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ABSTRACT: We investigated the basis set convergence of
high-order coupled-cluster interaction energy contributions for
21 small weakly bound complexes. By performing CCSDT(Q)
calculations in at least the aug-cc-pVTZ basis set, and CCSDT
calculations in at least aug-cc-pVQZ (aug-cc-pVTZ for one
system), we found the convergence to be quite slow. In
particular, the 6-31G*(0.25) and 6-31G**(0.25,0.15) bases
advocated by Hobza et al. (J. Chem. Theory Comput. 2013, 9,
2151; ibid. 2013, 9, 3420) are unsuitable for the post-
CCSD(T) effects, with average errors for the CCSDT(Q)-
CCSD(T) interaction energy contribution of about 80% for 6-31G**(0.25,0.15) and 110% for 6-31G*(0.25). Upgrading the
basis set to aug-cc-pVDZ reduces the average error to about 35% and extremely demanding CCSDT(Q)/aug-cc-pVTZ
calculations are necessary for further improvement in accuracy. An error cancellation between basis set incompleteness effects at
the CCSDT-CCSD(T) and CCSDT(Q)-CCSDT levels occurs for most (but not all) complexes, making it unproductive to carry
out CCSDT calculations in a larger basis set than the more demanding CCSDT(Q) calculations. We also found that the frozen
natural orbital approximation at the CCSDT and CCSDT(Q) levels works well only if the thresholds for discarding least
occupied natural orbitals are very tight (significantly tighter than the thresholds recommended for molecular correlation energies
in the original work of Rolik and Kaĺlay, J. Chem. Phys. 2011, 134, 124111), making the performance gains quite limited. The
interaction energy contributions through CCSDT(Q) are both a necessity and a bottleneck in the construction of top-accuracy
interaction potentials and further improvements in the efficiency of high-order coupled-cluster calculations will be of great help.

I. INTRODUCTION

The “gold-standard” coupled-cluster approach1,2 with single,
double, and noniterative triple excitations [CCSD(T)]3 has
proven immensely successful in generating highly accurate
noncovalent interaction energies. In particular, the databases of
CCSD(T)-level interaction energies are an extremely valuable
tool for the benchmarking and tuning of more approximate
methods.4−8 Due to the increase of the available computational
power and the advances in overcoming basis set incompleteness
effects at the CCSD(T) level (such as complete-basis-set (CBS)
extrapolations,9,10 bond functions,11 and explicitly correlated F12

approaches12,13), the CCSD(T)/CBS interaction energies can
be obtained so precisely that higher-order coupled-cluster
excitations can become the leading contribution to the residual
errors of interaction energies (along with the corrections for
core−core and core−valence correlation, relativistic effects, and
post-Born−Oppenheimer terms). Therefore, higher-order
coupled-cluster interaction energy contributions, obtained
using CCSDT,14 CCSDT(Q),15,16 and/or CCSDTQ,17,18 have
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attracted significant attention in the last year, culminated by the
extensive and illuminating studies of Hobza and collabora-
tors.19−21 These authors have constructed the A24 database of 24
small complexes for which the benchmark interaction energies
contain, in addition to an estimate of the CCSD(T)/CBS
interaction energy, the corrections due to core−core and core−
valence correlation, relativistic effects, and post-CCSD(T) terms.
The latter correction was calculated20 at the CCSDT(Q) level
using a 6-31G**(0.25,0.15) basis set. Furthermore, by perform-
ing calculations up to CCSDTQP (for the smallest dimers, even
full CI), Hobza et al. have shown21 that the CCSDT(Q)
interaction energies are already converged to about 0.5 cm−1 or
better. This conclusion is in line with earlier observations of a
remarkable agreement between the interaction energies
predicted by CCSDT(Q) and CCSDTQ.22−24 On the other
hand, the inclusion of full, iterative (CCSDT) triples alone does
not provide a consistent improvement over CCSD(T); the
inclusion of quadruple excitations at least at the noniterative (Q)
level is crucial.19

The work of Hobza and collaborators used a small 6-
31G**(0.25,0.15) basis for the post-CCSD(T) corrections to
make the calculations feasible (only ref 19 presented results in
the slightly larger aDZ ≡ aug-cc-pVDZ basis as well). Due to the
steep computational scaling of the methods involved (N8 for
CCSDT andN9 for CCSDT(Q)), it is not possible to obtain fully
converged CBS estimates of the post-CCSD(T) contributions
except for small four-electron systems (the latter are, however,
not quite representative of larger systems as will be shown
below). However, there is some compelling evidence that the
basis set convergence of the post-CCSD(T) terms is no faster
than for the CCSD(T) interaction energy, so that basis sets such
as 6-31G**(0.25,0.15) or aDZ are likely inadequate. In
particular, for the argon dimer, the δT = CCSDT−CCSD(T)
and δ(Q) = CCSDT(Q)−CCSDT contributions to the near-

minimum interaction energy, computed in the aDZ basis set,
amount to only −4% (that is, the sign is wrong) and 32%,
respectively, of the values computed in the largest basis sets
feasible, aug-cc-pV(5 + d)Z and aug-cc-pV(Q + d)Z,
respectively.24

In view of the slow basis set convergence of δT and δ(Q) for the
argon dimer, and of a similar pattern observed for other weakly
interacting dimers investigated in our groups,25,26 we suspect that
the largest remaining error in the interaction energies of the A24
database might be due to the, possibly severe, basis set
incompleteness effects in δT and δ(Q). On a more fundamental
level, we would like to gauge the utility of adding a small-basis
CCSDT(Q) correction to the interaction energy and to establish
the basis set requirements for an accurate description of this
correction. Additionally, as for some systems δT and δ(Q) cancel
each other to a large extent, we want to study the basis set
convergence of the overall CCSDT(Q)-CCSD(T) contribution
and compare it with the properties of δT and δ(Q) separately. As
our working hypothesis is that small-basis δT and δ(Q) corrections
may be qualitatively inaccurate, we restrict our considerations to
small systems for which the CCSDT(Q) calculations in at least
the aTZ basis are feasible. For some smaller complexes, we will be
able to run CCSDT and CCSDT(Q) in bases as large as a5Z and
aQZ, respectively, and for the four-electron systems (where
CCSDTQ is equivalent to FCI) still larger basis sets can be
utilized even at the CCSDTQ level.
The example dimers considered in this work include nearly all

complexes for which post-CCSD(T) interaction energy
corrections have been previously computed using any basis set
larger than aDZ as well as a number of dimers (e.g., NH3−NH3
and CH4−CH4) for which such calculations have not been done
before. Specifically, we consider the four-electron systems He−
He,27 He−H2,

