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Machines designed with new but incompatible Instruction Set Architecture (ISA) may lack proper applica-
tions. Binary translation can address this incompatibility by migrating applications from one legacy ISA to a
new one, although binary translation has problems such as code discovery for variable-length ISA and code
location issues for handling indirect branches. Dynamic Binary Translation (DBT) has been widely adopted
for migrating applications since it avoids those problems. Static Binary Translation (SBT) is a less general
solution and has not been actively researched. However, SBT performs more aggressive optimizations, which
could yield more compact code and better code quality. Applications translated by SBT can consume less
memory, processor cycles, and power than DBT and can be started more quickly. These advantages are even
more critical for embedded systems than for general systems.

In this article, we designed and implemented a new SBT tool, called LLBT, which translates ARM in-
structions into LLVM IRs and then retargets the LLVM IRs to various ISAs, including x86, x86-64, ARM,
and MIPS. LLBT leverages two important functionalities from LLVM: comprehensive optimizations and
retargetability. More importantly, LLBT solves the code discovery problem for ARM/Thumb binaries without
resorting to interpretation. LLBT also effectively reduced the size of the address mapping table, making SBT
a viable solution for embedded systems. Our experiments based on the EEMBC benchmark suite show that
the LLBT-generated code can run more than 6 x and 2.3 x faster on average than emulation with QEMU and
HQEMU, respectively.
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1. INTRODUCTION

Binary Translation (BT) techniques have been studied and developed in the past two
decades [Sites et al. 1993; Andrews and Sand 1992]. They have been widely adopted
in many different areas, such as fast simulation, software security enforcement, ap-
plication profiling [Luk et al. 2005], and system virtual machine implementations
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[Smith and Nair 2005], and they have become a standard approach for migrating
application binaries from one Instruction Set Architecture (ISA) to another. For exam-
ple, Apple’s Rosetta dynamically translates PowerPC binaries into Intel x86 binaries,
Hewlett-Packard’s Aries [Zheng and Thompson 2000] dynamically translates binaries
from PA-RISC into IA-64, and DEC developed FX!32 [Chernoff et al. 1998] to make
x 86 Win32 applications run on Windows N'T/Alpha platforms.

In embedded systems, ARM dominates the market, especially in smartphones and
tablets. In order to participate in the fast growing market, many processor vendors
such as Intel and MIPS have ported popular embedded operating systems onto their
own ISAs. However, they may not have the large number of popular applications ready
for their processors as ARM does. Consider that Android has become the worldwide
best-selling OS in the smartphone market. And with the release of Jelly Bean Gi.e.,
Android 4.1-4.3), it is further positioned to take control of the smartphone/tablet mar-
ket. Because of Android’s growth, Google has been targeting ARM-based systems for
the Android market, which has created some issues with expanding support to other
ISAs. One of the main concerns for system vendors is that many popular applications
on Android only run on ARM devices. That may seem odd since the majority of these
applications are written in Java and are supposed to be independent of specific ISAs.
However, for performance or for code reuse reasons, many applications on Google Play
contain native libraries in ARM code in their .APK packages. The dependence on such
native ARM code makes some of the popular applications unavailable for other ISAs.
Without removing dependence on ARM, system vendors with different ISAs are at a
disadvantage when competing with ARM-system vendors.

One efficient way to overcome such ISA dependence is to migrate native code to new
ISAs using BT techniques [Smith and Nair 2005]. Software-based binary translation
systems can be classified in two categories: static (SBT) and dynamic (DBT) [Cifuentes
and Malhotra 1996; Altman et al. 2000]. On desktops or workstations, most application
binary migrations are based on DBT because DBT can handle the code discovery and
the code location problems [Smith and Nair 2005]. However, DBT has its own limita-
tions, such as the overheads of runtime translation and runtime optimizations. Typical
DBT systems (e.g., QEMU [Bellard 2005]) use a basic block as a translation unit without
performing cross-block optimizations. Some performance-centric DBT systems, such as
DynamoRIO [Bruening et al. 2003] and HQEMU [Hong et al. 2012], adopt trace-based
code generation with adaptive dynamic optimizations. However, such DBT systems are
not suitable for embedded environments since most embedded applications are client-
side programs that have relatively short execution time. For short-running applica-
tions, these adaptive DBT systems may end up with either full interpretation or fast
translated code with minimal optimizations. Furthermore, start-up time and response
time are critical to interactive applications, which are common on mobile devices. In
addition to the execution time overhead, DBT systems also cause increased memory
utilization due to the code cache and the DBT system’s own code and data memory.
Although this increased memory utilization is small relative to available memory for
general-purpose computing environments, it may be extravagant and unacceptable for
embedded systems where the memory footprint is a serious concern [Guha et al. 2007,
Scott et al. 2001].

On the other hand, SBT must deal with code discovery, code location, and Self-
Modifying Code (SMC) issues effectively before being considered as a real solution.
The code discovery problem refers to the difficulty of precisely decoding source binaries
because data and instructions may be mixed in some sections of the object files. For
variable-length ISAs, such as x86, it is difficult or impossible to even identify the
beginning byte of an instruction. For fixed-length ISAs, the code discovery problem is
less serious because instruction boundaries are clearly identified. Even if some data
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sections are mistranslated into bogus code, they will not get executed at run time. The
code location problem is that, for indirect jumps, the jump destination address must be
mapped to an address in the translated code. A typical solution for SBT is to implement
an Address Mapping Table (AMT) using one entry for each source binary instruction
for runtime look-up when indirect branches are executed. This naive solution may not
be acceptable when the size of the application binary is large.

Both the code discovery and code locations problems can be less complex when deal-
ing with fixed-length instructions or variable-length instructions with low variations,
such as only 16 bits (short) and 32 bits (long). RISC processors, such as ARM, are
based on fixed-length instructions. Although ARM/Thumb interworking can be con-
sidered variable-length ISA, it supports only two sizes: 16 bits and 32 bits, so they
are easier to handle than completely variable-length ISAs, such as x86. Another well-
known limitation of SBT is its inability to handle SMC. However, SMC is not common
in embedded applications. We have analyzed over ten thousand applications down-
loaded from online software stores and failed to find any application that contained
SMC. Therefore, we believe that this well-cited problem for SBT should not prevent us
from developing useful and practical SBT tools for embedded systems. Furthermore,
techniques that statically detect the presence of SMC in a binary [Wang et al. 2008]
can be integrated in SBT tools to prevent translating SMC programs.

The LLVM compiler framework [Lattner and Adve 2004] has been used recently in
many research and industrial projects. For example, LLVM is used by Android Render-
Script to provide platform-independent APIs for high-performance 3D rendering and
computing. It is also the core of many OpenCL JIT compilers. In this work, we present
a retargetable SBT, LLBT, which leverages the LLVM infrastructure and translates
ARM-based binaries into LLVM IR, then retargets to many different ISAs supported
by LLVM, such as x86, x86-64, ARM, and MIPS. Because LLVM is already included
in Android, it is possible to integrate LLBT into Android devices to perform on-device
binary translation. This would allow Android applications with ARM native code to
run on devices with ISAs different from ARM.

In summary, this work makes the following contributions:

—We have built a robust retargetable SBT that can be used to compare the performance
of static and dynamic binary translation approaches for embedded environments. The
results show that LLBT-generated code yields more than 6 x higher performance on
small and short-running embedded benchmarks and uses less memory than QEMU,
which adopts a retargetable DBT approach. Compared to a trace-based DBT system,
LLBT still yields 2.3 x higher performance than HQEMU on the EEMBC benchmark
suite.

—LLBT solves a well-known SBT code location problem [Smith and Nair 2005]. We
have come up with innovative AMT optimizations to more effectively handle indirect
branch lookups for compiler-generated source binary code.

