the Taylor expansion of the transmission

matrix, T(s), in power series of s with the expansion coeffi-

cients expressed in terms of the repeated integrals of

[K(x)D(x)]-1 and K(x)14 or by the method of repeated inte-

gration of the diffusion equation.9,15 However, these formu-

lations are useful only in the cases where the functions K(x)

and D(x) are known beforehand.

Another concern about diffusion transport is the mo-

ments of the first passage time10,11,16 and residence time.17,18

As a rule, neither is obtainable directly from the experi-

ments. Mathematically the former can be obtained by solv-

ing the adjoint (or backward) diffusion equation10,11 and the

latter by the Green’s function of the diffusion equation.17,18

Again these tasks are feasible only when K(x) and D(x) are

known ahead of time.
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In this communication we will contrive a device

which makes it possible to estimate the moments of the res-

idence time and first passage time from permeation param-

eters obtained directly from suitably designed permeation

experiments. Using the measurable permeation parameters

of component laminae, it is also useful for the estimation of

various time moments of a composite laminate. This device

is the Taylor expansion of the transmission matrix, T(s), in

power series of s with the expansion coefficients expressed

in terms of the measurable parameters: permeability, time

lag and time lead and their higher moments. With this de-

vice, evaluation of most of the diffusion time moment

amounts merely to a task of algebraic manipulation. The

rest of this article will be organized as follows: Section 2

presents the matrix transport equations for void and satu-

rated equilibrium initial conditions. In conjunction with the

theorem det[T(s)] = 1, we are able to correlate the fluxes of

various modes with the matrix elements to express the ex-

pansion coefficients of T(s) in terms of various permeation

time moments. Section 3 illustrates the application of this

device to the time moments of the first passage time, resi-

dence time, and percutaneous drug delivery. Section 4 sug-

gests a graphical method for the treatment of the experi-

mental data to obtain the time moments for absorptive and

desorptive permeation and finally the last section gives a

concluding remark.

TAYLOR EXPANSION OF T(s) IN TERMS OF

PERMEATION PARAMETERS

We start with the matrix transport equation for void

initial concentration within the whole membrane14,19-21

(1)

This equation relates the pair (activity, � ( )a su , and flux,
� ( )J su ) in the Laplace domain at the upstream face to the

counterpart, � ( )a sd and � ( )J sd , at the downstream face. For

membrane absorptive permeation, � ( )a su =
a

s

0 and � ( )a sd = 0

are the boundary conditions. The permeation flux at the

downstream face is calculated to be

(2)

where the superscript (a) is indicative of “absorptive”. In

terms of � ( )
J d

a
( )s , the diffusion parameters steady-state per-

meability (P), time lag (t L ) and its second and third mo-

ments (t L

( )2
, t L

( )3
) for absorptive permeation can be defined

as shown in Eqs. (3)�(6). A subsequent use of Eq. (2) leads

to

(3)

(4)

(5)

(6)

where J d ss

a

,

( )
is the steady-state flux for absorptive perme-

ation. Equations (4)�(6) are equivalent to the statement that

t L , t L

( )2
and t L

( )3
are the first, second and third time moments

based on the distribution (
d

dt
J d

a( )
( )t )/J d ss

a

,

( )
, respectively. On

rearranging Eqs. (3)�(6), the Taylor expansion ofT s
12

( )can

be represented in terms of the diffusion parameters of the

absorptive permeation by

(7)

where the definition of� i (i = 0, 1, 2, 3) is self-explanatory

in Eq. (7).

To find a similar series for T s
22

( ) the forward desorp-
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tive permeation mode is employed, which in turn requires

the transport equation for initial saturated equilibrium14,21

(8)

with � ( )a sd = 0, � ( )a su =
a

s

0 , appropriate for this mode of per-

meation, the permeation flux at downstream face is given

by

(9)

where the superscript (d) is indicative of “desorptive”.