28 and H2−H2,
29 rare gas dimers Ne−Ne30 and

Ar−Ar,23,24 the complexes H2−CO,
25,31 H2−HCl,

32 He−C3,
26

Table 1. Interaction Energy Contributions (in cm−1) for the He−He, He−H2, and H2−H2 Complexes in Their Respective van der
Waals Minimum Geometries

basis set CCSD(T) δT δ(Q) δT+(Q) δQ

He−He
6-31G*(0.25) 6.7387 −0.0027 0.0000 −0.0027 0.0000
6-31G**(0.25,0.15) −1.5310 −0.1273 −0.0073 −0.1346 −0.0036
aDZ −2.9223 −0.1891 −0.0042 −0.1933 −0.0021
aTZ −5.7698 −0.2124 −0.0066 −0.2190 −0.0031
aQZ −6.4344 −0.2124 −0.0074 −0.2198 −0.0034
a5Z −6.8306 −0.2108 −0.0077 −0.2185 −0.0032
a6Z −7.1316 −0.2117 −0.0080 −0.2197 −0.0034

He−H2

6-31G*(0.25) 10.9419 −0.0120 0.0010 −0.0110 0.0007
6-31G**(0.25,0.15) −6.2201 −0.2826 −0.0020 −0.2846 0.0008
aDZ −6.8620 −0.4035 −0.0096 −0.4130 −0.0027
aTZ −9.1984 −0.4040 −0.0140 −0.4180 −0.0034
aQZ −9.9053 −0.3947 −0.0159 −0.4106 −0.0036
a5Z −10.2463 −0.3870 −0.0165 −0.4035 −0.0037
a6Z −10.4263 −0.3830

H2−H2

6-31G*(0.25) 28.2768 −0.0747 −0.0238 −0.0985 −0.0144
6-31G**(0.25,0.15) −22.8972 −0.9264 −0.0736 −1.0000 −0.0342
aDZ −24.3163 −1.1896 −0.0901 −1.2797 −0.0333
aTZ −35.0745 −1.2392 −0.1006 −1.3398 −0.0306
aQZ −37.3259 −1.1885 −0.1059 −1.2944 −0.0307
a5Z −37.8178 −1.1550 −0.1072 −1.2622
a6Z −38.0588 −1.1364
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Ar−HF,33−35 Ne−HF, and H2−HF under investigation in our
groups, and the N2−N2,

36 H2O−H2O,
37 He−LiH, LiH−LiH,

Ar−CH4, HF−HF, NH3−NH3, and CH4−CH4 dimers.
Compared to the post-CCSD(T) interaction energies beyond
the aDZ basis available in the literature, to our knowledge, we
only exclude the systems with less than four electrons for which
FCI calculations are quite straightforward38,39 and the alkaline
earth metal dimers which are four-electron systems within the
frozen-core approximation (this approximation, however, works
poorly in this case, and the accuracy of the CCSD(T) interaction
energies is particularly low; see ref 40 and references therein).

II. COMPUTATIONAL DETAILS
The majority of the calculations are performed at the global-
minimum geometries, which are taken from the literature to
facilitate comparison with previous studies. For the H2O−H2O
and N2−N2 complexes, where the global minimum has relatively
low symmetry, we have performed additional calculations at a
more symmetric configuration. The geometries of all studied
complexes are described in Table SI in the Supporting
Information (which also lists the corresponding Cartesian
coordinates). We have employed the 6-31G*(0.25)41,42 and 6-
31G**(0.25,0.15) basis sets popularized by Hobza as well as the
singly augmented Dunning sequence aXZ, X = D,T,Q,5,6.43,44

Note that for the second-row atoms (Cl and Ar) the regular aXZ
sets were used, not the aug-cc-pV(X + d)Z sets45 as the latter,
while slightly larger, have not shown any consistent improvement
for interaction energies. Moreover, the aXZ, X = D,T,Q, bases for
lithium are the original sets from ref 46 (as listed on the Basis Set
Exchange Web site47), not the revised sets of ref 48. All
interaction energies include the counterpoise (CP) correction
for basis set superposition error. Contrary to refs 19−21, which
correlated all electrons, our δT and δ(Q) corrections will be
obtained within the frozen-core approximation. This approach
corresponds to treating the corrections to CCSD(T)/CBS for
higher-order excitations and for core−core and core−valence
correlation as additive, as implicitly assumed in nearly all studies
to date. We have, however, tested this assumption on the “worst-
case-scenario” examples involving the LiH molecule (the frozen-
core approximation generally works poorly for interactions
involving alkali or alkaline earth metals40) as well as on the much
less critical example of Ne−Ne.
All CCSDT(Q) and CCSDTQ calculations have been carried

out using the MRCC program,49−51 either stand-alone or

interfaced to MOLPRO2012.1.52 The largest CCSDT calcu-
lations have used the CFOUR code.53 For a few systems, we have
carried out additional CCSDT and CCSDT(Q) calculations with
the virtual orbital space truncated according to occupations of
MP2 natural orbitals;54 see section III.B for details.

III. NUMERICAL RESULTS AND DISCUSSION
The basis set convergence of the δT, δ(Q), and δQ =
CCSDTQ−CCSDT(Q) contributions to the near-minimum
interaction energies of four-electron dimers He−He, He−H2,
and H2−H2 is presented in Table 1. The corresponding values of
the CCSD(T) interaction energies are shown to illustrate the
significance of the post-CCSD(T) contribution.
The first observation from Table 1 affirms that for the four-

electron systems quadruple excitations are only of minor
importance. At the largest basis sets listed, the δ(Q) term does
not exceed 10% of δT, and the correction for full CCSDTQ
(equivalent to full CI in this case) is still smaller by a factor of at
least 2. While the basis set convergence of δ(Q) might not be of
critical importance for these systems, it is quite slow, with the
aDZ value amounting to 54−84% of the a5Z result. Fortunately,
the dominating δT contribution exhibits faster basis set
convergence, with the aDZ basis reproducing 89−105% of the
a6Z value. The 6-31G**(0.25,0.15) basis accidentally gives a
very good value of δ(Q) for He−He, but it is quite inaccurate for
the remaining two dimers as well as for the dominating δT
correction, for which the errors are about four times that of aDZ.
As could be expected, the still smaller 6-31G*(0.25) basis
(equivalent to just 6-31G for hydrogen and helium) is completely
unsuitable for dispersion-dominated interactions.
The δT, δ(Q), and δQ results for the He−LiH and LiH−LiH

dimers are presented in Table 2. As the 1s lithium electrons were
not correlated (we will examine the all-electron δT and δ(Q)
contributions for these systems in section III.C), these are also
four-electron systems and even CCSDTQFCI can be
computed in reasonably large basis sets. Similar to the other
four-electron systems (Table 1), the δT effect strongly dominates
over δ(Q) and δQ. However, the overall post-CCSD(T) effects are
very minor (below 1%) for He−LiH and LiH−LiH and the
convergence of the δT contribution is generally quite good even
though it becomes monotonic only from the aTZ level on. Even
the 6-31G**(0.25,0.15) set, while inadequate for the minor δ(Q)
contribution, recovers 98−107% of the a5Z result for δT; the 6-
31G*(0.25) basis is not much worse for the LiH−LiH complex.

