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During a constant depthmaneuver of an autonomous underwater vehicle (AUV), its pitch attitude and stern plane deflections create
forces and moments to achieve equilibrium in the vertical plane. If an AUV has a proportional controller only in its depth control
loop, then different weights or centers of gravity will cause different steady-state depth errors at trimmed conditions. In general,
a steady-state depth error can be eliminated by adding an integral controller in the depth control loop. However, an improper
integrator may lead to a bad transient response, even though the steady-state depth error can finally be eliminated. To remove the
steady-state depth error, this study proposes methods that adjust the depth command and add a switching integral controller in the
depth control loop. Simulation results demonstrate that the steady-state depth error can be eliminated and the transient response
can be improved.

1. Introduction

Autonomous underwater vehicles (AUVs) are self-contained
vehicles with enough self-power that can carry out tasks with
minimal human interventions. In recent years, more and
more AUVs have been used for different applications, such
as research, business, and military operations.

In general, an AUV’s buoyancy is almost equal to its
weight. For safety considerations, it is common to design an
AUV to be positively buoyant to ensure that in case power
fails or amission is completed it will float to the surface. AUV
shapes are varied depending on their purposes. In general,
a slender and streamlined AUV looks like a submarine or
a torpedo. Because control surfaces are ineffective if the
forward speed of the streamlined AUV is low, the AUVmust
move forward at a sufficient speed so as to maneuver stably
and maintain suitable control performance [1]. However, if
a slender-shaped AUV is not equipped with vertical and
horizontal thrusters but equipped with a variable buoyancy
system (VBS) [2–4] or a moving mass actuator (MMA) [1],
then it can hover at low forward speeds.

The dynamics of anAUV is complex and highly nonlinear
[5], especially when subject to environmental disturbances,
such as ocean currents and waves. In conventional designs
of proportional-integral-derivative (PID) controllers, we first
simplify the nonlinear dynamics of a system to linear dynam-
ics about an operating point to obtain the transfer functions
of the system and then design the controllers. Healey and
Lienard [6] suggested that 6-degree-of-freedom (DOF) linear
equations ofmotion for an underwater vehicle can be divided
into four noninteracting (or lightly interacting) subsystems
for speed, steering, diving, and roll control. Controllers
are, in turn, designed for each subsystem separately. Fossen
[7] linearized models of the vehicles to obtain the transfer
function for steering and pitch controllers. Shi [8] introduced
an integral controller applied in a sliding mode control law
to eliminate the steady-state error. To eliminate the steady-
state error of an AUV, Hong et al. [9] proposed a dual loop
design with inner sliding mode control with an integrator
effect and outer proportional control with a feedforward
controller. Woods et al. [10] reduced the steady-state depth
error and pitch angle error by proposing a variable ballast
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system controller to shift the center of gravity along a body-
fixed axis.

In industry, PID is the most commonly used controller
scheme, which has been popularly applied in process control.
More than 95% of the control loops are of PID type [11].
In general, steady-state errors in a control system can be
eliminated by the integral controller. However, it suffers
significant loss of performance due to integrator windupwith
actuator saturation. The conventional antiwindup methods
include (1) back-calculation (in which the difference between
the actual process input and the controller output is fed
back to the integral term), which is the classical method; (2)
conditional-integration (in which the value of the integrator
is frozen when certain conditions are satisfied); (3) hybrid
scheme of back-calculation and conditional-integration [12].
The back-calculation dynamically reduces the integral term
if the output of integral controller saturates. Therefore, if
the output of integral term is smaller than the saturation
value, the antiwindup method by using the back-calculation
method will not work. However, not only integral windup
but also the output of the integral term when it is smaller
than the saturation value can cause the response overshoot.
Accordingly, for reducing the overshoot, the conditional-
integration method, which switches off the integral action
when certain conditions are satisfied, seems to be more
suitable than the back-calculation method.

Much work has been done for an AUV depth control;
however, in our impressions, there is no literature published
on eliminating the steady-state depth error for an AUV sub-
ject to different payloads. This study is primarily concerned
with the diving subsystem of an AUV and the objectives are
to improve the transient response and to eliminate the steady-
state depth error of the AUV by modifying its depth control
loop.

This paper is arranged as follows: AUVmotion modeling
in the vertical plane is presented in Section 2. AUV depth
and pitch control architecture is discussed in Section 3. Sea
trial and 6-DOF simulation results of the AUV depth control
are presented in Section 4.Modifications of the depth control
loop for eliminating the steady-state depth error are proposed
in Section 5. Simulation results are presented in Section 6.
Finally, Section 7 concludes this paper.