Again we can define the forward time lead t � , and its

higher moments in terms of � ( )
J d

d
(s) and use Eq. (9) to obtain

(10)

(11)

(12)

The subscript, +, in t � , t �
( )2

and t �
( )3

is used to specify the

permeation in the forward direction. With the fact that

steady-state permeabilities for absorptive and desorptive

permeation are identical, and after inserting Eq. (9) into

Eqs. (10)�(12), the Taylor expansion of T s
22

( )can be repre-

sented after rearrangement by

(13)

where t � = t L � t � , t �
( )2

= t L

( )2 � t �
( )2

and t �
( )3

= t L

( )3 � t �
( )3

, and

the definition of �i for i = 0, 1, 2, 3 is self-explanatory.

To find the Taylor expansion of T s
11

( ) , we use the

backward desorptive permeation flux, � ( )J su

d , which is cal-

culated using Eq. (8) with � ( )a sd =
a

s

0 and � ( )a su = 0 to obtain

(14)

In a fashion similar to that used to obtain T s
22

( ) in Eq. (13),

we find

(15)

where t � = t L � t � , t �
( )2

= t L

( )2 � t �
( )2

and t �
( )3

= t L

( )3 � t �
( )3

, with

t � being the time lead for backward desorptive permeation

and t �
( )2

and t �
( )3

its second and third moments, respectively.

For n = 0, 1, 2, 3 the � i are defined in Eq. (15).

A further application of the theorem21

(16)

allows us to obtain for T s
21

( ) the Taylor series expansion

(17)

Again, the definition of � i (i = 1, 2, 3) is self-explanatory.

Results collected from Eqs. (7), (13), (15) and (17)

represent the Taylor expansion of T(s) in power series of s

with the coefficients expressed in terms of permeation time

moments which are measurable from the experiments.

They can be looked upon as a supplement to the Taylor ex-

pansion of T sij ( ) in power series of s with coefficients ex-

pressed in terms of repeated integrals of K(x) and

[k(x)D(x)]-1 as revealed in reference.14 These representa-
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tions are the central result of the article and will be applied

to the estimation of the time moments of the following

problems.

APPLICATIONS

As the first example, we consider the first passage

time for a particle initially located at x
0

between a reflect-

ing face xu and an absorbing face xd , xu < x
0

< xd .11,16 Solv-

ing this problem requires the matrix transport equation for

an initial condition of �-function type14,19

(18)

where T s* ( ) is the transmission matrix for the subdomain

from x
0

to xd . After substitution of � ( )J su = 0 and � ( )a sd = 0

into Eq. (18), the flux escaping from the face xd is calcu-

lated to be

(19)

The mean first passage time can be represented by

(20)

where the denominator represents the initial total amount

which is equal to unity. Putting Eq. (19) into Eq. (20) fol-

lowed by expanding the transition matrix elements in terms

of Eqs. (7), (13), (15) and (17), we obtain

(21)

Here the quantity associated with the superscript * denotes

the fact that this quantity is to be specified to the sub-do-

main, x
0

< x < xd . The second moment of first passage time

is also easily calculated by

(22)

where t �
* = t L

* � t �
* and t �

( )*2
= t L

( )*2 � t �
( )*2

. Thus with each

quantity on the right-hand sides of Eqs. (21) and (22) being

experimentally accessible, 
1

and  2 can be estimated.

The second example goes to the estimation of the mo-

ments of the residence time for the first example.17,18 These

residence time moments are not measurable directly from

experiments. The residence time is related to the Green’s

function � ( , | )G x s x
0

associated with the diffusion equa-

tion.14,18 Such a Green’s function can be constructed by the

following strategy. The diffusion domain is partitioned into

three sub-domains labeled by A, B, C. A is from xu to x, B

from x to x
0

and C from x
0

to xd . The matrix transport equa-

tion between the xu and xd , where the initial location x
0

is

confined, reads19

(23)

The transport equation for the sub-domain between xu and

x, where the particle is not initially located, reads

(24)

The superscript capitals A, B, C signify the regions with

which the transmission matrices associate and the subscript

x denotes “at the interface x”. Substituting the boundary

conditions � ( )a sd = 0 and � ( )J su = 0, � ( )a sx is found from Eqs.