Table 2. Interaction Energy Contributions (in cm−1) for the He−LiH and LiH−LiH Complexesa

basis set CCSD(T) δT δ(Q) δT+(Q) δQ

He−LiH
6-31G*(0.25) −12.718 −0.522 −0.030 −0.552 −0.007
6-31G**(0.25,0.15) −31.749 −1.157 −0.102 −1.258 −0.041
aDZ −98.359 −1.063 −0.054 −1.117 −0.025
aTZ −139.102 −1.120 −0.066 −1.185 −0.028
aQZ −147.367 −1.105 −0.071 −1.176 −0.029
a5Z −148.140 −1.080 −0.072 −1.152

LiH−LiH
6-31G*(0.25) −13872.24 −28.86 −1.08 −29.94 −0.16
6-31G**(0.25,0.15) −14473.47 −31.54 −0.16 −31.70 0.39
aDZ −15851.05 −29.48 −1.17 −30.65 −0.21
aTZ −16689.70 −35.06 −2.51 −37.56 −0.56
aQZ −16818.09 −33.20 −2.83 −36.03 −0.50
a5Z −16854.59 −31.94

aThe lithium 1s core electrons have not been correlated.
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As seen in Table 2, the frozen-core He−LiH and LiH−LiH
systems are not particularly demanding when it comes to the
basis set selection for the post-CCSD(T) corrections. It is,
unfortunately, not the case for most of the larger dimers, as
illustrated in Tables 3 (Ne−Ne, Ar−Ar, He−C3), 4 (Ne−HF,
Ar−HF, Ar−CH4), 5 (H2−HF, H2−HCl, H2−CO), 6 (H2O−
H2O, N2−N2), and 7 (HF−HF, NH3−NH3, CH4−CH4). In the
most extreme cases of the H2O−H2O and HF−HF complexes,
the aDZ basis either fails to capture the correct sign of the δT+(Q)
≡ δT + δ(Q) sum or underestimates δT+(Q) several times, and the
6-31G*(0.25) and 6-31G**(0.25,0.15) bases are still worse.
Tables 3−7 also show that the δ(Q) correction tends to converge
from above to a negative CBS result, while the δT term can have

either sign and mostly approaches its CBS limit from below
although the convergence often becomes monotonic only from
the aTZ level on.
To facilitate the analysis of the overall performance of different

basis sets for δT and δ(Q), we will partition the complexes into
four groups as follows.

• Four-valence-electron dimers: He−He, He−H2, H2−H2,
He−LiH, and LiH−LiH

• Nonpolar−nonpolar dimers: Ne−Ne, Ar−Ar, He−C3, H2−
CO, Ar−CH4, N2−N2 (2 orientations), and CH4−CH4

• Polar−nonpolar dimers: H2−HF, H2−HCl, Ne−HF, Ar−
HF

Table 3. Interaction Energy Contributions (in cm−1) for the Ne−Ne, Ar−Ar, and He−C3 Complexes in Their Respective Global
Minimaa

basis set CCSD(T) δT δ(Q) δT+(Q) δQ

Ne−Ne
6-31G*(0.25) −16.8056 −0.1078 0.1276 0.0199 −0.0129
aDZ −3.0539 −0.0407 0.0326 −0.0080 −0.0074
aTZ −16.6713 −0.2694 −0.0269 −0.2963
aQZ −22.9583 −0.3728 −0.0704 −0.4432
a5Z −25.7525 −0.4072

Ar−Ar
6-31G*(0.25) −12.940 0.005 0.774 0.780 −0.148
aDZ −24.467 −0.054 −0.547 −0.601 0.104
aTZ −66.090 0.824 −1.206 −0.382
aQZ −81.579 1.052 −1.612 −0.560
a5Z −90.097 1.200

He−C3

6-31G*(0.25) 19.023 0.075 −0.139 −0.064 0.007
6-31G**(0.25,0.15) −12.309 0.084 −0.295 −0.211 0.029
aDZ −15.499 0.189 −0.579 −0.390 0.021
aTZ −22.628 0.370 −0.649 −0.279
aQZ −24.485 0.432

aThe Ar−Ar and He−C3 results (except for the 6-31G*(0.25) and 6-31G**(0.25,0.15) ones) are taken from Refs 24 and 26, respectively, and most
of the Ne−Ne results have been obtained in Ref 30. The 6-31G*(0.25) and 6-31G**(0.25,0.15) bases are identical when no hydrogen or helium
atoms are present.

Table 4. Interaction Energy Contributions (in cm−1) for the Ne−HF, Ar−HF, and Ar−CH4 Complexes in Their Respective Global
Minima

basis set CCSD(T) δT δ(Q) δT+(Q) δQ

Ne−HF
6-31G*(0.25) −49.798 −0.054 0.191 0.137 −0.025
6-31G**(0.25,0.15) −88.120 −0.123 0.102 −0.021 −0.038
aDZ −55.225 −0.252 −0.303 −0.555 0.028
aTZ −72.406 −0.928 −0.610 −1.538
aQZ −79.262 −0.938 −0.736 −1.674
a5Z −86.125 −0.911

Ar−HF
6-31G*(0.25) −21.707 0.488 0.067 0.555 −0.100
6-31G**(0.25,0.15) −82.679 −0.083 0.030 −0.052 −0.030
aDZ −94.051 −1.288 −0.849 −2.137 −0.013
aTZ −185.643 −0.889 −1.977 −2.866
aQZ −207.969 −0.477 −2.331 −2.808
a5Z −212.617 −0.238

Ar−CH4

6-31G*(0.25) −22.898 −0.136 0.241 0.105 −0.111
6-31G**(0.25,0.15) −50.559 −0.469 0.454 −0.015 −0.121
aDZ −82.669 −0.506 −1.020 −1.526
aTZ −119.564 0.522 −1.924 −1.402
aQZ −132.986 0.880
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• Polar−polar dimers: H2O−H2O (2 orientations), HF−HF,
and NH3−NH3

The first important factor that differentiates between
complexes belonging to different groups is the relative
importance of the δT and δ(Q) interaction energy contributions
compared to the leading CCSD(T) term. There exists ample
literature concerning the methodology (basis sets, counterpoise

correction or lack thereof, CBS extrapolations, and different
explicitly correlated CCSD(T)-F12 variants) of obtaining
precise and reliable CCSD(T)/CBS interaction energy
estimates,55−59 and it is not our aim to generate ultra-accurate
values of the CCSD(T)/CBS term. Therefore, we will select the
most accurate CCSD(T)/CBS benchmark values from the
literature if available for a given geometry: if not, we will obtain