2. AUV Motion Modeling in Vertical Plane

As shown in Figure 1, two coordinate frames are used
to model the AUV motion, which are Earth-fixed frame
(𝑋
𝐸
, 𝑌
𝐸
, 𝑍
𝐸
) and body-fixed frame (𝑋

𝐵
, 𝑌
𝐵
, 𝑍
𝐵
).The position

(𝑥, 𝑦, 𝑧) and orientation (𝜙, 𝜃, 𝜓) of an AUV are described
with respect to the Earth-fixed frame. Euler angles including
roll 𝜙, pitch 𝜃, and yaw 𝜓 are described by defining the
orientation of the body-fixed framewith respect to the Earth-
fixed frame. The linear and angular velocities of an AUV
are described by (𝑢, V, 𝑤, 𝑝, 𝑞, 𝑟) in the body-fixed frame.
Figure 1 also shows the force andmoment diagramof anAUV
in the vertical plane. The buoyancy 𝐵 acts at the center of
buoyancy (CB).The gravitational force𝑊 acts at the center of
gravity (CG). 𝐹(𝑅) and 𝐹(𝛼) are hydrodynamic forces. 𝐹(𝑃)
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Figure 1: Reference frames and force/moment diagram of AUV.

represents a force due to the main propeller.𝑁(𝛼) represents
a moment induced from the hydrodynamics. 𝐹(𝛿

𝑠
) captures

the effects of a stern planewith deflection 𝛿
𝑠
.𝑁(𝛿
𝑠
) represents

a moment induced from deflection 𝛿
𝑠
in the stern plane. 𝛼

denotes the angle of attack.
The restoring force (𝐹

𝑥
, 𝐹
𝑦
, 𝐹
𝑧
) and moment (𝑀

𝑥
,

𝑀
𝑦
,𝑀
𝑧
) vectors of an AUV in the body-fixed coordinate

system are written as

𝑔
cg

=

[
[
[
[
[
[
[

[

𝐹
𝑥

𝐹
𝑦

𝐹
𝑧

𝑀
𝑥

𝑀
𝑦

𝑀
𝑧

]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[

[

− (𝑊 − 𝐵) sin 𝜃

(𝑊 − 𝐵) cos 𝜃 sin𝜙

(𝑊 − 𝐵) cos 𝜃 cos𝜙
(𝑦
𝑔
𝑊 − 𝑦

𝑏
𝐵) cos 𝜃 cos𝜙 − (𝑧

𝑔
𝑊 − 𝑧

𝑏
𝐵) cos 𝜃 sin𝜙

− (𝑧
𝑔
𝑊 − 𝑧

𝑏
𝐵) sin 𝜃 − (𝑥

𝑔
𝑊 − 𝑥

𝑏
𝐵) cos 𝜃 cos𝜙

(𝑥
𝑔
𝑊 − 𝑥

𝑏
𝐵) cos 𝜃 sin𝜙 + (𝑦

𝑔
𝑊 − 𝑦

𝑏
𝐵) sin 𝜃

]
]
]
]
]
]
]
]

]

.

(1)

If the gravitation and buoyancy forces are computed at CB,
(1) is reduced to

𝑔
cb

=

[
[
[
[
[
[
[

[

− (𝑊 − 𝐵) sin 𝜃

(𝑊 − 𝐵) cos 𝜃 sin𝜙

(𝑊 − 𝐵) cos 𝜃 cos𝜙
𝑦cg−cb𝑊 cos 𝜃 cos𝜙 − 𝑧cg−cb𝑊 cos 𝜃 sin𝜙

−𝑧cg−cb𝑊 sin 𝜃 − 𝑥cg−cb𝑊 cos 𝜃 cos𝜙
𝑥cg−cb𝑊 cos 𝜃 sin𝜙 + 𝑦cg−cb𝑊 sin 𝜃

]
]
]
]
]
]
]

]

, (2)
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where 𝑥cg−cb, 𝑦cg−cb, and 𝑧cg−cb denote CG distances from CB
in the body-fixed frame. When an AUV is at the trimmed
condition, that is, 𝜃 ≅ 0 and 𝜙 ≅ 0, (2) becomes

𝑔
cb

=

[
[
[
[
[
[
[

[

0

0

𝑊 − 𝐵

𝑦cg−cb𝑊

−𝑥cg−cb𝑊

0

]
]
]
]
]
]
]

]

. (3)

Equation (3) shows that the restoring force and moment in
the horizontal plane are zero, but the restoring force and
moment cannot be neglected in the vertical plane.

In the vertical plane, the restoring force andmoment of an
AUV are𝑊−𝐵 and −𝑊𝑥cg−cb, respectively. If the magnitude
of 𝐵 is greater than 𝑊, a positive net buoyancy (𝐵 − 𝑊) will
induce an upward heave motion. Thus, in order to maintain
depth, the AUV has to pitch down a certain angle nearly
equal to the angle of attack. The restoring moment acting
on the vehicle will depend on the distance between CG and
CB. Hence, different payloads will induce different force and
moment effects in the vertical plane. On the other hand, if
the net buoyancy is negative, the AUV has to pitch up at a
certain angle (nearly equal to the angle of attack) to maintain
a constant depth. As a result, regardless of whether the net
buoyancy is positive or negative, there must be force and
moment equilibrium in the vertical plane when the AUV is
at the trimmed condition.