—In addition to translating fixed-length ISAs, such as ARM and Thumb, LLBT deals
with the code discovery problem for ARM/Thumb interworking.

—This article also provides engineering details on how to translate an instruc-
tion set into a target-independent compiler IR and how to deal with related
issues.

The rest of the article is organized as follows. Section 2 gives an overview of LLBT
and provides the details on instruction translation. Section 3 describes our solution to
the code discovery problem for ARM/Thumb interworking binaries. Section 4 presents
and discusses our results. Section 5 discusses related work, and Section 6 summarizes
and concludes.
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Fig. 1. The architecture of LLBT.

2. LLBT (AN LLVM-BASED STATIC BINARY TRANSLATOR)

LLBT is designed to meet several important requirements for embedded systems. A
retargetable BT increases the value of the tool since there are multiple ISAs used
in the mobile device market. For example, Android supports devices with ARM, x86,
and MIPS processors. However, crafting a retargetable BT from scratch requires ex-
traordinary effort. In addition to design and implementation of various optimizations,
verification would require a lengthy investment. This effort can be significantly reduced
if the BT is based on a retargetable compiler framework [Hwang et al. 2010]. LLBT
leverages the LLVM compiler infrastructure, which provides a collection of reusable
compiler components for supporting both static and dynamic compilation. It translates
source instructions into LLVM IRs and then uses LLVM to translate the IRs into target
instructions.

For applications running on embedded systems, it is important to start up fast and
consume less memory, execution cycles, and energy. To start up fast, we would like to
avoid runtime translation overhead. To be space and power efficient, we need more com-
prehensive and powerful optimization to be performed offline. All these requirements
lead us to adopt a static, rather than dynamic, translation approach. In this section, we
give an overview of the design and implementation of LLBT and provide the details on
how we translate ARM instructions into LLVM IR. In subsequent sections, we discuss
how to solve challenging problems for SBT.

2.1. Overview

LLBT takes an ARM binary in ELF format as its input. It translates ARM instructions
into LLVM IRs and invokes the LLVM tools to generate optimized code for different
target architectures. Figure 1 shows the architecture of LLBT. LLBT is not merely a
translator but a tool set that includes a disassembler, an ELF object reader, a translator,
a verifier, and runtime libraries. Like a compiler driver, LLBT provides a driver for
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define i32 @main(i32 jargc, i8#%x jargv, i8%* Jjenvp) nounwind {
entry:
; Initialize the emulated ARM registers and stack.
; Set the entry point address of the source binary to the emulated PC register.
store 132 33024, i32% JARM_pc, align 4
; Branch to the corresponding address of the source entry point.
br label %L_00008100
; Beginning of the source instruction translation.

; End of the source instruction translation.
address_translation:

; The address mapping table.
return:

%ret = load i32* %ARM_r0

ret i32 Yret

Fig. 2. An overview of LLVM IR generated by LLBT.

users to perform a number of transformations on the input binary and to invoke target
toolchains to generate the target binary. The whole translation process is described
as:

(1) An ARM input binary is disassembled to an assembly file, and then an IR converter
translates these ARM assembly instructions into LLBT’s internal IR. Some anal-
ysis and optimization passes, such as identifying PC-relative data and recovering
jump tables, will be performed by LLBT on its internal IR before generating the
corresponding LLVM instructions.

(2) The LLVM assembly generated by the LLBT translator is assembled into bitcode
representation by the LLVM assembler (11vm-as). LLVM optimization and anal-
ysis passes are selectively performed with the LLVM optimizer (opt). The LLVM
static compiler (11c) performs some target-specific optimizations and transforms
the optimized bitcode to a target assembly file.

(3) After generating a target object file, the target linker links the object files with the
original ARM’s image (excluding text sections) with a linker script. The linker script
contains information for the memory layout of the final executable. Each target bi-
nary is dynamically linked with an LLBT runtime library, which contains a system
call emulator and some helper functions for initialization, profiling, debugging, and
dynamic linking-related work.

Figure 2 gives an overview of the LLVM IR generated by the LLBT translator.
The main function contains all LLVM instructions translated from the source binary.
Before the execution jumps to the entry point (i.e., %L_00008100 in Figure 2), the main
function has to allocate local variables for the emulated ARM architectural state and
the source stack. In order to handle command-line arguments and Linux environment
variables, LLBT generates calls to helper functions to copy the addresses of arguments
and environment variables from the target stack to the source stack. The entry point
address of the source binary (i.e., 33024 in Figure 2) is extracted from the ELF header
of the source binary.

2.2. Register Mapping

The ARM user mode architectural state includes 16 general-purpose registers and 4
condition flags (i.e., Negative, Zero, Carry, and Overflow). To emulate the execution
of ARM binaries, these architecture states are maintained in memory. However, to
minimize the generated load/store instructions to access these architecture states,
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a BT usually maps such states to the physical registers on the target machine. In
the past, many direct DBT systems (e.g., IA-32 Execution Layer [Baraz et al. 2003],
IBM’s DAISY [Ebcioglu and Altman 1997], and HP’s Aries [Zheng and Thompson
2000]) adopted one-to-one register mapping approaches where one source architecture
register is mapped to a unique target register for the entire executable [Smith and
Nair 2005], especially when the number of target architecture registers is more than
the number of source architecture registers. However, this one-to-one mapping may not
work for a retargetable DBT since the number of target registers may be fewer than the
source registers. There is no information that source registers may be accessed more
frequently to get a higher priority for mapping to limited target registers. In LLBT,
we allocate architectural states as LLVM local variables and rely on LLVM’s register
promotion optimizations to promote local variables to virtual registers and LLVM’s
global register allocation to map as many virtual registers to physical target registers
as possible.

Although LLVM IR provides an infinite number of virtual registers, we cannot map
each ARM register to a unique LLVM virtual register directly. This is because the
LLVM IR is in SSA form, which means that each update to the architectural state will
end up holding the state in a new virtual register. When translating a reference to the
architecture state, LLBT must know which virtual registers are possible definitions,
and phi nodes must be properly inserted. This complicates the translation and makes
the translated code difficult to understand. Instead, LLBT declares ARM registers and
condition flags as local variables, which are allocated by the LLVM alloca instruction.
The LLVM optimizer will take care of promoting local variables from memory references
to register references and then map them to physical registers through the global
register allocation phase. In LLBT, many of the ARM registers and flags end up mapped
to the physical registers of the target machine. Comparing LLBT to a retargetable DBT,
such as the QEMU, we have observed a huge difference in the number of load/store
instructions generated in accessing the source architecture states. The just described
register mapping strategy used in LLBT contributes significantly to the performance
advantage of SBT.

2.3. Instruction Translation

In LLBT, instruction translation is a one-to-many mapping process between ARM and
LLVM instructions. The process can be divided into three phases:

(1) Conditional execution check examines the condition flags in the current pro-
gram status register (CPSR) to determine whether the instruction should be ex-
ecuted. In the ARM ISA, almost all instructions can be conditionally executed.
As shown in Figure 3(3), LLBT translates a conditional execution instruction into
three parts. The first part checks the condition flags. If the condition check succeeds,
the control will flow to its instruction body. Otherwise, the control will flow to the
next instruction. Instructions that are not conditionally executed will be omitted,
and the translated LLVM IRs will begin at their respective instruction bodies.

(2) Instruction body implements main operations of ARM instructions, including
updating the ARM architectural state and transferring control flow.

(3) Condition flag update is important for comparison instructions, such as cmn
(Compare Negative), cmp (Compare), teq (Test Equivalence), and tst (Test), and
more. In addition, some other arithmetic, logical, and move instructions with the
S qualifier [Seal 2000] will also update the condition flags. For the aforementioned
ARM instructions, LLBT generates instructions for updating the condition flags.