Table 5. Interaction Energy Contributions (in cm−1) for the H2−HF, H2−HCl, and H2−CO Complexes in Their Respective near-
Global Minimum Geometriesa

basis set CCSD(T) δT δ(Q) δT+(Q) δQ

H2−HF
6-31G*(0.25) 233.239 −0.218 0.242 0.024 −0.128
6-31G**(0.25,0.15) −93.337 −2.545 0.326 −2.219 −0.105
aDZ −296.317 −3.612 0.156 −3.456 −0.130
aTZ −370.023 −3.937 −0.458 −4.395
aQZ −387.151 −3.450 −0.646 −4.096
a5Z −391.676 −3.181

H2−HCl
6-31G*(0.25) 118.346 −0.700 −0.026 −0.726 −0.036
6-31G**(0.25,0.15) −57.089 −2.460 0.182 −2.278 −0.096
aDZ −122.888 −2.722 −1.123 −3.845 −0.010
aTZ −183.349 −2.426 −1.774 −4.200
aQZ −199.442 −1.927 −1.991 −3.919
a5Z −202.779 −1.683

H2−CO
6-31G*(0.25) −15.706 −0.842 −0.095 −0.937 −0.109
6-31G**(0.25,0.15) −89.638 −1.536 −0.532 −2.068 0.021
aDZ −73.160 −1.850 −0.856 −2.706 −0.045
aTZ −86.503 −1.469 −1.131 −2.600
aQZ −89.257 −1.303 −1.205 −2.508
a5Z −90.210 −1.207

aMost of the H2−CO results were obtained in the course of the work on refs 31 and 25.

Table 6. Interaction Energy Contributions (in cm−1) for the Water and Nitrogen Dimersa

basis set CCSD(T) δT δ(Q) δT+(Q) δQ

H2O−H2O (global minimum)
6-31G*(0.25) −1386.50 5.65 −0.71 4.93 −0.08
6-31G**(0.25,0.15) −1475.05 5.52 −1.50 4.02 0.11
aDZ −1530.34 2.36 −3.24 −0.88
aTZ −1665.60 1.51 −4.95 −3.44
aQZ −1726.71 2.02

H2O−H2O (C2v)
6-31G*(0.25) −902.55 3.89 1.04 4.93 −0.18
6-31G**(0.25,0.15) −1021.62 3.75 0.27 4.03 −0.07
aDZ −1026.27 1.14 −0.73 0.41 −0.08
aTZ −1107.16 0.30 −2.26 −1.96
aQZ −1141.02 0.55 −2.44b −1.89b

N2−N2 (global minimum)
6-31G*(0.25) −85.401 2.479 −4.448 −1.969 1.462
aDZ −79.561 2.855 −4.852 −1.997
aTZ −97.162 3.622 −5.456 −1.835
aQZ −102.468 3.857

N2−N2 (D2h)
6-31G*(0.25) −50.828 1.877 −3.050 −1.173 1.372
aDZ −49.207 2.294 −3.540 −1.246 1.122
aTZ −69.069 3.267 −4.391 −1.124
aQZ −72.826 3.531

aEach complex is presented in two geometries: the global-minimum one (less symmetric) and a highly symmetric structure that is only a radial
minimum. The 6-31G*(0.25) and 6-31G**(0.25,0.15) bases are identical when no hydrogen or helium atoms are present. bResult obtained in the
FNO approximation (section III.B).
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CCSD(T)/CBS estimates by the standard X−3 extrapolation9 of
the results computed in the aQZ and a5Z bases (a5Z and a6Z for
a few systems). The complete set of benchmark CCSD(T)/CBS
interaction energies is listed in Table SI in the Supporting
Information.
The values of the δT and δ(Q) corrections, as well as of their

δT+(Q) sum and of the post-CCSDT(Q) term δQ, as percentages
of the CCSD(T)/CBS interaction energy are presented in Figure
1. In this figure (its design is inspired by refs 58 and 60), the four-
valence-electron, nonpolar−nonpolar, polar−nonpolar, and
polar−polar dimers (see the partitioning above) are represented
by green, blue, orange, and red symbols, respectively. Note that,
as the CCSD(T)/CBS interaction energy is negative, a positive
percentage means a negative interaction energy contribution. For
individual systems, the actual percentages (positive or negative)
are shown: however, all averages pertain to unsigned percentages
(in other words, we show the mean unsigned relative deviations
of, for example, CCSD(T) + δT relative to CCSD(T)). In Figure
1, the values of δT and δ(Q) are chosen as (supposedly) the most
accurate estimates of these corrections available from Tables
1−7, that is, the results of the X−3 extrapolation using the two
largest-X aXZ values (note that the largest X available is typically

higher for δT than for δ(Q)). In the particular case of the a(D,T)Z
extrapolation, it was observed for the CCSD(T)−MP2
interaction energy contribution61 that the inadequacy of the
aDZ basis often makes the extrapolated result inferior to the
calculated aTZ value. In order to check whether the similar
observation holds for δT and δ(Q), we compared the performance
of the a(D,T)Z and aTZ estimates of these corrections to the
benchmark values obtained by the a(T,Q)Z extrapolation or
higher: this comparison was done on 18 systems (all but CH4−
CH4, HF−HF, and Ar−HF, excluded for the reasons described
below) for δT and 13 systems for δ(Q). For δT, the overall accuracy
of the a(D,T)Z and aTZ results was about the same (a mean
unsigned relative error (MURE) of 25.3% versus 28.3%),
however, the a(D,T)Z approach performed much better on the
nonpolar−nonpolar dimers (a MURE of 10.6% versus 30.0% for
bare aTZ) so we chose the δT/a(D,T)Z result as benchmark for
the methane dimer (the only complex for which CCSDT/aQZ
could not be calculated). In the case of δ(Q), the extrapolated
a(D,T)Z estimates performed significantly better (a MURE of
10.8% versus 24.5% for aTZ) so we adopted the δ(Q)/a(D,T)Z
values as benchmarks when larger-basis results are not available.
All benchmark estimates of the post-CCSD(T) corrections are

Table 7. Interaction Energy Contributions (in cm−1) for the HF, NH3, and CH4 Dimers in Their Respective near-Minimum
Configurations

basis set CCSD(T) δT δ(Q) δT+(Q) δQ

HF−HF
6-31G*(0.25) −1316.83 6.17 −0.98 5.18 0.15
6-31G**(0.25,0.15) −1247.58 9.23 −3.21 6.02 0.32
aDZ −1391.01 4.52 −2.15 2.37
aTZ −1504.08 0.91 −3.48 −2.57
aQZ −1576.91 0.52