In order to reduce the hydrodynamic resistance during
navigation, when the AUV maintains a constant depth, the
angle of attack and the stern plane deflection should be as
small as possible (so as to decrease the resistance induced
from the hydrodynamics and to increase the operation range
of the stern plane). Kinematic equations of an AUV motion
for heave (𝑧, 𝑤) and pitch (𝜃, 𝑞) are written as

𝑧̇ = −𝑢 sin 𝜃 + V cos 𝜃 sin𝜙 + 𝑤 cos 𝜃 cos𝜙,

̇𝜃 = 𝑞 cos 𝜃 − 𝑟 sin𝜙.
(4)

In order to determine a depth plane equation of motion,
all unrelated terms V, 𝑝, 𝑟, 𝑦

𝑔
, and 𝑥

𝑔
are set to zero. Using

Newton’s law, the system equations of AUVmotion for heave
𝑤 and pitch (𝜃, 𝑞) are obtained as [13]

𝑚(𝑤̇ + 𝑥cg−cb ̇𝑞 − 𝑢𝑞) = Σ𝑍,

𝐼
𝑦

̇𝑞 + 𝑚 (𝑢̇𝑧cg−cb + 𝑥cg−cb (𝑤 − 𝑢𝑞)) = Σ𝑀,

(5)

where

Σ𝑍 = 𝑍
𝑤̇
𝑤̇ + 𝑍

𝑤
𝑤 + 𝑍

̇𝑞
̇𝑞 + 𝑍
𝑞
𝑞 + 𝑍
𝛿
𝑠

𝛿
𝑠

+ (𝑊 − 𝐵) cos 𝜃 cos𝜙,
(6)

Σ𝑀 = 𝑀
𝑤̇
𝑤̇ + 𝑀

𝑤
𝑤 + 𝑀

̇𝑞
̇𝑞 + 𝑀
𝑞
𝑞 + 𝑀

𝛿
𝑠

𝛿
𝑠

− (𝑧
𝑔
𝑊 − 𝑧

𝑏
𝐵) sin 𝜃

− (𝑥
𝑔
𝑊 − 𝑥

𝑏
𝐵) cos 𝜃 cos𝜙 + 𝑀(𝐹th) ,

(7)

𝑀(𝐹th) = 𝐹th (𝑧th cos 𝜃th cos𝜓th + 𝑥th sin 𝜃th) , (8)

where 𝑀(𝐹th) is a moment induced from 𝐹th, which denotes
propulsion from propellers. 𝜃th and 𝜓th denote propulsion
inclination angles with respect to pitch and yaw in the body-
fixed frame, respectively. 𝑥th and 𝑧th denote acting positions
of propulsion in the body-fixed frame.

It is difficult to design the controller directly from the
above equations because the dynamic equations of an AUV
are nonlinear and coupled. Therefore, it is necessary to
simplify them at the operating point based on assumptions,
which are as follows.

(1) TheAUVnavigates at a constant speed and depth.The
pitch angle is small enough to be ignored.

(2) The roll angle and roll angle rate are under control and
near zero, such that terms concerning rolling can be
neglected.

(3) The roll, pitch, and yaw control loops are designed to
be independent. Since AUV body is symmetric, the
products of inertia are treated as zero.

During an AUV’s constant depthmaneuver with assump-
tions of small pitch angle 𝜃 and small roll angle 𝜙, (4) can be
linearized as

𝑧̇ = −𝑢𝜃 + 𝑤,

̇𝜃 = 𝑞.
(9)

From the dynamic analysis in the vertical plane with
respect to CB and with assumptions of small pitch angle 𝜃

and small roll angle 𝜙, (6) becomes

Σ𝑍 = 𝑍
𝑤̇
𝑤̇ + 𝑍

𝑤
𝑤 + 𝑍

̇𝑞
̇𝑞 + 𝑍
𝑞
𝑞 + 𝑍
𝛿
𝑠

𝛿
𝑠
+ (𝑊 − 𝐵) . (10)

In addition, if there is no inclination of propulsion (𝜃th = 0,
𝜓th = 0, and 𝑧th = 0), (7) becomes

Σ𝑀 = 𝑀
𝑤̇
𝑤̇ + 𝑀

𝑤
𝑤 + 𝑀

̇𝑞
̇𝑞 + 𝑀
𝑞
𝑞 + 𝑀

𝛿
𝑠

𝛿
𝑠
− 𝑥cg−cb𝑊.

(11)

Assuming that 𝑊 ≅ 𝐵, 𝑥cg−cb ≅ 0, and 𝑧cg−cb ≅ 0, by
employing (10) and (11), (5) is linearized to become

𝑚(𝑤̇ − 𝑢𝑞) = 𝑍
𝑤̇
𝑤̇ + 𝑍

𝑤
𝑤 + 𝑍

̇𝑞
̇𝑞 + 𝑍
𝑞
𝑞 + 𝑍
𝛿
𝑠

𝛿
𝑠
,

𝐼
𝑦𝑦

̇𝑞 = 𝑀
𝑤̇
𝑤̇ + 𝑀

𝑤
𝑤 + 𝑀

̇𝑞
̇𝑞 + 𝑀
𝑞
𝑞 + 𝑀

𝛿
𝑠

𝛿
𝑠
.

(12)
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Figure 2: Dual loop control of an AUV for depth subsystem.