Figure 3(1) and Figure 3(3) show an ARM ands instruction and the correspond-
ing LLVM IRs, respectively. The detailed operations of the instruction are listed in
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(1): ARM Instructions: (3): LLVM Instructions:
andsne rl, rl1, r2 Conditional execution check.
1. L_1:
2. %0 = load i32%* YCPSR_z
(2): Operations of ANDS: 3. 1 = icmp eq 132 70, O
4. br i1 %1, label JL_2, label %L_3
Instruction Instruction body.
ANDS Rd, Rd, Rm 5. L_2:
6. %2 = load i32% JARM_ri
Operation 7. %3 = load i32* JARM_r2
Rd = Rd AND Rm 8. %4 = and 132 %2, %3
N Flag = Rd[31] 9. store 132 %4, i32x YARM_ri
C Flag = unaffected Conditional flags update.
Z Flag = if Rd == 0 10. ; Update the N flag.
then 1 else O 11. %5 = load i32% JARM_ri
V Flag = unaffected 12. %6 = lshr i32 %5, 31
13. store 132 76, i32x YCPSR_n
14. ; Update the Z flag.
15. %7 = load i32% JARM_ri
16. %8 = icmp eq i32 %7, O
17. %9 = select i1 %8, i32 1, i32 0
18. store 132 %9, i32x YCPSR_z
19. br label %L_3
The next instruction.
20. L_3:

Fig. 3. An instruction translation example. (1) An ARM ands (Logical AND) instruction with the NE (Not
Equal) condition. (2) The detailed operations of the ands instruction. (3) The corresponding LLVM instruc-
tions.

Figure 3(2). In Figure 3(3), lines 1-4 check whether the Z flag in CPSR register satisfies
the specified condition (i.e., NE). If satisfied, the instruction body (i.e., lines 5-9) will be
executed, and the condition flags will be updated (i.e., lines 10-19). Otherwise, a direct
branch that jumps to the next instruction (i.e., line 20) will be taken.

2.4. Handling Indirect Branches

Unlike direct branches, the destination address of an indirect branch is not known
until runtime. In order to handle indirect branches at translation time, LLBT prepares
an Address Mapping Table (AMT) that maps each source address of an indirect branch
destination to the corresponding destination address in the translated code and gener-
ates a jump for the indirect branch instruction. The jump instruction transfers control
to a stub that searches the AMT for the destination address. A naive AMT will be
very large because it must include an entry for every ARM instruction assuming each
instruction could be a jump target.

In order to reduce the size of the address mapping table, LLBT does not keep an entry
for every source instruction. Instead, it maintains entries for the source instructions
that can possibly be destinations of an indirect branch for compiler-generated instead
of hand-crafted binaries, which include (1) return addresses, (2) function entry points,
and (3) the addresses stored in jump tables. In this subsection, we discuss how to find
return addresses and function entry points. Handling jump tables will be discussed in
Section 3.2.

2.4.1. Return Address. Finding return addresses is relatively easy because a return
address is the address of the instruction that immediately follows a function call. We
identify function call instructions in the binaries to find the return addresses.

2.4.2. Function Entry Points. Function entry points can be found in the symbol table of
the input binary. However, if the symbol table is stripped off, LLBT uses the following
steps to locate possible function entry points:
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(1) ARM Instructions: (3) Address Mapping Table:
mov pc, r3 address_translation:
%address = load i32* %ARM_pc
(2) LLVM Instructions: switch i32 %address, label Y%not_found [
i32 32120, label %L_00007d78
%0 = load i32* J%ARM_r3 i32 32160, label %L_00007da0
store 132 %0, 1i32* %ARM_pc A
br label %address_translation i32 46360, label %L_0000b518

]
not_found:

Fig. 4. (1) An example of indirect branch instructions and (2) the corresponding LLVM instructions. (3) An
example of the address mapping table.

—Inspecting direct function call instructions. Although function calls through a
direct branch instruction, such as bl in ARM ISA, do not need to search the address
mapping table at runtime, the function address may also be a possible destination
address of other indirect function call instructions, such as blx in ARM ISA.

—Examining all the PC-relative load instructions in input binaries. If the
loaded data are an address located in the code segment, it is likely to be a function
entry address used by an indirect function call instruction.

—Examining the data section of input binaries. A common example of storing
function entry points in the data section is the virtual method table, which is a
mechanism used to support dynamic dispatch for some programming languages like
C++. Programmers may also store function entry addresses in a global function
pointer branch table for implementing dynamic dispatch.

—Collecting instruction addresses that immediately follow a return instruc-
tion. PC-relative data that immediately follow a return instruction will be skipped,
and the next instruction is considered instead.

2.4.3. Address Mapping Table (AMT). Figure 4 show an example of indirect branches and
the AMT. LLBT will update the value of ARM_pc and jump to address_translation if
the instruction is an indirect branch. The AMT is implemented by the LLVM switch
instruction. If the value of ARM_pc can be found in the switch cases, the program will
jump to the corresponding destination. Otherwise, the control flow will be transferred
to the default destination, not_found, and the control will be handed to the LLBT
runtime manager.

The LLVM switch instruction may be implemented in different ways, depending on
target machines and the instruction context. Since the AMT consists of sparse case
values, LLVM is likely to translate the switch instruction into a series of conditional
branches. Such an implementation may substantially decrease the performance of table
lookup, especially when the table is large. Therefore, to speed up the table search, we
currently use a runtime dispatcher to hash the source address (i.e., ARM_pc) to one of
many smaller AMTs.

2.4.4. Hand-crafted Assembly Code. LLBT is designed for compiler-generated code, and
thus it may have problems dealing with tricky indirect branch targets possibly set by
assembly programmers. However, as mentioned earlier, for applications downloaded
from online stores, there are two primary reasons that native code may be embedded
in the .APK packages: (1) for code reuse and (2) for high performance.

(1) Code reuse is usually the primary reason to use native code because software ven-
dors can integrate applications with their existing low-level (C/C++) APIs, which
have been fine-tuned and thoroughly tested, without developing a new one [Lee
and Jeon 2010; Kurzyniec and Sunderam 2001]. For the Android applications to
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ARM Instructions: LLVM Instructions:

bl __aeabi_idiv %0 load i32* JARM_rO

%1 = load i32% JARM_ri1
%2 = sdiv 132 %0, %1
%3 = srem i32 %0, %1

store i32 %2, i32* %ARM_rO
store 132 %3, i32* %ARM_ril

Fig. 5. Integer division helper replacement.

use those existing library functions, developers may include ARM binaries for the
Dalvik Virtual Machine (DVM) to call such functions via JNI interface. Such native
code is generated by compilers, not manually coded.

(2) Although native code might be included for performance reasons, it does not neces-
sarily need to be hand-coded assembly instructions. For example, the currently re-
leased JIT in DVM is trace-based, compiled native code (Ahead-of-Time) that could
avoid overheads of DVM interpretation and dynamic compilation from the trace-
based JIT and benefit from more aggressive method-based optimizations [Wang
et al. 2011]. Another example is that developers may write C/C++ code to manage
memory allocation/deallocation for their applications rather than relying on the
JVM garbage collector [Lee and Jeon 2010].

When LLBT disassembled the native code enclosed in 1,000 downloaded .APK pack-
ages, most of the native codes are generated by compilers. Although it is hard to tell
whether in-line assembly was used in the original source code, we believe it is very
unlikely that programmers would use in-line assembly to set arbitrary branch targets
for indirect branches. Even if native code does contain hand-crafted assembly code with
an indirect branch destination, a component in our runtime system [Shen et al. 2012]
serves as a safety net to handle such exceptional cases.