NH3−NH3

6-31G*(0.25) −791.26 1.13 −1.01 0.12 0.00
6-31G**(0.25,0.15) −927.82 −0.24 −1.25 −1.49 0.00
aDZ −928.12 −0.47 −3.72 −4.19
aTZ −1050.72 1.56 −5.80 −4.24
aQZ −1082.74 2.60

CH4−CH4

6-31G*(0.25) −23.384 −0.124 −0.992 −1.116 −0.043
6-31G**(0.25,0.15) −102.161 −1.008 −1.170 −2.178 0.124
aDZ −143.081 −1.403 −1.888 −3.292
aTZ −174.241 −0.212 −2.893 −3.105
aQZ −181.931

Figure 1. δT, δ(Q), δT+(Q), and δQ interaction energy contributions as percentages of the CCSD(T)/CBS interaction energy. The four-valence-electron,
nonpolar−nonpolar, polar−nonpolar, and polar−polar dimers are represented by green, blue, orange, and red symbols, respectively. The circles
represent the unsigned averages of the individual values, with the black circle showing the unsigned average for all complexes.
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listed in Table SII in the Supporting Information. On the average,
the δT and δ(Q) effects amount to, respectively, 2.04% and 0.13%
for four-valence-electron dimers, 1.91% and 2.61% for non-
polar−nonpolar dimers, 0.61% and 0.84% for polar−nonpolar
dimers, 0.13% and 0.35% for polar−polar dimers, and 1.36% and
1.25% overall. The magnitude of the post-CCSD(T) effects can
be contrasted with the δ(T) = CCSD(T)−CCSD interaction
energy contribution which amounts, on the average, to 17.4% of
the CCSD(T) benchmark (theMP2, CCSD, and δ(T) interaction
energy terms are given in Table SII for completeness). As evident
from Figure 1, for the nonpolar−nonpolar dimers the δT and δ(Q)
contributions cancel out partially but systematically while for the
polar−nonpolar and polar−polar dimers no such cancellation is
present. As mentioned above, the δT contribution strongly
dominates for the four-valence-electron complexes. The bench-
mark values for the nonperturbative quadruples correction δQ
were computed in the largest bases available in Tables 1−7
without any extrapolation. As shown in Figure 1, the δQ
correction is generally very small. The only exceptions are the
two geometries of the nitrogen dimer: interactions between
triply bonded molecules such as N2 or CO are known to require
particularly high orders of Møller−Plesset perturbation theory
(MPn) or high-order coupled-cluster excitations.62 One should
note that the same two N2−N2 structures are responsible for the
largest percentage contributions to δT (the two leftmost lines in
Figure 1) and δ(Q) (the two rightmost lines); however, these two
terms cancel out to a large extent.
When the δT term can be computed in a larger basis than δ(Q)

(which is the case for all complexes but four, cf. Tables 1−7),
there are two sensible ways of estimating the benchmark value of
the overall δT+(Q) contribution: as a sum of the δT and δ(Q)
benchmarks (obtained in separate extrapolations) or via a single
extrapolation of the δT+(Q) term computed in the two largest basis
sets for which the δ(Q) value is available. While the first approach
is formally closer to CBS (it includes the δT contribution in larger
basis sets), the second approach is preferable if any cancellation
between the basis set incompleteness errors at the δT and δ(Q)
levels occurs. For the 12 complexes for which the CCSDT/a5Z
and CCSDT(Q)/aQZ calculations are possible, the single-
extrapolation δT+(Q)/a(T,Q)Z estimate differs from the separate-
extrapolations δT/a(Q,5)Z + δ(Q)/a(T,Q)Z one by an average of
5.2%. As the results in Tables 1−7 show that the δT+(Q) sum
exhibits faster basis set convergence than its δT and δ(Q)
components for most but not all dimers (in other words, error
cancellation is likely but not at all systematic), it is not clear which
one of these estimates is more accurate but the difference is
minor. For smaller bases, an additional factor is the poor
performance of the δT+(Q)/a(D,T)Z extrapolationcomparison
with the a(T,Q)Z (or higher) benchmark data for 13 complexes
shows a MURE of 19.9% for δT+(Q)/a(D,T)Z and 13.5% for
δT+(Q)/aTZ. Therefore, computing the δT part from the a(T,Q)Z
extrapolation should be highly preferred over either a(D,T)Z or
aTZ: not only the basis set is larger but the extrapolation is clearly
beneficial. Consequently, we decided to compute our δT+(Q)
benchmark values, presented in Figure 1, using the separate-
extrapolations approach whenever possible (for the methane
dimer, we chose the δT+(Q)/a(D,T)Z value as benchmark).
While, as expected, the overall δT+(Q) interaction energy

correction is quite minor (0.16% to 3.72% of the CCSD(T)/CBS
value, or a maximum of 2.68% if four-valence-electron dimers are
neglected), it nevertheless becomes important in top-accuracy
calculations. Therefore, one should ask how well the δT, δ(Q), and
δT+(Q) corrections are recovered (relative to the benchmark

values of these terms from Figure 1) when computed in a smaller
basis set. To answer this question, we computed the MURE
values of the δT correction obtained in the 6-31G*(0.25), 6-
31G**(0.25,0.15), aDZ, aTZ, and aQZ basis sets, and of the δ(Q)
and δT+(Q) terms computed in the 6-31G*(0.25), 6-31G**-
(0.25,0.15), aDZ, and aTZ basis sets, relative to the benchmark
values from Figure 1. The results are presented in Figures 2, 3,

and 4 for δT, δ(Q), and δT+(Q), respectively. Note that a MURE of
over 100%, obtained for some classes of systems at the 6-
31G*(0.25) and 6-31G**(0.25,0.15) basis sets, means that it is
better to neglect a contribution completely (a 100% error) than
to compute it using such a small basis set. It should also be noted
that even our largest-basis estimates are in general not converged,
as indicated by the overall MURE values of 13.7, 19.2, and 15.8%
obtained for δT/aQZ, δ(Q)/aTZ, and δT+(Q)/aTZ, respectively.
There are three systems for which the benchmark δT value is

particularly close to zero so that the relative errors are greatly

Figure 2. Performance of different basis sets in the recovery of the δT
benchmark (extrapolated from the two largest-basis results in Tables
1−7) displayed as mean unsigned relative errors (MURE). The black
lines represent the median unsigned relative errors (MeURE). The
CH4−CH4, HF−HF, and Ar−HF complexes are excluded from the
MURE and MeURE calculation due to the accidental smallness of the
benchmark value (see text for details).