Equation (12) can be rewritten as

[
𝑤̇

̇𝑞
] = [

[

𝑏

𝑎

𝑐

𝑎
𝑒 𝑓

]

]

[
𝑤

𝑞
] + [

[

𝑑

𝑎
𝑔

]

]

𝛿
𝑠
, (13)

where

𝑎 = (𝑚 − 𝑍
𝑤̇
−

𝑍
̇𝑞
𝑀
𝑤̇

𝐼
𝑦𝑦

− 𝑀
̇𝑞

) ,

𝑏 = 𝑍
𝑤
+

𝑍
̇𝑞
𝑀
𝑤

𝐼
𝑦𝑦

− 𝑀
̇𝑞

,

𝑐 = 𝑚𝑢 +
𝑍
̇𝑞
𝑀
𝑞

𝐼
𝑦𝑦

− 𝑀
̇𝑞

+ 𝑍
𝑞
,

𝑑 =
𝑍
̇𝑞
𝑀
𝛿
𝑠

𝐼
𝑦𝑦

− 𝑀
̇𝑞

+ 𝑍
𝛿
𝑠

,

𝑒 =
1

𝐼
𝑦𝑦

− 𝑀
̇𝑞

(
𝑏𝑀
𝑤̇

𝑎
+ 𝑀
𝑤
) ,

𝑓 =
1

𝐼
𝑦𝑦

− 𝑀
̇𝑞

(
𝑐𝑀
𝑤̇

𝑎
+ 𝑀
𝑞
) ,

𝑔 =
1

𝐼
𝑦𝑦

− 𝑀
̇𝑞

(
𝑑𝑀
𝑤̇

𝑎
+ 𝑀
𝛿
𝑠

) .

(14)

Taking Laplace transforms of (12) yields

[(𝑚 − 𝑍
𝑤̇
) 𝑠 − 𝑍

𝑤
] 𝑤 (𝑠) − [𝑍

̇𝑞
𝑠 + (𝑚𝑢 + 𝑍

𝑞
)] 𝑞 (𝑠)

= 𝑍
𝛿
𝑠

𝛿
𝑠 (𝑠) ,

− [𝑀
𝑤̇
𝑠 + 𝑀

𝑤
] 𝑤 (𝑠) +[(𝐼𝑦𝑦 − 𝑀

̇𝑞
) 𝑠 − 𝑀

𝑞
] 𝑞 (𝑠) =𝑀

𝛿
𝑠

𝛿
𝑠 (𝑠) .

(15)

From (15), the AUV transfer function is expressed by

𝑞

𝛿
𝑠

(𝑠) =
𝐷𝑠 + 𝐸

𝐴𝑠2 + 𝐵𝑠 + 𝐶
, (16)

where

𝐴 = (𝑚 − 𝑍
𝑤̇
) (𝐼
𝑦
− 𝑀
̇𝑞
) − 𝑀

𝑤̇
𝑍
̇𝑞
,

𝐵 = −𝑍
𝑤
(𝐼
𝑦
− 𝑀
̇𝑞
) − 𝑀

𝑞
(𝑚 − 𝑍

𝑤̇
) − 𝑀

𝑤̇
(𝑚𝑢 + 𝑍

𝑞
)

− 𝑀
𝑤
𝑍
̇𝑞
,

𝐶 = 𝑀
𝑞
𝑍
𝑤
− 𝑀
𝑤
(𝑚𝑢 + 𝑍

𝑞
) ,

𝐷 = 𝑀
𝑤̇
𝑍
𝛿
𝑠

+ 𝑀
𝛿
𝑠

(𝑚 − 𝑍
𝑤̇
) ,

𝐸 = 𝑀
𝑤
𝑍
𝛿
𝑠

− 𝑀
𝛿
𝑠

𝑍
𝑤
.

(17)

3. AUV Depth and Pitch Control Architecture

As depicted in Figure 2, the control block diagram represents
a dual loop control methodology with an inner pitch control
loop and an outer depth control loop, which is commonly
used in AUV depth control. The depth controller generates
a desired pitch angle 𝜃

𝑐
, which becomes the input to the pitch

control loop. The pitch controller results in the stern plane
deflection 𝛿

𝑠
based on the pitch angle difference (𝜃

𝑐
− 𝜃
𝑓
).

In Figure 2, a proportional depth controller 𝑘
𝑝
is adopted

and the pitch controller can be a traditional PID controller
[9, 14] or a sliding mode controller [4, 10]. In this paper, the
pitch controller is designed with root locus and pole-zero
assignment methods [15].The pitch controller is expressed as
𝑘((𝑙𝑠 + 𝑛)/(𝑡𝑠 + ℎ)) in terms of Laplace variable 𝑠. Therefore,
the DC gain of the pitch control loop is 𝑘𝑛/ℎ.

When an AUV is at the trimmed condition, it achieves
the force and moment equilibrium in the vertical plane
under specific stern plane deflection 𝛿

𝑠
and pitch attitude 𝜃

𝑓
.

According to Figure 2, the pitch command 𝜃
𝑐
and the stern

plane deflection 𝛿sequ when trimmed can be written as

𝜃
𝑐
= 𝑘
𝑝
(depth

𝑓
− depth

𝑐
) = 𝑘
𝑝
depth

𝑒
, (18)

𝛿sequ =
𝑘𝑛

ℎ
(𝜃
𝑐
− 𝜃
𝑓
) , (19)
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where depth
𝑓
denotes the depth feedback from the depth

gauge, depth
𝑐
denotes the depth command, and depth

𝑒

denotes the depth error. From (18) and (19), one has

𝜃
𝑐

𝑘
𝑝

= depth
𝑓
− depth

𝑐
=

(𝛿sequ (ℎ/𝑘𝑛) + 𝜃
𝑓
)

𝑘
𝑝

. (20)