2.5. Helper Function Replacement

Because many ARMv5 implementations do not have an FPU, in order to maintain
compatibility, applications usually use a floating-point library to emulate floating-
point operations, especially for online store applications such as Android applications.
For a similar reason, because ARMv5 does not provide an integer division instruction,
compilers generate a sequence of code that invokes an external helper function for
integer division.

ARM defines a set of runtime helper functions, which are implemented in a compiler’s
runtime library (such as 1libgcc) for emulating floating-point and integer division oper-
ations. The floating-point helper functions use software floating-point calling conven-
tions even when hardware implemented floating-point instructions are available on
the target device [ARM Limited 2012]. Because these helpers are target-specific and
other CPUs may have integer division or floating-point instructions, if we migrate an
ARM binary to other targets, we have to either (1) translate each ARM instruction in
the helpers or (2) implement these helpers using target instructions. LLBT adopts the
second approach for performance. In LLBT, call instructions that invoke an external
helper will be replaced by a sequence of LLVM instructions. Figure 5 shows an ARM
instruction that invokes the integer division helper and the corresponding LLVM in-
structions that replace the helper call. After the helper function replacement, LLVM
could generate integer divide and/or FP instructions directly on the target machine.

2.6. Debugging Support and Verification

LLBT utilizes the metadata feature in LLVM to include source binary information in
the target binary. Such metadata can be used to generate debugging information in
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target binaries so that the generated target binary can be debugged with debuggers
such as gdb and 11db. For example, we can use the step command in gdb to single-
step through the execution of the source instructions in the target binary. We can
also print the values of source registers and condition flags when using gdb to debug
the target binary generated by LLBT. Furthermore, LLBT innovates on automatic
verification of the translated binary code, making the development of SBT tools less
of a nightmare. We designed and implemented a mechanism that can automatically
compare the execution steps of the source and translated programs. However, details
on how to automatic verify LLBT-generated code are outside the scope of this article
and can be found elsewhere [Chen et al. 2013a].

3. CODE DISCOVERY FOR ARM/THUMB INTERWORKING BINARIES

The code discovery problem refers to the difficulty of precisely decoding binaries be-
cause data and instructions may be mixed in the text. For ISAs with a fixed instruction
size, this is less of an issue because all instruction boundaries can be clearly identified.
Even if data were misinterpreted as instructions, they will not get executed at run-
time. The original ARM and Thumb architectures are both fixed-size ISAs where ARM
instructions are 32-bit wide and Thumb instructions are 16-bit wide. However, since
ARMT7TDMI, ARM has started supporting interworking between ARM and Thumb
states, which means ARM and Thumb instructions can coexist in the same binary.
When in the ARM state, the processor executes ARM instructions, and in the Thumb
state, the processors executes the Thumb instructions. State switching between ARM
and Thumb is based on the execution of bx and blx branch instructions. The least sig-
nificant bit of the branch address will determine whether the target instruction is ARM
or Thumb. For direct branches, the target address is known at translation time, and the
state of the branch target can be determined. However, for the indirect branches, the
branch target address can only be known at runtime, and this would prevent the SBT
from identifying states of all regions. Therefore, in ARM binaries mixed with Thumb
instructions, the disassembly results may be incorrect unless the translator knows in
which state the instruction would be executed.

Normally, the ARM toolchain generates some special symbols in ARM binaries that
can help identify ARM, Thumb, and data regions in the binaries. These symbols include
$a, $t, and $d, each representing the beginnings of ARM instruction regions, Thumb
instruction regions, and data regions, respectively. With these symbols, every word in
the identified region can be disassembled correctly. However, stripped binaries do not
have symbol tables, which means the programs lack special symbols and cannot be
separated into different regions. The following subsections describe how we solve the
code discovery problem in SBT for ARM/Thumb interworking binaries.

3.1. ARM/Thumb Region Identification

For stripped binaries where the $a/$t/$d symbols are not available, LLBT must identify
the ARM/Thumb/Data regions. LLBT requires a set of entries as the starting points
of code discovery. In a stripped executable, the program entry point is still available.
In a stripped shared object, the dynamic symbol table contains all exported function
symbols used for dynamic linking. The ARM/Thumb ISA type can be determined by
the last bit of the entry address. Zero means the entry is an ARM instruction, and
one denotes a Thumb instruction. With these entries, LLBT can discover ARM/Thumb
regions in two steps: (1) enclose a region for each entry, (2) discover more entries
through enclosed regions. The two steps are elaborated as:

(1) To enclose a region for an entry: LLBT will check each instruction that can
be reached from the entry through a sequence of straight-line code until an
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ARM Instructions: LLVM Instructions:
8lec: ldr r0, [pc, #44] store i32 54240, i32% %ARM_r0
8220: .word  0x0000d3e0

Fig. 6. An example of inlining PC-relative data.

unconditional branch is found. This branch is considered the end of the region
enclosed by the entry. Since all the instructions in the region may be executed
starting from the entry without changing states, the instructions in the same re-
gion must belong to the same ISA.

(2) To discover more entries: Once a region is discovered, the direct branches, such
as b and bl instructions, encountered in the region must jump to regions of the
same ISA. The direct branches that can change instruction sets, such as blx, can
help to find entries different from the current ISA. The two steps will be repeated
until no new entries are found.

For each of the remaining unknown regions, LLBT will translate it as both an ARM
region and a Thumb region. During runtime, one of them will be selected based on
the address of the branch register. For the discovered region, translating a single ISA
improves the time and space efficiency. We also developed some methods to analyze
the remaining unknown regions for identifying more ARM/Thumb regions [Chen et al.
2013b]. In our experiments, this code discovery method can identify more than 95% of
ARM/Thumb regions in binaries with ARM/Thumb interworking.

In addition to Thumb ISA, a new ISA of ARM, Thumb-2, was introduced in the
ARM1156 (ARMv6) core. Thumb-2, a superset of the Thumb ISA, has performance
close to ARM ISA and code density similar to Thumb ISA. Unlike Thumb ISA, which
has only 16-bit instructions, Thumb-2 allows 32-bit instructions to be mixed with
16-bit Thumb instructions without switching states. The current approach of iden-
tifying ARM/Thumb regions can also be used to identify ARM/Thumb-2 regions. In
Thumb-2, 32-bit instructions can be distinguished from 16-bit instructions based on
instruction encoding. However, the main challenge is how to separate data regions
from instruction regions. If data were misinterpreted as instructions in Thumb-2, the
instruction decoding in the following text may be wrong. The subsequent subsection
discusses the general approach used in LLBT.

3.2. Discrimination between Data and Instructions

Because LLBT is designed for translating compiler-generated code rather than hand-
crafted binaries, only limited kinds of data may be embedded in the text section. In the
mainstream compilers, such as GCC and LLVM/Clang, there are two kinds of data in
the text section: (1) PC-relative data and (2) jump tables.

3.2.1. PC-relative Data. Due to ARM’s small 8-bit immediate fields, compilers typically
place constants in a literal pool and generate a PC-relative load instruction to move
the constant from the literal pool into a register when the constant is too large to
fit in the immediate field. Once we can identify ARM/Thumb regions in the binaries,
finding PC-relative data is easy because we recognize all PC-relative load instructions.
A constant that cannot fit in the immediate field in ARM ISA might be encoded as
immediate values in the target ISA, which supports larger immediate fields. For exam-
ple, x86 supports 32-bit immediate operands. Therefore, LLBT will always copy the
corresponding constants of all PC-relative load instructions and inline them into LLVM
store instructions. This transformation, called PC-relative data inlining, provides an
opportunity for the LLVM to encode more constants in target instructions. Figure 6
shows an example of inlining PC-relative data.
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(1) ARM Instructions: (2) LLVM Instructions:

83ec: cmp r5, #4 L_000083f0:

83f0: ldrls pc, [pc, r5, 1sl #2] %0 = load i32* Y%ARM_r5

83f4: b 8454 %1 = shl i32 %0, 2

83f8: .word 0x0000840c %2 = add i32 %1, 33784 ; index + ARM_pc
83fc: .word 0x00008414 switch i32 %2, label 7%L_00008454 [
8400: .word 0x00008424 i32 33784, label %L_0000840c

8404: .word 0x00008434 i32 33788, label 7L_00008414

8408: .word 0x00008444 i32 33792, label 7L_00008424

...... i32 33796, label %L_00008434
i32 33800, label %L_00008444
]

Fig. 7. (1) An example of a jump table in ARM instructions generated by GCC and (2) the corresponding
LLVM switch instructions recovered by LLBT.