Figure 3. Performance of different basis sets in the recovery of the δ(Q)
benchmark (extrapolated from the two largest-basis results in Tables
1−7) displayed as mean unsigned relative errors (MURE). The black
lines represent the median unsigned relative errors (MeURE).
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exaggerated (no similar issues arise for δ(Q) and δT+(Q)). These
systems are CH4−CH4, HF−HF, and Ar−HF, with the two
largest-basis computed results, δT/a(X−1)Z and δT/aXZ, and
the extrapolated δT/(a(X − 1)Z,aXZ) value amounting to
(−1.403,−0.212,0.289) cm−1, respectively, for CH4−CH4 (note
that the correction is particularly poorly converged in this case
because the aQZ value is not available), (0.91,0.52,0.24) cm−1 for
HF−HF, and (−0.477,−0.238, 0.013) cm−1 for Ar−HF. Thus,
the unsigned relative errors of even the largest-basis computed
results (with respect to the extrapolated value) exceed 100% for
these three systems. Therefore, to make the statistics in Figure 2
meaningful, the CH4−CH4, HF−HF, and Ar−HF complexes
had to be excluded. Even after this exclusion, the 6-31G*(0.25)
and 6-31G**(0.25,0.15) bases lead to δT errors of over 50% in all
cases except the four-valence-electron dimers in the latter set.
With the same exception of the four-valence-electron systems,
the aDZ basis set is also inadequate for the δT term, with the
largest errors (excluding the CH4−CH4, HF−HF, and Ar−HF
complexes) of 144.3, 113.9, and 104.0% obtained for Ar−CH4,
NH3−NH3, and Ar−Ar, respectively. The percentage errors are
particularly large for the polar−polar dimers: fortunately, these
are also the systems where the post-CCSD(T) corrections are
least important in relative terms, cf. Figure 1.
For the δ(Q) contribution (Figure 3), the 6-31G*(0.25) and 6-

31G**(0.25,0.15) basis sets give average errors close to 100%
while the errors in the aDZ set are around 50%. Notably, the
errors of δ(Q) are quite similar across all classes of systems despite
the vastly different relative importance of this correction (cf.
Figure 1), making it particularly critical to converge this term for
the nonpolar−nonpolar and polar−nonpolar dimers. The largest
errors at the δ(Q)/aDZ level amount to 132.0, 119.9, and 71.6%
for Ne−Ne, H2−HF, and H2O−H2O (C2v), respectively.
For most of the systems, if the δ(Q) calculation is feasible up to

the aXZ basis, the δT contribution can be obtained also in the
a(X + 1)Z set. However, the statistical errors in Figure 4 indicate
that the improvement of δT is not really beneficial unless one
improves δ(Q) at the same time. In fact, the δT/aTZ + δ(Q)/aDZ
estimates perform only a little bit better than δT+(Q)/aDZ (a
MURE of 34.2% versus 38.6%), and δT/aQZ + δ(Q)/aTZ
compared to δT+(Q)/aTZ exhibits the same trend (a MURE of
11.4% versus 15.7% excluding the CH4−CH4 complex). Thus, a
separate δT calculation using a basis set beyond the δ(Q)

capabilities is usually not worthwhile. The largest errors at the
δT+(Q)/aDZ level amount to 162.3, 122.2, and 98.5% for HF−
HF, H2O−H2O (C2v), and Ne−Ne, respectively, and clearly
show that extreme caution is needed if one wishes to include
post-CCSD(T) interaction energy contributions using basis sets
of this size.

A. Anisotropy of the Post-CCSD(T) Contributions.
Except for the high-symmetry configurations of the H2O−H2O
and N2−N2 complexes, the discussion so far concerned only
geometries near the van der Waals minima. While the
importance, and slow basis set convergence, of post-CCSD(T)
effects at near-minimum geometries has been clearly illustrated,
one could hope that these effects exhibit low anisotropy and
effectively provide a nearly spherical contribution that has
minimal effects on, say, spectral lines. Unfortunately, our
benchmark calculations for several different angular config-
urations of LiH−LiH (Table SIII in the Supporting Informa-
tion), H2−CO (Table 8), and Ar−HF (Table 9) (the geometries

for all configurations are given in the Supporting Information)
indicate that the post-CCSD(T) contributions can have very
strong anisotropy. For different orientations presented in Tables
8, 9 and SIII, the largest-basis (nonextrapolated) δT+(Q)

Figure 4. Performance of different basis sets in the recovery of the δT+(Q)
benchmark (computed as a sum of the δT and δ(Q) benchmarks obtained
in separate extrapolations) displayed as mean unsigned relative errors
(MURE). The black lines represent the median unsigned relative errors
(MeURE). Table 8. Anisotropy of Various Interaction Energy

Components (in cm−1) for the H2−CO Complex and Two
Basis Setsa

(0°,0°,0°) (0°,90°,0°) (0°,180°,0°) (45°,45°,45°)

aDZ
δT −0.119 −0.291 −1.736 −0.226
δ(Q) −0.174 −0.309 −0.794 −0.181
δT+(Q) −0.293 −0.600 −2.531 −0.406
CCSD(T) −48.358 −16.553 −74.655 −20.352

aTZ
δT −0.185 −0.214 −1.368 −0.154
δ(Q) −0.219 −0.373 −1.055 −0.268
δT+(Q) −0.403 −0.587 −2.423 −0.421
CCSD(T) −53.221 −18.475 −86.638 −23.799

aThe intermolecular distance R is set to R = 8.0 bohr, whereas the
intramolecular ones, rHH and rCO, are equal to 1.4487 bohr and 2.1399
bohr, respectively. The three angles are defined in the same way as in
ref 68: the Cartesian coordinates for all four configurations are given in
the Supporting Information.