The ideal case in depth control is depth
𝑓
= depth

𝑐
, which

means that the steady-state error is zero; that is, 𝜃
𝑐

= 0.
𝛿sequ = (−𝜃

𝑓
) × DC gain of the pitch control loop. However,

the DC gain of the pitch control loop is constant; therefore,
when the AUV is subject to different payloads, the force and
moment equilibrium in the vertical plane is varied. Thus,
the pitch attitude and the stern plane deflection must vary
so as to make the force and moment achieve equilibrium
in the vertical plane. As shown in (19), the pitch command
and pitch attitude will determine the stern plane deflection
in equilibrium, which is needed to maintain the AUV at the
trimmed condition. Its pitch attitude is determined by the
net buoyancy and a specific stern plane deflection, which
will keep its force and moment equilibrium in the vertical
plane. Under such circumstances, the AUV is forced to keep
a constant depth with a steady-state error which can be
calculated by (20). If an AUV undergoes a constant depth
maneuver at a constant speed, the velocity and angular terms
of motion in the vertical plane are considered null. Thus,
𝑤 = 𝑤̇ = 𝑞 = ̇𝑞 = 0 and Σ𝑀 = 0. Therefore, (11) can be
rewritten as

Σ𝑀 = 𝑀
𝛿sequ

𝛿sequ − 𝑥cg−cb𝑊 = 0. (21)

Equation (21) results in

𝛿sequ =
𝑥cg−cb𝑊

𝑀
𝛿sequ

. (22)

Combining (20) and (22) leads to

depth
𝑓
− depth

𝑐
=

(((𝑥cg−cb𝑊)/𝑀
𝛿sequ

) (ℎ/𝑘𝑛) + 𝜃
𝑓
)

𝑘
𝑝

.

(23)

Therefore, the stern plane deflection at the trimming con-
dition can be determined by (22). Equation (23) shows that
𝑊 and 𝑥cg−cb affect the steady-state depth error under the
control architecture as shown in Figure 2. If 𝑊 and 𝑥cg−cb in
(22) are not altered, the steady-state error in (23) will remain
constant; that is, the AUV will keep a constant depth run
with a depth offset (depth

𝑓
− depth

𝑐
). In order to reduce the

stern plane deflection when trimmed, either 𝑊 or 𝑥cg−cb in
(22) must be altered. If 𝑊 or 𝑥cg−cb decreases, the restoring
pitch moment from the center of gravity also decreases. As a
consequence, the stern plane (22) and depth offset (23) will
decrease.

4. Sea Trial and 6-DOF Simulation
Results of AUV Depth Control

Figures 3 and 4 show the sea trial results of anAUVdeveloped
by Chung Shan Institute of Science and Technology (CSIST)
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Figure 3: Sea trial and 6-DOF simulation results of depth control of
an AUV.
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Figure 4: Sea trial and 6-DOF simulation results of depth control
of an AUV.

in April 2011. The AUV was navigated at 6.17m/s. Its depth
control architecture is shown in Figure 2 and the depth
command is 9m in this time interval. However, its actual
depth is deeper than the depth command; that is, the steady-
state depth error cannot be eliminated, which verifies that
there exists the steady-state depth error derived from the
previous section in (23). It means that the AUV is forced to
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keep force and moment equilibriums in the vertical plane
under the control architecture shown in Figure 2. The mean
stern plane deflection remains the same value as shown in
(22). Thus, the stern plane deflection seems to be stuck at
this trimming condition, and the steady-state depth error
cannot be reduced. After the sea trial, we tried to tune
the hydrodynamic coefficients and simulated the sea trial
with a 6-DOF simulation program again. Simulation results
depicted in Figures 3 and 4 show that the depth remains
deeper than the command even if time increases. Similarly,
the pitch command is also greater than the pitch angle and the
mean stern plane deflection almost keeps constant as the sea
trial result did. Figures 3 and 4 also show that the differences
between themean values of the sea trial and the 6-DOFmodel
are small. Accordingly, the phenomenon that happened in
the sea trial can reappear when using the 6-DOF simulation
program. This result validates that the 6-DOF simulation
program, taking into account AUVdynamics, is useful before
sea trials.

5. Modifications of Depth Control Loop for
Eliminating the Steady-State Depth Error

In the previous section, it has been shown that an AUV with
only a proportional‘ depth controller may generate a steady-
state depth error. In order to eliminate the steady-state error,
a common approach is adding an integrator in the depth
control loop as shown in Figure 5, where 𝑘

𝑝
is prescribed

as 2.6 to avoid overshoot in the depth response. However,
the stern plane servo may contain a relay nonlinearity, which
would cause limit cycles if an integrator is included [14] and
the control performance will be dramatically influenced by
the gain 𝑘

𝑖
of the integrator. Different 𝑘

𝑖
will yield different

depth responses. Figure 6 shows simulation results of depth
control under different 𝑘

𝑖
. This study prescribes 𝑘

𝑖
= 0.018 to

eliminate the steady-state error successfully without affecting
the transient response. But an improper 𝑘

𝑖
= 0.5 leads to

a bad transient response, which causes a large overshoot
when the AUV changes its depth. When the actual depth
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Figure 6: Depth responses of an AUV under different 𝑘
𝑖
of an

integral controller.

of the AUV is consistent with the desired depth, the pitch
command cannot be zero immediately due to the integral
term in the depth control loop. The pitch command also
cannot reverse its value immediately when the AUV crosses
the desired depth. Consequently, the pitch command will
keep its original tendency to lead to the overshoot in depth.
Therefore, it is important to use a proper 𝑘

𝑖
to reduce the

steady-state error without worsening the transient response.
In this section, two methods that modify the depth

control loop are proposed to eliminate the steady-state error.