3.2.2. Jump Tables. Compilers commonly use jump tables to implement switch state-
ments. For example, Figure 7(1) shows an example of jump tables generated by GCC.
An indirect branch is used to access the branch targets from a jump table. As shown
in Figure 7(1), the destination address of each case in the switch statement is stored
as PC-relative data. The AMT generated by an SBT include each address in the jump
table because it is a branch destination of an indirect branch. However, it is possible to
revert a jump table to a switch statement.

Cifuentes [Cifuentes and Emmerik 1999] proposed a technique to recover jump tables
in a machine-independent way that can find more than 90% of addresses in jump tables.
Another common way to overcome this problem is to use patterns generated from a
particular set of compilers [De Sutter et al. 2007; Chanet et al. 2007]. In LLBT, we
employ the second approach since most applications downloaded from online stores
are developed by using official toolchains, such as Android NDK. Figure 7(2) shows
the LLVM switch instructions recovered from Figure 7(1) by LLBT. Once the jump
tables are recovered, the destination addresses of indirect branches in the AMT will
be limited to function entry points and return addresses. This would also reduce the
size of AMTs. In addition, this transformation can also speed up the AMT lookup and
enable LLVM to generate a jump table in target binaries.

3.2.3. Source Text Section Removal. With the help of PC-relative data inlining and jump
table recovery, we no longer need the text section of input binaries in the target binaries.
This is because all instructions in the text section have been translated, and all data in
the text section have been inlined/recovered to LLVM instructions. This optimization
can reduce the code size for embedded systems. In comparison, DBTs have to keep the
text section in memory because source instructions are translated at runtime.

4. EXPERIMENTAL RESULTS

We have evaluated LLBT across more than 40 industry standard benchmarks, includ-
ing SPEC CPU2006 and EEMBC 1.1. Our experiments include performance compared
to native compilation and DBT, LLVM optimization analysis, start-up time, space over-
head from AMTS, code size measurement, runtime memory overhead, and translation
time. The ARM binaries (i.e., source binaries) of the benchmarks were compiled with
the GNU GCC 4.7 compiler. The cross-compiler is configured to generate ARMv5TE
instructions with software floating-point operations since this is the default configura-
tion in Android NDK. The LLVM version used in our experiments is 3.2. The target
binaries translated by LLBT use the LLVM optimization setting in level 2 (i.e., -O2).

4.1. Binary Translation vs. Native Compilation

To show performance relative to native compilation on the target, we first compared
the source binaries and target binaries on the same architecture. We used LLBT to
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Fig. 8. Performance of LLBT on translating the EEMBC benchmark suite on an ARM926EdJ-S processor.
The performance is relative to its source binary running on the same processor. These benchmarks were
compiled by GCC with the optimization options “-00” and “-02.”

translate ARM binaries into LLVM IR and then used LLVM to compile the IR back
to the same ARM architecture (i.e., ARMV5TE). This experiment can uncover possible
significant inefficiencies introduced by the translation.

Figure 8 shows the experimental results of the EEMBC benchmark suite on an
ARM926EJ-S processor. On average (geometric mean), the translated binaries ob-
tain 90% of the original performance if the original binaries are unoptimized (-O0),
and 58% of the original performance if the original binaries are optimized (-O2). For
unoptimized binaries, LLBT outperforms original source binaries because LLBT can
perform global optimizations on LLVM IR. Surprising, translated binaries could oc-
casionally outperform natively compiled and optimized binaries. For example, on the
idctrn01 benchmark, the translated binary reached 124% performance of the original
binary.

Therefore, there may be still some optimization opportunities in the optimized binary.
Moreover, some optimizations, such as loop unrolling and loop unswitching, enabled
in LLVM’s “-02” are not enabled in GCC’s “-02.” If we compiled idctrn01 with GCC’s
optimization options “-O2 -funroll-loops,” the performance of the translated code would
be reduced to 81% of the original binary. Another reason is that LLBT translates a single
fully linked binary rather than separately compiling source files into object files and
linking the object files into a single executable. This provides additional optimization
opportunities that are only available at link time in native compilation. If we enabled
link-time optimization for GCC, the performance of natively compiled EEMBC would
improve by about 10%, on average.

Figure 9 shows another set of experimental results on an Intel Atom D2700 processor.
We compared performance of the binaries generated by LLBT with binaries that are
directly compiled from C source programs by LLVM’s clang compiler. The optimization
setting on LLBT and LLVM’s clang compiler are the same (-O2), which means the LLVM
IRs generated by LLBT and LLVM’s clang compiler apply the same optimizations and
use the same compiler backend. We used LLBT to translate the original ARM binaries
into x86 and x86-64 binaries, respectively. The performances are 55% and 60% on
average on x86 and x86-64, respectively. From Figure 9, we can see that, on x86—
64, LLBT can outperform native compilers on some benchmarks, such as bezier01,
idctrn01, and iirf1t01. The higher performance on x86-64 is because the long data
type in GCC and LLVM’s clang is 4 bytes on ARM and x86 but 8 bytes on x86-64.
Therefore, the memory footprint of natively compiled x86—64 binaries is much larger
than that of the corresponding x86—64 binaries translated from ARM.
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Fig. 9. Performance of LLBT on translating the EEMBC benchmark suite from ARM to x86 and x86-64
on an Intel Atom D2700 processor. The performance is relative to natively compiled binaries that were

compiled by LLVM’s clang compiler from C source code into x86 with “-O2 -march=atom -m32” options and
into x86-64 with “-O2 -march=atom -m64” options.
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Fig. 10.

Execution time ratio of “QEMU / LLBT” on translating the EEMBC benchmark suite from ARM to

MIPS on an Ingenic JZ4760 MIPS processor. These benchmarks were translated by LLBT with and without
the helper function replacement.

4.2. SBT vs. DBT

Next, we would like to compare the performance difference between static and dy-
namic binary translations. In this subsection, we first compare LLBT with QEMU
running the EEMBC benchmark suite on a MIPS machine. Second, since the EEMBC
benchmark suite represents small and relatively short-running applications, an eval-
uation of translating SPEC CPU2006 benchmarks on x86 is included because they
are long-running and CPU intensive. Finally, we compared LLBT with HQEMU
[Hong et al. 2012], which is a trace-based and highly optimized DBT system, on a

x86—64 machine. All benchmarks were compiled by GCC with the -O2 optimization
setting.

4.2.1. LLBT vs. QEMU on Small and Short-Running Embedded Benchmarks. Figure 10 shows
the results of the EEMBC benchmark suite running on an Ingenic JZ4760 MIPS
processor. We used LLBT to translate EEMBC from ARM to MIPS with and without
enabling the helper function replacement. We then compared the performance of
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Fig. 11. Performance of LLBT and QEMU on translating SPEC CPU2006 integer benchmarks from ARM
to x86 on an Intel Xeon E5506 processor with reference inputs. The performance is relative to natively
compiled binaries that were compiled by GCC with the -O2 option.

translated binaries with that of ARM binaries on the QEMU user mode emulator
on the same platform. The QEMU used in our experiments is version 1.2.2. The
performance comparison shows that LLBT-generated code can run 6.3x faster than
that generated by QEMU and 7.7x faster when the helper function replacement is
enabled. On some benchmarks, such as a2time01, basefp0l, iirflt01, matrix01,
and tblook01, the outstanding performance improvement from the helper function
replacement is because they are floating-point intensive and spend significant time in
floating-point helpers. When we took out the five floating-point intensive benchmarks,
the geometric means are reduced from 7.7x to 6.2x. The result is similar to disabling
floating-point function replacement. Our static translated code still runs much faster
than running on QEMU, which adopts retargetable DBT approaches.