Table 9. Interaction Energy Components (in cm−1) for the
Ar−HF Complex As Functions of the Angle θ between the
Lines Going from the HF Center of Mass to the Ar and H
Atomsa

θ 0° 90° 180°

aDZ
δT −1.279 −0.267 −0.253
δ(Q) −0.815 0.087 0.167
δT+(Q) −2.094 −0.180 −0.086
CCSD(T) −98.690 −10.148 −43.114

aTZ
δT −0.877 −0.233 0.172
δ(Q) −1.920 −0.409 −0.296
δT+(Q) −2.797 −0.642 −0.124
CCSD(T) −186.560 −53.046 −75.358

aThe intermolecular distance R is set to R = 6.5 bohr and the
intramolecular one rHF is equal to 1.7629 bohr.
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contributions constitute 0.2−0.9%, 0.8−3.2%, and 0.2−1.5% of
the frozen-core CCSD(T) interaction energy for LiH−LiH, H2−
CO, and Ar−HF, respectively. Moreover, the basis set
convergence varies significantly with geometry: for three of the
H2−CO configurations in Table 8, the aDZ basis set recovers
96−104% of the aTZ value for δT+(Q); however, for the remaining
configuration, this percentage is 73%. The agreement between
the two bases for three orientations is actually a consequence of
error cancellation between the δT and δ(Q) terms (for which the
aDZ results constitute 64−147% and 68−83%, respectively, of
the aTZ ones). Such a cancellation cannot be taken for granted
and it does not occur for the fourth geometry. An even more
striking example of error cancellation is the θ = 0° orientation of
the Ar−HF complex. In this case, when the basis set is changed
from aDZ to aTZ, the value of δT decreases by 31%, the value of
δ(Q) increases by 136%, whereas the total δT+(Q) term increases by
34%. For θ = 90°, such cancellation is not present and the value of
δT+(Q) for aTZ is over three times larger than for aDZ. For the test
complexes and geometries presented in Tables 8, 9, and SIII,
there does not appear to be a pattern of change in the anisotropy
when the quality of the basis set is increased. Both absolute values
of δT+(Q) and its relative values with respect to the CCSD(T)
interaction energy can increase or decrease for different angular
orientations of the interacting subsystems.
The results in Tables 8 and 9, and in Table SIII in the

Supporting Information, show that the inclusion of a properly
converged post-CCSD(T) interaction energy contribution is
even more critical for the anisotropy of the potential energy
surface than for the near-minimum interaction energy. The post-
CCSD(T) contributions can be especially important for the
relative depths of global and local minima or for the heights of
energy barriers. For instance, for H2−CO the difference of the
δT+(Q) values between the (0°, 0°, 0°) and (0°, 180°, 0°)
orientations is equal to 2.0 cm−1 while the difference of the
CCSD(T) interaction energies for these geometries amounts to
33.4 cm−1. Thus, the inclusion of the δT+(Q) interaction energy
term changes the relative energy by 6%. Not surprisingly, the
inclusion of interaction energy terms up to CCSDT(Q) proved
essential for the recovery and assignment of the experimental
high-resolution infrared spectrum of ortho-H2−CO.

25,31

B. MP2 Frozen Natural Orbital Approximation. In view
of the highly unfavorable scaling of high-order coupled-cluster
methods with the number of virtual orbitals it is desirable to
introduce approximations that reduce this number without a
significant adverse effect on the interaction energies. Several
approaches to restrict the virtual space have been proposed:63,64

in this work, we utilize the MP2 frozen natural orbital (FNO)
approach65 as implemented in CCSDT and CCSDT(Q) by
Rolik and Kaĺlay.54 In theMP2 FNOmethod, the natural orbitals
are obtained as eigenvectors of the first-order Møller−Plesset
density matrix. The corresponding eigenvalues, that is, the
natural orbital occupation numbers, are then sorted and the
orbitals with sufficiently low occupations can be removed from
the virtual space with little error. In the implementation of ref 54,
a cumulative threshold εFNO is employed.66 Specifically, natural
orbitals are added to the virtual space, in the order of decreasing
occupation numbers, until the cumulative occupation of all
included orbitals (occupied and virtual) exceeds εFNO times the
number of electrons. The remaining natural orbitals are removed
from further consideration (care is taken to avoid splitting
degenerate sets of orbitals). Rolik and Kaĺlay54 investigated the
accuracy of the δT and δ(Q) contributions to molecular energies
and heats of formation as a function of εFNO and recommended a

threshold of 0.975 for an optimal combination of accuracy and
efficiency. Unfortunately, as we will show below, setting εFNO =
0.975 is not accurate enough for the small δT and δ(Q)
contributions to noncovalent interaction energies.
The convergence of the δT and δ(Q) interaction energy

contributions for the C2v geometry of the water dimer as a
function of the εFNO threshold is shown in Table 10. This

convergence turns out to be quite slow: a threshold of 0.99 leads
to an overestimation of the δT term up to six times. The δ(Q)
contribution is less sensitive to the FNO approximation:
nevertheless, the error for εFNO = 0.99 amounts to 32% in the
aDZ basis and 11% in aTZ. The results of Table 10 suggest that
the minimum acceptable εFNO threshold for noncovalent
interactions is 0.9999 for δ(Q) (errors up to 16%) and 0.99999
for δT (errors up to 11%). Unfortunately, such tight thresholds
correspond to a fairly small reduction of the virtual space so that
the speedup afforded by the FNO approximation is quite limited.
In fact, the C2v water dimer (Table 10) is the only system for
which we obtained, with significant computational effort, an
FNO result (the δ(Q)/aQZ value) for which the corresponding
nonapproximate value was out of reach. The δ(Q)/aQZ
contribution for εFNO = 0.9999 can be expected to be accurate
(the accuracy of the FNO δ(Q) terms for a given threshold
increases with the basis set size, cf. Table 10) and the quadruples
contribution converges particularly slow for the water dimer (cf.
Table 6), so the availability of the aQZ result thanks to the FNO
approximation is quite helpful. However, this situation should be
viewed as an exception rather than a rule as the FNO approach
using reliable thresholds provides only modest performance
gains (a similar εFNO = 0.9999 calculation would be unfeasible for
the less symmetric, global-minimum geometry of the water
dimer).

Table 10. Interaction Energy Contributions (in cm−1) for the
H2O−H2O (C2v) Complex Calculated at Different FNO
Thresholds εFNO

a

εFNO Nbf CCSD(T) δT δ(Q) δT+(Q)

aDZ
0.99 50 −979.489 2.524 −0.966 1.558
0.999 64 −1021.655 1.465 −1.542 −0.077
0.9999 74 −1021.808 1.181 −0.611 0.570
0.999 99 78 −1026.659 1.136 −0.738 0.398
1 82 −1026.272 1.137 −0.730 0.407

aTZ
0.99 79 −963.346 1.953 −2.006 −0.053
0.999 126 −1078.499 0.999 −2.190 −1.191
0.9999 156 −1101.515 0.479 −2.124 −1.645
0.999 99 171 −1107.233 0.334 −2.249 −1.915
1 184 −1107.160 0.302 −2.264 −1.962

aQZ
0.99 99 −962.430 1.926 −2.390 −0.464
0.999 197 −1143.072 1.431 −2.458 −1.027
0.9999 271 −1136.522 0.696 −2.441 −1.745
1 344 −1141.024 0.552