5.1.Method 1: AlteringDepth Command fromDifferent Steady-
State Depth Errors. During an AUV’s constant depth run, it
is necessary to achieve the force and moment equilibrium in
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the vertical plane under a specific pitch attitude and stern
plane deflection. From (23), in order to reduce the steady-
state depth error, there are two ways that can be adopted by
changing the design of depth and pitch control loop. One is
keeping the depth command but changing the stern plane
deflection so as to change the force andmoment equilibrium.
However, this way cannot be done if the depth controller
𝑘
𝑝
keeps the same value and the DC gain (𝑘𝑛/ℎ) of the

depth controller is fixed. Another way is changing the depth
command.

We first define the depth error as the mean value of
depth minus the depth command. On one hand, if the
steady-state depth error is positive, it means that the AUV’s
pitch attitude and stern plane deflection make the force and
moment equilibrium in deeper water. Since the steady-state
depth error can be seen as an offset, we can deduct it from the
original depth command. The new depth command will be
thus smaller than the original. As a result, the pitch command
will increase such that the stern plane deflection will also
increase to vary the force and moment equilibriums in the
vertical plane. Finally, the AUV will ascend to a shallower
depth. On the other hand, if the steady-state depth error
is negative, it means that the AUV pitch attitude and stern
plane deflection make the force and moment equilibriums at
shallowerwater. Since the steady-state depth error can be seen
as an offset, we can again subtract it from the original depth
command and thus the new depth command will be larger
than the original one. As a consequence, the pitch command
will decrease such that the stern plane deflection will also
decrease to change the force and moment equilibrium state
in the vertical plane and the AUV will descend to a deeper
depth.

Equation (23) can be rewritten as

depth
𝑓
original − depth

𝑐
desired = depthoffset. (24)

Let

depth
𝑐
new = depth

𝑐
desired − depthoffset. (25)

Substituting (25) into (23) leads to

depth
𝑓
new = depth

𝑐
new + depthoffset

= depth
𝑐
desired − depthoffset + depthoffset

= depth
𝑐
desired.

(26)

Therefore, the new depth feedback (depth
𝑓
new) of an AUV

under the depth offset (depthoffset) deducted from the original
depth command (depth

𝑐
desired) will be equal to the desired

depth (depth
𝑐
desired) at a trimmed condition.

According to (22) and the dynamics view point, because
the weight and CG of the AUV are not varied, the pitch
attitude and the stern plane deflection will keep the same
values as before the depth command was varied. Figure 7
shows the new depth and pitch control loops. All the designs
are the same as Figure 2 except that the depth command is
changed by deducting a depth offset (depthoffset).

5.2. Method 2: Modifying Depth Control Loop by Adding a
Conditional Integrator to Pitch Command. As mentioned in
the previous section, the depth overshoot in the step response
is caused by an improper gain of the integrator in the depth
control loop. If the depth error is too large, an improper
integrator will lead to a large pitch command, which cannot
reverse immediatelywhen theAUVcrosses the desired depth.
The output of the integrator can then be assumed as a very
large value. Consequently, it will lead to a big depth overshoot
in the transient response, which requires time to return to
the desired depth. In order to improve the transient response,
we modify the acting timing of the integrator to avoid too
large output from the integral term. Instead of integrating
the depth error all the time as shown in Figure 5, Figure 8
shows that the integrator is modified to provide integral
action only inside a threshold by adding a switching action,
which switches off the integrator if the depth error exceeds
a certain threshold, that is, only “conditionally.” Hence, the
steady-state depth error can be reduced by the integral effect
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Figure 8: Dual loop control for depth subsystem of an AUV with modified integral controller added in the depth control loop.

and the depth overshoot is decreased by reducing the pitch
command contributed from the integral term. The modified
block diagram for adding a conditional integrator in the
depth control loop is depicted in Figure 8, in which the
integral term is actuated by a switch when the depth error
is equal to or less than the threshold.

6. Simulation Results

This study carries out computer simulations for a 6-DOF
AUV. Assuming that the streamlined AUV is symmetric, that
is, all the products of inertia are zero, the AUVparameters are
listed in Table 1.

In this study, only 6.17m/s is considered and all the
simulations are carried out at this speed. Assume that the
mass of the AUV is 183.6 kg. Hydrodynamic parameters used
in simulation are

𝑍
𝑤̇
= −190.64 kg, 𝑍

𝑤
= −997.32 kg/s,

𝑍
̇𝑞
= −3.86 kgm/rad, 𝑍

𝑞
= −1130.87 kgm/s rad,

𝑍
𝛿𝑠

= −1294.08 kgm/s2 rad, 𝑀
𝑤̇
= −3.86 kgm,

𝑀
𝑤
= 46.86 kgm/s, 𝑀

̇𝑞
= −88.31 kgm2/rad,

𝑀
𝑞
= −1347.87 kgm2/s rad,

(27)

𝑀
𝛿𝑠

= 1635.98 kgm2/s2 rad. (28)
From (13) and (14), the linear system of the AUV at

6.17m/s in the form of ẋ = Ax without driving inputs is
written as

[
𝑤̇

̇𝑞
] = [

−2.668 0.0828

0.3190 −7.525
] [

𝑤

𝑞
] , (29)

where

x = [
𝑤

𝑞
] , A = [

−2.668

0.3190

0.0828

−7.525
] . (30)

Table 1: AUV parameters.