(23) and (24) to be

(25)

Upon using Eqs. (7) and (15), we obtain

(26)

But it should be noted that it is the concentration Green’s

function which gives residence time not the activity. With

the relation14,19,20
�( , )a x s =

� ( , )

( )

� x s

K x
we find the mean resi-

dence time at x for infinitely long observation time to be

(27)

and its second moment to be
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(28)

The value of K(x) may be obtained from the experimentally

measurable permeability
D x K x

x

( ) ( )

&
and time lag

( )

( )

&x

D x

2

6
for

a slice of material between x and x x� & , with &x thin enough

to be considered homogeneous. In the case of x x'
0
, a simi-

lar calculation yields

(29)

(30)

where the sub-domain A( is from xu to x
0
, B( from x

0
to x, C�

from x to xd . Thus we have demonstrated that experimen-

tally inaccessible residence time moments can be estimated

from the experimentally measurable quantities.

As a third example, consider a membrane initially in a

state of saturated equilibrium at a constant activity, a
0
, that

undergoes desorption leakage from either ends. The tradi-

tional desorption experiment measures the total release

from both sides, hence, is unable to give the release time

moments for a particular side. This difficulty, however, can

be overcome by our method. The Laplace transform of the

escaping flux at the downstream face is found to be

(31)

by substituting � ( )a su = � ( )a sd = 0 into Eq. (8) as required for

desorption experiment. If Eqs. (7) and (13) are used, � ( )J sd

can be expanded as a power series in s to be

(32)

It immediately follows upon using Eqs. (7) and (17) that the

first time moment, t d , for release from the downstream face

is

(33)

upon using Eqs. (7) and (17). The second moment t d

( )2
for

release from the downstream face is found to be

(34)

Similar calculation on the first (t u ) and second (t u

( )2
) mo-

ments of the release time from the upstream face gives

(35)

(36)

Again, the time moments for escaping from a particular

boundary, which is experimentally inaccessible, can be es-

timated from the experimentally accessible permeation pa-

rameters.

As the last example, we consider a percutaneous drug

delivery from a patch matrix attached to the skin. The ma-

trix is homogeneously saturated with the drug. During ad-

ministration, the drug molecules diffuse through the matrix

and skin (specifically, stratum cornea) into the tissue. The

configuration of the permeation system is sketched in Fig.

1, indicating that the upstream face is reflecting, i.e., imper-

meable, and the downstream face is absorbing. The matrix

transport equations for this drug delivery system are as

adapted from Eqs. (1) and (8).

(37)

(38)

The quantity with the subscript u (0, d) is that at the face xu
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Fig. 1. Lay out of the percutaneous drug delivery, xu, is

an impermeable boundary, x0 is the interface

between the matrix and stratum cornea, xd is the

interface between stratum cornea and tissue,

and is assumed to be absorbing.
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(x
0
, xd ). The superscript * is used to specify the quantity in

the stratum cornea. The quantity without * as its superscript

is the one which be specified in the patch matrix. Solve
� ( )J sd from Eqs. (37) and (38) after substituting � ( )a sd = 0,
� ( )J su , results in

(39)

The Taylor expansion of � ( )J sd in power series of s can be

obtained upon using Eqs. (7), (13), (15) and (21) and is

found to be

(40)

with

P 
 �
1

(41)

(42)

(43)

The first moment for the drug delivery is then

(44)

and the second moment is

(45)

where the Greek letters can be found specified in Eqs. (7),

(13), (15) and (17).