aThe FNOs with the largest occupation numbers are retained until
their cumulative occupation exceeds εFNO times the number of
electrons; the remaining FNOs are discarded. A threshold of one
represents the full calculation without any FNO truncation of basis
functions. The quantity “Nbf” represents the number of basis functions
after the FNO truncation.
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C. Effects of the Frozen Core Approximation. In our
calculations so far, only valence electrons were correlated. In
contrast, the small-bases studies of Hobza et al.19−21 correlated
all electrons. Therefore, it is worth checking if the conclusions
reached on the basis of the frozen-core calculations still hold
when all-electron interaction energies are considered. As the
importance of the core−core and core−valence correlation varies
widely among the atoms present in our test systems, we decided
to investigate the all-electron interaction energies for three
dimers that represent the best- and worst-case scenarios: Ne−Ne
(where the frozen-core approximation is expected to be very
accurate), He−LiH, and LiH−LiH (for which the effects of the 1s
lithium correlation can be significant). The all-electron results, in
the same format as in Tables 1−7, are presented in Tables SIII
(LiH−LiH) and SIV (He−LiH and Ne−Ne) in the Supporting
Information. In addition to the 6-31G*(0.25), 6-31G**-
(0.25,0.15), and aXZ results, we have listed the interaction
energy contributions obtained in the polarized core and valence
aug-cc-pCVXZ≡aCVXZ sequence.67

The results in Tables SIII and SIV in the Supporting
Information indicate that, as expected, the interaction energy
correction due to core−core and core−valence correlation
amounts to a small fraction of the post-CCSD(T) correction for
Ne−Ne, but completely dominates the latter for He−LiH and
LiH−LiH. However, virtually all of this correction is recovered at
the CCSD(T) level. In the largest aCVXZ basis sets considered,
the core−core and core−valence correlation contribution
constitutes 0−14% of δT and 3−25% of δ(Q). While the all-
electron δT and δ(Q) corrections should formally be computed
using the aCVXZ bases, the corresponding aXZ results turn out
to provide very reasonable approximations. Overall, the results in
Tables SIII and SIV indicate that the standard practice of treating
the (CCSD(T)-level) core correlation and (frozen-core) post-
CCSD(T) interaction energy corrections as additive24,30,37,40 is
well justified and that the basis set convergence patterns of the δT
and δ(Q) interaction energy components are very similar with and
without the frozen core approximation.

IV. SUMMARY
We have studied the basis set convergence of the post-CCSD(T)
coupled-cluster interaction energy contributions for 21 weakly
bound dimers including the smallest members of the A24 set.20

By performing CCSDT(Q) calculations in at least the aTZ basis
set, and CCSDT calculations in at least aQZ (except for one
system), we were able to assess the accuracy of small-basis results.
We found that, unfortunately, the 6-31G*(0.25) and 6-
31G**(0.25,0.15) bases suggested for post-CCSD(T) correc-
tions by Hobza et al.19−21 provide a very poor description of the
CCSDT- and CCSDT(Q)-level effects, with mean unsigned
relative errors for the δT+(Q) sum on the order of 80% for 6-
31G**(0.25,0.15) and 110% for 6-31G*(0.25) (thus, it is often
better to neglect the post-CCSD(T) terms completely than to
estimate them using these small basis sets). Upgrading the basis
set to aDZ reduces the average error to about 35%.
The overall importance of the post-CCSD(T) interaction

energy contributions varies dramatically with the size and
polarity of the monomers. In agreement with the findings of refs
19 and 21, and of earlier studies for individual complexes,22,24 we
observe that the full quadruples contribution δQ is negligible for
all dimers except for N2−N2. However, the CCSDT and
CCSDT(Q) corrections are generally of similar magnitude: the
neglect of δ(Q) is a viable approximation only for the four-electron
dimers. The total δT+(Q) effect amounts to about 1−2% of the

CCSD(T) interaction energy (less for the polar−polar dimers)
and can contribute even more to the interaction energy
anisotropy, making it critical to go up to CCSDT(Q) in the
calculations of potential energy surfaces for high-resolution
spectroscopic applications. On the average, the sum δT+(Q)
converges a little faster (in relative terms) than the δT and δ(Q)
terms separately; however, the error cancellation between δT and
δ(Q) is by no means systematic.
Overall, the basis set convergence of the δT and δ(Q)

interaction energy contributions is somewhat disappointing.
Even at the aTZ basis set level, the obtained corrections seem to
be quite far from converging (we estimate the mean accuracy of
the δT+(Q)/aTZ estimate to be about 15%). Obtaining the
benchmark δT+(Q)/CBS value to within a few percent is only
feasible for four-electron dimers (for which the convergence of
the coupled-cluster expansion is particularly fast so that δ(Q) is
much smaller than δT). Thus, as observed in some recent
potential energy surface studies,24−26 the δT+(Q) terms, even
computed in the aTZ basis or larger, remain one of the largest
sources of residual uncertainty in the final potential as long as
highly accurate CCSD(T)/CBS limits are obtained using state-
of-the-art approaches. Thus, further research into the techniques
that make high-order CC calculations more efficient is highly
desired. One of such techniques, the MP2 frozen natural orbital
approximation, was tested in this work with limited success.
While this approximation provided the only way to obtain the
δ(Q)/aQZ result for the C2v water dimer, the required FNO
thresholds were too tight to afford a significant decrease in the
size of the virtual space. As the inclusion of interaction energy
contributions through CCSDT(Q) has been integral to the
development of top-accuracy interaction potentials in recent
years, we are in a place where the δT and δ(Q) calculations are both
a necessity and a bottleneck. Thus, further improvements in the
accuracy of potential energy surfaces hinge on the design of new
accurate approximations, new basis sets specifically optimized for
the post-CCSD(T) corrections, or both.
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(54) Rolik, Z.; Kaĺlay, M. J. Chem. Phys. 2011, 134, 124111.
(55) McMahon, J. D.; Lane, J. R. J. Chem. Phys. 2011, 135, 154309.
(56) Patkowski, K. J. Chem. Phys. 2012, 137, 034103.
(57) Patkowski, K. J. Chem. Phys. 2013, 138, 154101.
(58) Burns, L. A.; Marshall, M. S.; Sherrill, C. D. J. Chem. Theory
Comput. 2014, 10, 49−57.
(59) Mentel, Ł. M.; Baerends, E. J. J. Chem. Theory Comput. 2014, 10,
252−267.
(60) Burns, L. A.; Vazquez-Mayagoitia, A.; Sumpter, B. G.; Sherrill, C.
D. J. Chem. Phys. 2011, 134, 084107.
(61) Marshall, M. S.; Burns, L. A.; Sherrill, C. D. J. Chem. Phys. 2011,
135, 194102.
(62) Rode, M.; Sadlej, J.; Moszyn ́ski, R.; Wormer, P. E. S.; van der
Avoird, A. Chem. Phys. Lett. 1999, 314, 326−332.
(63) Adamowicz, L.; Bartlett, R. J. J. Chem. Phys. 1987, 86, 6314−6324.
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