Parameters Value
Length 2.75m
Buoyancy (𝐵) 208.3 kg
Center of buoyancy (𝑥cb) (from the tip of nose) 1.25m
Moment of inertia (𝐼

𝑥𝑥
) 2.636 kg⋅m2

Moment of inertia (𝐼
𝑦𝑦
) 90.89 kg⋅m2

Moment of inertia (𝐼
𝑧𝑧
) 90.89 kg⋅m2

Proportional controller (𝑘
𝑝
) 2.6

Distance between CG and CB (𝑧cg–cb) 3.5mm
Distance between CG and CB (𝑦cg–cb) 0.0mm
Operating speed 12 kn

Two symmetric positive definite matrices P and Q are
prescribed as

P = [
0.1878

0.0036

0.0036

0.0665
] , Q = [

1.0

0.0

0.0

1.0
] , (31)

where P andQ satisfy the Lyapunov equation

ATP + PA = −Q. (32)

A Lyapunov functionV for the linear system can be expressed
by

V = xTPx. (33)

Hence, the linear system is asymptotically stable.
The plant stability can also be investigated based on

the transfer function depicted in (16). The transfer function
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Figure 9: (a) Depth response of an AUV under three different payloads. (b) Pitch angle and stern plane deflection 𝛿
𝑠
of an AUV under

payload 1. (c) Pitch angle and stern plane deflection 𝛿
𝑠
of an AUV under payload 2. (d) Pitch angle and stern plane deflection 𝛿

𝑠
of an AUV

under payload 3.

(𝑞/𝛿
𝑠
)(𝑠) of the AUV at 6.17m/s is

𝑞

𝛿
𝑠

(𝑠) =
9.06𝑠 + 25.19

𝑠2 + 10.19𝑠 + 20.02
. (34)

Accordingly, the poles are −2.66 and −7.53, which are all
located in the open left-half complex plane. Therefore, this
plant in the vertical plane is strictly stable.

The pitch controller in Figure 2 is designed with root
locus and pole-zero assignment methods. The pitch con-
troller is 𝑘((𝑙𝑠 + 𝑛)/(𝑡𝑠 + ℎ)), where 𝑘 = 3.2, 𝑙 = 2.2,
𝑛 = 1.8, 𝑡 = 3.7, and ℎ = 4.1. The DC gain of the pitch
control loop is written as 𝑘𝑛/ℎ = 1.405. The value of 𝑘 will

be adjusted according to different forward speeds of the AUV
with interpolation by gain scheduling [16].

Assume that the transfer function of the pitch sensor is
(7463.89/(𝑠

2+120.95𝑠+7463.89)) (with the formof (𝑤
𝑛

2/(𝑠2+

2𝜁𝑤
𝑛
𝑠 + 𝑤

𝑛

2)), 𝑤
𝑛

= 86.39 rad/s, and 𝜁 = 0.7). Thus, the
characteristic equation of the inner closed loop is

1 + (
7.04𝑠 + 5.76

3.7𝑠 + 4.1
) (

9.06𝑠 + 25.19

𝑠2 + 10.019𝑠 + 20.02
) (

1

𝑠
)

× (
7463.89

𝑠2 + 120.95𝑠 + 746389
) = 0.

(35)
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From (35), the numerator of the characteristic equation is
written as
3.7𝑠
6
+ 488.69𝑠

5
+ 32711.05𝑠

4
+ 321297.82𝑠

3
+ 1344933.87𝑠

2

+ 2325374.93𝑠 + 1082935.8 = 0.

(36)

The stability of the control system at 6.17m/s can be
investigated by using the Routh-Hurwitz stability criterion
[15]. Routh’s array is written as

𝑠6 3.7 32711.05 1344933.87 1082935.8
𝑠5 488.69 321297.82 2325374.93 0
𝑠
4 30278.42 1327327.85 10082935.8 0
𝑠
3 299874.91 2307896.48 0
𝑠
2 1094299.16 1082935.80 0
𝑠
1 2011135.51 0
𝑠
0 1082935.8

Since there are no sign changes in the first column of this
array, the roots are all in the left-half complex plane, and the
closed loop system is stable.

In this paper, suppose that the weight and distance
between the center of gravity and center of buoyancy (𝑥cg−cb)
are varied with different payloads, which are shown in
Table 2.

Table 3 shows the depth command of the AUV. Table 4
shows the corresponding mean steady-state depth errors of
AUV under different payloads.

Figure 9(a) shows the resulting depth control perfor-
mance. Figures 9(b), 9(c), and 9(d) depict the pitch angle,
stern plane deflection, and pitch command with three dif-
ferent payloads under the same control loop as shown in

Table 2: 𝑥cg–cb and𝑚ref under different payloads.

With payload 1 With payload 2 With payload 3
𝑥cg–cb 20 −40 80
Weight (kg) 203.6 206.5 198.3

Table 3: Time variation of depth command.

Time (s) Depth command (m)
0 to 60 1.0
60 to 240 10.0
240 to 420 20.0
420 to 600 10.0

Table 4: Mean steady-state depth errors under different payloads.