DATA TREATMENT

The feasibility of this new methodology gears to the

permeation parameters: permeability, time lag for absorp-

tive permeation and time leads for forward and backward

desorptive permeations and their higher moments. The per-

meability, time lag and time lead are usually obtained from

the slope and the intercept with the time axis of the linear

asymptote for a plot of total release, Q t( ) = J d
t

( )% %
0

! ,

against time, t (see Fig. 2).22 This graphic method can be

also extended to the determination of higher moments.

From the definition of the n-th moment of the time lag in

the Laplace domain, Eqs (4)�(6), which can be transformed

into the time domain. After integration by parts, we have

(46)

After arrangement, Eq. (46) becomes

(47)

Thus a plot of y 
 % % %n

d

t

J d�! 1

0

( ) against x t n
 will exhibit a

linear asymptote with a slope
J

n

d ss,
and an intercept (with
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Fig. 2. Plot of % % %n

d

t

J d�! 1

0

( ) against tn to obtain the n-th

moment of the time lag for absorptive perme-

ation from the intercept on tn axis by the right-

hand side linear asymptote, and the n-th mo-

ment of the time lead for forward desorptive

permeation from the intercept on tn axis by the

left-hand side linear asymptote. The two linear

asymptotes has the same slope
J

n

d ss, . The plot

for the n-th moment of the time lead of the

backward desorptive permeation is not shown

but is similar to that for forward desorptive per-

meation.
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the x-axis) t L

n( )
(see Fig. 2). Proceeding as in the derivation

of Eq. (47), an equation for the time lead can be found

(48)

Again, a plot of y 
 % % %n

d

t

J d�! 1

0

( ) against x t n
 give a lin-

ear asymptote whose slope is
J

n

d ss,
and intercept with the

x-axis is t
n

�
( )

.

The arguments for the foregoing data treatment are

based on a model that diffusivities and partition coeffi-

cients depend on position only. Thus the cases of position-

dependent and/or concentration-dependent diffusivities

and partition coefficients are excluded in this data treat-

ment. Moreover, as to be consistent with the prescribed ab-

sorbing boundary condition, it is also required that an infi-

nite volume of the downstream receiver, which is impracti-

cal experimentally. The measurements of permeation time

lag, time leads and their higher moments, as a rule, are sub-

ject to systematic error23 and random error.24 The former is

due to the finite volume of the downstream receiver and in-

complete attainment of the steady state. Therefore, care

must be exercised to balance between the maximum preci-

sion in the measurements and minimum derivation of the

experimental line from the linear asymptote.25 The influ-

ence of systematic and random errors on, and the optimized

design of the experiments toward the accuracy of the mea-

surements of diffusivity, partition coefficient, time lag and

time leads had been discussed in detail by Petropoulos and

Myrat.25,26

CONCLUSION

As indicated in Eqs. (7), (13), (15) and (17), the Tay-

lor expansion of the transmission matrix, T(s), has been

contrived in the form of a power series in s, with expansion

coefficients as the functions of the experimentally measur-

able diffusion parameters permeability, time lag, time lead

and their higher moments. This is accomplished by com-

bining the matrix transport equation for the void initial con-

centration (Eq. (1)) with that for the initial condition of sat-

urated equilibrium (Eq. (8)) and the definitions of the

above mentioned parameters. The results are expressed by

Taylor expansions for T s
12

( ), T s
22

( ) and T s
11

( ) (Eqs. (7),

(13) and (15)). A further use of det[T(s)] = 1 gives the cor-

responding expansion for T s
21

( ) (Eq. (17)). With such a

Taylor expansion of transmission matrix as a tool and in

co-operation with appropriate matrix transport equations,

the problems of time moments for first passage time, resi-

dence time and the percutaneous drug delivery can be

solved algebraically. As a result, various time moments can

be expressed by the algebraic function of the above-men-

tioned measurable parameters. Thus, some experimentally

inaccessible time moments can be estimated from perme-

ation parameters measurable in appropriate permeation ex-

periments. This methodology for the estimation of the time

moments would provide a useful vehicle for the treatment

of the membrane permeation and other problems in diffu-

sive transports.
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