4.2.2. LLBT vs. QEMU on Long-Running and CPU-Intensive Benchmarks. Figure 11 shows
the experimental results of SPEC CPU2006 running on an Intel Xeon E5506 processor.
The performance comparison shows that LLBT-generated code obtains 47.6% perfor-
mance of native execution on average. In addition, LLBT-generated code can still run
4.3x faster than QEMU on these large and long-running benchmarks. In Figure 11,
some benchmarks, such as 429 .mcf and 483.xalancbmk, do not have much performance
improvement compared to QEMU. The lower performance improvement on 429 .mcf is
because QEMU runs relatively fast on this benchmark. Besides, compared to natively
compiled code, the performance of LLBT-generated code is close to 90% of native execu-
tion on 429 .mcf. Therefore, there may not be much potential performance improvement
on 429.mcf for LLBT. For 483.xalancbmk, the lower performance improvement is due
to a large number of indirect branches and indirect branch destinations. In addition
to an AMT lookup, the translation of an indirect branch also involves some register
remapping. This is because an indirect branch may jump to any address in the AMT,
and the same emulated ARM registers may be allocated to different physical registers
or spilled to memory according to their usage in different basic blocks. While the table
lookup is already implemented as a kind of a hash table, the register remapping may
involve multiple memory load/store. Therefore, an indirect branch is memory intensive.
This is happening not only in SBT, but also DBT, because indirect branches in DBT
result in switching back to the runtime emulator and have to use register remapping
for the context switch.
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Fig. 12. Performance of QEMU, HQEMU, and LLBT on translating the EEMBC benchmark suite from
ARM to x86-64 on an Intel Atom D2700 processor. The performance is relative to natively compiled binaries
which were compiled by LLVM’s clang compiler from C source code into x86-64 with -O2 -march=atom
-m64’ options.

4.2.3. LLBT vs. HQEMU. HQEMU is a trace-based DBT system that runs QEMU’s
translator and an LLVM translator with a dynamic binary optimizer on different
threads. In addition to merging small translation blocks into traces, HQEMU can
also dynamically combine traces into larger ones to enlarge the optimization scope and
reduce redundant memory operations during trace transitions [Hong et al. 2012]. As
a result, HQEMU can run 2.4x faster than QEMU for the SPEC CPU2006 integer
benchmarks on translating ARM into x86—-64, while our previous experiment shows
that LLBT-generated code can run 4.3x faster than QEMU. In this subsection, we
compared LLBT with HQEMU on the EEMBC benchmark suite.

Figure 12 shows the experimental results running on an Intel Atom D2700 processor.
Since HQEMU can only perform ARM to x86-64 and x86 to x86—-64 emulation cur-
rently, we compared LLBT with HQEMU on translating ARM into x86—64. The result
of QEMU running on the same platform is also included in this figure for compari-
son. As shown in Figure 12, compared to QEMU, the trace-based code generation and
dynamic optimizations of HQEMU do improve the quality of translated code signifi-
cantly. However, the average performance of LLBT-generated code is still 2.3x faster
than HQEMU.

In summary, SBT translated binaries run faster than DBT translated binaries for
two main reasons: (1) DBT has runtime overhead, including interpretation, translation,
and runtime management. This overhead is more serious for programs with relatively
short runtimes. (2) DBT performs much less code optimization since optimization time
is part of runtime. For long-running applications, for which the translation overhead
can be amortized, the main difference in performance would be due to the quality of
translated code. QEMU does not perform cross-block optimizations, whereas LLVM is
rather strong in global optimizations. This gap can be reduced in the future because
new DBT have adopted trace-based code generation [Hong et al. 2012] and optimization
rather than the one-block-at-a-time approach used by the current QEMU.

4.3. LLVM Optimization Analysis

One of the important functionalities that LLBT leverages from LLVM is comprehen-
sive optimizations. In order to know which optimizations contributed most to the
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Fig. 13. Comparing the average performance of the EEMBC benchmark suite translated by LLBT in dif-
ferent LLVM optimization levels. opt is the LLVM optimizer, which is used to perform target-independent
analyses and optimizations. 11c is the LLVM static compiler.

performance improvement and why such optimizations were not applied in DBT, we
analyzed the optimizations invoked in LLVM. In LLVM, the optimizer (i.e., opt) and
the static compiler (i.e., 11c) can perform target-independent and target-dependent
optimizations on LLVM IR, respectively. Therefore, we analyzed them separately.

Figure 13 shows the experimental results of the EEMBC benchmark suite running
on an Intel Atom D2700 processor. The x86 binaries were translated under different
optimization levels to show the effects of LLVM optimizations. In the first configuration,
all LLVM optimizations are disabled. The average performance of the translated code is
a little slower than running on QEMU. In this configuration, the LLVM static compiler
used local register allocation and a fast instruction selection algorithm to speed up code
generation. This behavior is somewhat similar to other retargetable DBT systems, such
as Strata [Scott et al. 2003], which use a basic block as a translation unit and have to
load/store the architectural state at the translation block boundaries.

In the second configuration, we turn on the LLVM target-independent optimization
(-02) to enable several time-consuming optimizations. The result shows that LLBT
translated code can be 2.8 x faster than the QEMU runs. In the final configuration, we
turn on target-dependent optimizations and also enable global register allocation on
the whole translated IR. The performance of our SBT system can now be more than
6x faster than the QEMU run.

As aresult, LLVM contributes about 3.7x and 2.2 x performance improvement to the
target binaries on target-independent optimizations and target-dependent optimiza-
tions, respectively. After further investigation on the LLVM static compiler, we found
that the highest performance improvement on target-dependent optimizations comes
from global register allocation, which contributes about 2x performance compared
with local register allocation. On the other hand, there are many target-independent
optimizations in LLVM. In order to know which optimizations contributed most to
the performance improvement, we analyzed the optimizations executed by the LLVM
optimizer in the optimization level 2 (i.e., -O2).

Because one optimization may provide additional opportunities for other optimiza-
tions, some optimizations execute more than once. For example, in the LLVM optimizer,
the simplify the control flow graph (CFG), which performs dead code elimination and
basic block merging, may execute more than three times, and the combine redundant
instructions may execute more than four times. Running optimizations in different or-
ders may also affect the final results. Therefore, we use a subtraction mechanism that
removes optimization passes in LLVM’s optimization level 2 one by one to observe the
performance impact.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 2, Article 18, Publication date: June 2014.



18:18 B.-Y. Shen et al.

Performance deterioration (% of -O2)

Scalar Replacement of Aggregates 45.95%
Reassociate expressions
Combine redundant instructions
Delete dead loops
Simplify the CFG
Global Variable Optimizer
Unroll loops
Unswitch loops
Global Value Numbering
Sparse Conditional Constant Propagation
Canonicalize Induction Variables
Dead Store Elimination
Rotate Loops 1.59%
Jump Threading 1.51%
Aggressive Dead Code Elimination 1.2%

T T T T T T T T 1

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Fig. 14. Comparing the average performance deterioration of removing each optimization executed by the
LLVM optimizer in optimization level 2 (i.e., -O2) on the EEMBC benchmark suite. Optimizations without
noticeable performance difference are removed in this figure.