Mean steady-state error (m)
With payload 1 0.09
With payload 2 −0.75
With payload 3 0.73

Figure 5. Figures 9(a) and 9(b) depict that the pitch angle is
very close to the pitch command and the steady-state depth
error is 0.09m. Figures 9(a) and 9(c) depict that the pitch
command is smaller than the pitch angle (the stern plane
deflection will be negative) and the AUV’s depth is shallower
than the depth command for 0.75m. Figures 9(a) and 9(d)
depict that the pitch command is bigger than the pitch angle
(the stern plane deflection will be positive) and the depth is
deeper than the depth command for 0.73m. It is evident that
the proportional controller ismore suitable for payload 1 than
for payload 2 and payload 3.When the AUV is in steady-state
condition, whether there exists a steady-state error or not,
there must be force and moment equilibrium in the vertical
plane.

In this section, we will demonstrate that the steady-state
performance can be improved by the methods proposed in
Section 4. The mean steady-state depth error depthoffset is
calculated at 50 s in this study.

6.1.Method 1: AlteringDepthCommand fromDifferent Steady-
State Depth Errors. From (23), it can be seen that the bigger
the 𝑘
𝑝
, the smaller the steady-state depth error. However, the

steady-state depth error still exists nomatter what value of 𝑘
𝑝

is chosen. In Figure 6, it can be seen that, nomatterwhat value
of 𝑘
𝑝
is chosen, the steady-state depth error can be finally

eliminated by modifying the depth command according to
(25). In simulation, the depth command is modified after
60 s with this method and Figure 10 shows that the steady-
state depth error is immediately eliminated under different
payloads and different 𝑘

𝑝
values.

6.2. Method 2: Modifying Depth Control Loop by Adding
a Conditional Integrator to Pitch Command. The modified
integral control loop, as shown in Figure 8, acts only when
the depth error is below a certain threshold. In simulation,
the pitch command limitation is 45 deg and the stern plane
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Figure 11: (a) Depth response of an AUV with a modified integral control loop. (b) Depth response and pitch command of an AUV with
different integrators.

deflection limitation is 18 deg. However, if the threshold is
selected smaller than the steady-state depth error, the inte-
grator will not work. Therefore, to ensure that the threshold
is selected adequately, a threshold larger than the steady-state
depth error is necessary. In this paper, we set it to be 1.2 times
the mean steady-state depth error. In simulation, the mean
steady-state depth error can be obtained at 50 s. Figure 11(a)
shows the depth response under different conditions. The
blue solid curve depicts the desired depth and the black
solid curve depicts the depth response of proportional control
(𝑘
𝑝

= 2.0) and integral control (𝑘
𝑖

= 0.5) with payload
3 under the control architecture as shown in Figure 5. The
other curves are simulated under the control architecture
as shown in Figure 8. Comparing the black solid curve and
the pink solid curve, it is obvious that the overshoot or
undershoot caused by the integrator in the black solid curve
is dramatically decreased in the pink solid curve. The other
curves show that the transient responses are improved and
the steady-state depth errors can be eliminated through the
conditional-integration, as shown in Figure 8.

Figure 11(b) depicts the depth response and pitch com-
mand of an AUV with different types of integrators. Depth
overshoot or undershoot caused by the integrator can be
dramatically reduced by a conditional integrator and the pitch
command can be reduced as well. Figure 11(b) also shows
that the pitch commands do not exceed the pitch command
limitation; this means that integral windup does not happen
during the AUV depth control. Therefore, the overshoot or
undershoot of the depth response caused by the integrator
will not be reduced if a traditional back-calculation scheme is

used in the depth control loop. Simulation results show that,
by using a conditional integrator, not only can the overshoot
be reduced but also the steady-state depth error is eliminated.

Figures 12(a) and 12(b) depict the pitch angle and the
stern plane deflection, respectively, for an AUV with the two
different methods used to eliminate the steady-state depth
error (with payload 2). The blue dashed curve depicts with a
proportional controller (𝑘

𝑝
= 2.0) only.The green solid curve

depicts the results using method 1 (𝑘
𝑝
= 2.0). The red dotted

curve shows the results from method 2 (𝑘
𝑝
= 2.0, 𝑘

𝑖
= 0.5).

Because the weight and buoyancy of the AUV are not altered,
simulation results demonstrate that the pitch angles and the
stern plane deflections remain the same, which validates (22).

7. Conclusion

In this study, two methods have been proposed to eliminate
the steady-state depth errors by modifying the depth control
loop for AUVs. The first method deducts the mean steady-
state depth error that is regarded as an offset from the
depth command. The depth response thus will not suffer
oscillatory motion due to the effect of any integrator term.
The second method uses a switching integrator to replace
a conventional integrator, which acts only when the depth
error is below a certain threshold. In this study, the threshold
is set greater than the mean depth error to ensure that
the integrator can actually act. Accordingly, overshoot or
undershoot in the transient response caused by the integral
effect can be avoided. The effectiveness of the proposed
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Figure 12: (a) Simulation results of pitch angle with differentmethods. (b) Simulation results of stern plane deflection with differentmethods.

methods considering an AUV subject to different payloads
has been validated in simulation. Its transient response can be
improved and the steady-state depth error can be eliminated
effectively.
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