Figure 14 shows the average performance deterioration of removing each of LLVM’s
optimization on the EEMBC benchmark suite. From the figure, we can see that most
optimizations provide less than 7% improvement except the scalar replacement of ag-
gregates, which transforms each member in an aggregate type (e.g., a structure or an
array) into individual variables, if possible. This optimization can make members in
an aggregate type become the candidates for register allocation, constant propagation,
copy propagation, and other optimizations that apply to scalars [Muchnick 1998]. Be-
cause no type information of source languages is retained in the source binaries, the
LLVM IR generated by LLBT has no type information either. The scalar replacement
comes from the types for emulating the ARM architectural state. The types are as
follows:

; 16 general-purpose registers
%struct .regType = type { i32, i32, i32, i32, i32, i32, i32, i32,
i32, i32, i32, i32, i32, i32, i32, i32 }

; 4 conditional flags in CPSR
%struct .psrType = type { i32, i32, i32, i32 }

Therefore, the performance improvement from LLVM’s target-independent optimiza-
tions depends on how LLBT generates LLVM IR. The performance deterioration caused
by removing the scalar replacement of aggregates occurs because it prevents mapping
the emulated ARM architectural state to the physical registers on the target machine.
Furthermore, since LLBT translates source instructions into LLVM IRs in a single
LLVM main function, LLVM’s global register allocation can map emulated ARM regis-
ters to physical target registers according to how often the emulated ARM registers are
accessed in whole source binaries. As a result, the highest performance improvement
contributed by LLVM comes from mapping as many emulated ARM registers to phys-
ical target registers as possible and minimizing the generated load/store instructions
to access emulated ARM registers if there are not enough physical target registers.

4.4. Start-Up Time

Fast start-up is important for embedded applications. In this subsection, we compared
the start-up time of a statically translated program with dynamically translated ones.
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We used a real-world program, Lynx (version 2.8.7), as our benchmark. Lynx is a text-
based web browser that is one of the oldest web browsers still in general use and
development. In order to eliminate network latency, we measured the execution time
from beginning until opening a blank page at localhost. The dynamic translators we
use in the comparison are QEMU and HQEMU, which are an unoptimized DBT system
and an optimized trace-based DBT system, respectively. The experiment was run on
an Intel Atom D2700 processor.

The result shows that Lynx emulated by QEMU requires about 10.3x and 8.1x the
start-up time of the LLBT translated ones on x86 and x86-64, respectively. The gap
between the two is caused by the large amount of translation overhead at the beginning
of a process. After profiling on QEMU, we found that only about 20% of the start-up
time is spent in the code cache. The high translation overhead at the beginning of the
process implies that there might be no hot spots in the execution paths at the start-up
time, which is typical in client applications.

Compared to HQEMU on x86-64, the start-up time of HQEMU is worse than QEMU.
Lynx emulated by HQEMU requires about 19 x the start-up time of the LLBT translated
one. This is because there are no hot traces at the start-up of Lynx, and HQEMU
has to initialize more runtime components, such as the LLVM translator and the
dynamic binary optimizer, than does QEMU during its start-up. In addition, although
dynamic optimizations could improve the code quality for frequently executed code,
they are not free. In particular, their initial cost of profiling and learning would not
benefit applications that require fast start-up time. In embedded systems, many mobile
applications require fast start-up. DBT often takes advantage of hot spots to amortize
translation and optimization time. However, the lack of hot spots in the execution paths
makes SBT a more attractive solution when faster start-up is a major concern.

4.5. Space Overhead from Address Mapping Tables

A naive implementation of the runtime AMT could significantly increase the memory
requirement of SBT-generated code. In the worst case, every ARM instruction could be
the target of an indirect branch that would require one entry in the AMT. In LLBT, we
pay extra attention to the AMT design to minimize the memory usage. LLBT generates
a smaller table if the input ARM binaries contain symbol table information since we can
explicitly know the exact function entry points. Otherwise, if the symbol tables of the
input binaries are stripped off, LLBT has to include all possible addresses that might
be function entry points in the AMT. With the help of the symbol table information,
only 7.5% of instruction addresses on average are actually included in the AMT on the
EEMBC benchmark suite. However, when no symbol tables are available, our heuristic,
which is described in Section 2.4, will add only 2—7% more instruction addresses to the

AMT.

4.6. Code Size Measurement and Memory Overhead

Figure 15 shows the ratio of static code size of the statically translated EEMBC suite
to the native binary. The average code size, including text and data, of translated
binaries is only about 1.5x of the source binaries. On some benchmarks, such as
rgbemyO1, rgbhpgO1, and rgbyiqO1, the small size increases are because more than 98%
of code size is data, and the translated instructions increased only a little compared
to the data. In contrast, DBT systems require additional space for their own code and
data. For example, the static code size of QEMU user mode emulator (i.e., gemu-arm)
in version 1.2.2 on x86 is about 1.2Mb (dynamically linked). However, in the EEMBC
benchmark suite, the average code size of the source ARM binaries is about 21Kb, and
the average code size of the translated x86 binaries is about 32Kb.
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Fig. 15. Static code size ratio of “target binaries size/source binaries size” on translating the EEMBC bench-

mark suite from ARM to x86. The code size includes text and data in the binaries, which are dynamically
linked and stripped.

Considering the code size of shared libraries, LLBT requires a runtime library,
whereas QEMU requires source (i.e., ARM) libraries to execute dynamically linked
source binaries. The code size of the LLBT runtime library on x86 is about 17 Kbytes.
The code size of required ARM libraries, including C and math libraries, for running
EEMBC in yClibc, which is a small C library for embedded Linux, is about 268 Kbytes.
LLBT-generated code does not require source libraries because it can dynamically link
with native libraries.

Furthermore, if we compare the runtime memory overhead on running the EEMBC
benchmark suite, the maximum resident set size of LLBT-generated code is increased
by only about 6% over native runs. On the other hand, the maximum resident set
size of running on QEMU is increased by more than 400% over native runs. This
is because DBT systems require additional runtime space for themselves and have
to manage additional data structures (e.g., the code cache). Therefore, the runtime
memory requirement for applications with SBT is lower than with DBT-based systems
running the EEMBC benchmark suite. Although SBT-based systems have to translate
all source instructions into target instructions, whereas a DBT system translates only
portions that are actually executed, this may not be an alarming issue in embedded
environments since embedded applications are small in size when compared to the
space requirement of a DBT system.

In addition, we also compared the runtime memory overhead on running the SPEC
CPU2006 integer benchmarks. The results show that the percentage of the increased
memory overheads for QEMU and LLBT are almost the same. This is because the
memory requirements for SPEC benchmarks are much larger than that of EEMBC.
Therefore, the memory overheads that come from QEMU and LLBT can be ignored.
However, it is rare that an embedded application will require much memory, like the
SPEC benchmarks, which usually run on general-purpose computing environments.

4.7. Translation Time

We measured the translation time of LLBT on translating the EEMBC benchmark suite
from ARM into x86. The experiment was run on an Intel Xeon E5506 processor. The
total translation time of each benchmark is from 0.3 to 11.2 seconds. The translation
spends about 10% of time on the LLBT translator, 70% of time on LLVM optimizations
and compilation, and the rest on the target assembler and linker. Although the transla-
tion time depends on the size of source binaries and would be increased on translating
larger benchmarks, it is less an issue because the translation time in SBT is not part
of execution time, as it is in DBT.
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5. RELATED WORK

We first provide related work on SBT and DBT systems in Sections 5.1 and 5.2. Then we
describe previous research related to embedded SBT and DBT systems in Sections 5.3
and 5.4, respectively.

5.1. Static Binary Translators

FX!32 [Chernoff et al. 1998] is a dynamic profiling and static binary translation system
that translates x86 Win32 applications for Windows N'T/Alpha platforms. Initially,
x 86 applications will be interpreted to gather execution profiles. The collected profiles
will be used to guide a static binary translator to generate native Alpha code. In
subsequent runs of the application, previously generated Alpha native code could be
used. The interpreter in FX!32 plays an important role in discovering code, as well
as in handling possible SMC issues. UQBT [Cifuentes and Emmerik 2000; Cifuentes
et al. 2002b] is a retargetable SBT tool that translates source binaries into a high-level
intermediate language called HRTL. Then, HRTL is further translated into various
forms depending on the translation’s purpose.

DisIRer [Hwang et al. 2010] leverages the GCC infrastructure to build a multi-
platform static binary translator. DisIRer uses a pattern matching mechanism that
translates x86 instruction sequences into GCC’s low-level Register Transfer Language
(RTL) representation and then translates RTL into GCC’s high-level Abstract Syntax
Tree (AST). Thereafter, DisIRer can rely on GCC’s optimizer and code generator for
generating code for different target machines. The developers of DisIRer did not discuss
their work on how to handle the code discovery and code location problems, which are
particularly important for x86 architecture.

Bansal and Aiken [Bansal and Aiken 2008] applied peephole superoptimization to
binary translation. They used a peephole superoptimizer on an SBT to perform efficient
binary translation. Their approach is similar to automatic construction of peephole op-
timizers using superoptimization [Bansal and Aiken 2006]. Their results show good
performance compared with natively compiled executables. However, if source binaries
are not optimized, the performance improvement may be decreased because the peep-
hole optimization only performs over short instruction sequences. Superoptimization
is performed via exhaustive search, and the search space grows exponentially with
the peephole size. In contrast, LLBT performs LLVM optimizations and global register
allocation on LLLVM IR to generate optimized code.

5.2. Dynamic Binary Translators

Although there are many fast dynamic binary translators, they are usually machine
specific [Baraz et al. 2003; Ebcioglu and Altman 1997; Zheng and Thompson 2000].
QEMU [Bellard 2005] is a fast emulator that adopts retargetable DBT techniques. The
current versions of QEMU use Tiny Code Generator (TCG) to turn source binaries into
IRs and translate IRs into different target native code. UQDBT [Ung and Cifuentes
2000] and Walkabout [Cifuentes et al. 2002a] also support retargetability through
the use of specifications of the syntax and semantics of target machine instructions.
Strata [Scott et al. 2003] is another retargetable BT that defines a reconfigurable target
interface. In Strata, only the target-specific functions required by the target interface
need to be implemented when retargeting to a new platform.

Some DBT systems focused on minimizing the dynamic translation and runtime
optimization overhead. HP’s Aries [Zheng and Thompson 2000], IBM’s BOA [Gschwind
et al. 2000], and Walkabout [Cifuentes et al. 2002a] combined an interpreter with their
DBT systems to collect a runtime profile and limit the scope of dynamic translation
to a block or a trace of instructions. This requires additional interpretation before
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dynamic translation to identify frequently executed code. Similarly, IA-32 Execution
Layer [Baraz et al. 2003] adopted a two-phase translation design that translates cold
code first with minimal optimizations and uses instrumentations to gather profiles for
later optimizations on hot code. HQEMU [Hong et al. 2012] is a trace-based DBT system
that combines a fast translator (i.e., QEMU’s TCG) with an optimized translator based
on LLVM. It takes advantage of multicore processors to translate/optimize hot traces
on another thread. However, such DBT systems may not be suitable for short-running
or interactive applications, which require fast start-up and response time.

5.3. Static Binary Translators for Embedded Systems

Chen et al. proposed an SBT system [Chen et al. 2008] that migrates executables from
ARM to an MIPS-like architecture and applies some optimizations. Unlike LL.BT, this is
a direct ISA-to-ISA SBT. It exhibits more optimization opportunities for special cases.
However, a direct ISA-to-ISA translation lacks retargetability. For instance, it took
two weeks to port the ARM-to-x86 LLBT to ARM-to-MIPS LLBT. Furthermore, LLBT
leverages rich machine-independent and machine-dependent optimizations developed
in LLVM. It is very costly to develop, test, and verify such optimizations for a direct
ISA-to-ISA binary translator.

De Sutter et al. proposed a link-time optimizer that performs static binary rewriting
at link time for ARM executables [De Sutter et al. 2007; Chanet et al. 2007]. Although
their link-time optimizer is not a BT system, their work on code discovery is closely re-
lated to LLBT. Like the link-time optimizer, LLBT also locates compiler-generated code
(i.e., jump tables) based on pattern recognition. However, code discovery in a link-time
optimizer for ARM is much easier than SBT because it can utilize symbol informa-
tion to identify ARM instruction regions, Thumb instruction regions, and data regions.
Moreover, they can handle hand-crafted assembly by patching compilers to emit sym-
bols that identify where the manually written assembler code is located [Chanet et al.
2007]. However, this approach is not practicable for BT systems because the source
code may not be available.

5.4. Dynamic Binary Translators for Embedded Systems

Some recent research focused on improving DBT’s memory footprint and performance
for embedded systems. Guha et al. [2007] proposed techniques to reduce the size of exit
stubs in the translated code. They also proposed a dynamic trace selection strategy
and a selective cache flushing strategy to improve memory efficiency and performance
[Guha et al. 2012]. Baiocchi et al. [2008] proposed techniques to minimize the space
needed by trampolines, indirect branch handling, and context switch code in a DBT for
embedded systems with scratchpad memory. Their approach can significantly improve
performance in constrained code caches. They also developed methods to compress
the evicted code in constrained code caches to avoid re-translating previously seen
code [Baiocchi et al. 2007]. Moore et al. [2009] provided another form of code cache
management on embedded systems. Their techniques improve locality and reduce TLB
pressure by arranging data and code in code caches for the ARM architecture. However,
these DBTS’ methods address the management of constrained code caches and focus
on utilizing code caches effectively. LLBT tries to avoid runtime translation overhead
and improve the quality of generated code. There are no code cache issues for SBT.

6. CONCLUSIONS

This paper presents a retargetable SBT called LLBT, which translates ARM binaries
into LLVM IRs and leverages the LLVM to generate binaries for different target archi-
tectures. DBT is usually the first choice for migrating application binaries from one ISA
to another. However, for embedded systems, start-up time, memory usage, and power
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efficiency are important considerations. SBT can be far more efficient than DBT when
migrating short-running applications. In the past, SBT has been downplayed due to
the challenges in code discovery, code location, and issues like SMC. To migrate ARM-
based binaries to other ISAs, we have devised various techniques to effectively handle
the code discovery problem such as ARM/Thumb region identification, PC-relative data
inlining, and jump table recovery. To handle indirect branches, a large AMT is used in
SBT. Because we target compiler-generated code rather than hand-crafted binaries, we
could narrow down the possible destinations of indirect branches for inclusion in the
AMT. In addition, SMC rarely happens in the applications available in Google Play.
Hence, we believe using SBT for migrating applications under Android for embedded
systems to be a viable and practical solution.

In this article, we have discussed issues related to code generation in terms of regis-
ter mapping, conditional execution, indirect branch, and helper function replacement.
These are techniques that make LLBT an effective and efficient retargetable binary
translator. Our experiments show that LLBT-translated code can run more than 6 x and
2.3x faster than a retargetable DBT system (i.e., QEMU) and a trace-based DBT system
(i.e., HQEMU), respectively, on small and short-running embedded benchmarks. With
the help of the comprehensive optimizations in LLVM, LLBT can effectively support
migrating applications to new architectures, especially embedded environments. We
have demonstrated its retargetability by translating ARM binaries into x86, x86—64,
ARM, and MIPS on real hardware, with high migration efficiency.
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