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Analytical expressions for the spot size and the Kerr-lens mode-locking (LM) strength can be represented as
explicit functions of the position in the cavity, the laser power, and the stability parameter for a four-mirror
figure-Z laser resonator. The results indicate that the KLM strength achieves its maximum value at the
edge of the stability range. Self-amplitude modulation and group-velocity dispersion compensation can be
established by a prism pair. Simultaneously obtaining a large pumping efficiency and KLM is possible for
this cavity.

1. INTRODUCTION

Recently the optical Kerr effect has been used for
mode locking solid-state lasers to generate ultrashort
laser pulses. Kerr-lens mode locking (KLM), simulat-
ing fast saturable absorber action, can achieve sub-20-fs
pulses from Ti:sapphire lasers.1 '2 By maximizing self-
amplitude modulation and minimizing intracavity third-
order dispersion, Curley et al. observed the generation
of 12-fs pulses by placing a hard aperture in the short
nondispersive arm of the asymmetrical cavity.2 Several
approaches were developed to analyze KLM lasers. 3

6

An analysis3 of the power-dependent change of focal po-
sition and beam waist in a thin laser medium to the first
order of the average intracavity power also showed that
the mode-locked operation can be obtained only by place-
ment of an aperture in the short resonator arm, and the
hard-aperture KLM laser operates most efficiently near
the limits of the stable range.' A relatively symmetri-
cal figure-Z-shaped cavity was used by another group to
generate 17-fs pulses without using any aperture but us-
ing some clipping of the beam by the apexes of the prisms
in the longer resonator arm to induce self-mode locking.

Only with the approximation that the change of refrac-
tive index that is due to the optical Kerr effect is much
smaller than its unperturbed refractive index3'4 (i.e., the
intracavity power is much less than the critical power
of self-trapping) and use of the averaged beam waist
throughout the Kerr medium can the transfer matrix
be found and the q parameter be analytically solved for
the asymmetrical figure-Z cavity. However, since pre-
cise beam-spot variation throughout the Kerr medium
cannot be calculated with the averaged-beam-waist and
low-intracavity-power approximations, the optimization
of coupling between the pump and the cavity beams can-
not be achieved. Another group proposed an alternative
transfer matrix for the Kerr medium, in which the con-
cept of Gaussian beam propagation over a negative dis-
tance was introduced.5 Although this method can be ap-
plied to more general conditions than that of Refs. 3 and
4, one first has to calculate the continuous-wave (low-
power) cavity-beam waist and the spot size at the cen-

ter of the Kerr medium to obtain the transfer matrix of
the Kerr medium for mode-locking (high-power) opera-
tion. By use of the paraxial approximation and intro-
duction of the renormalized q parameter in a nonlinear
medium,7 which satisfies the free-space propagation equa-
tion, a problem involving self-focusing can be analyzed
as free-space propagation. A cavity consisting of a plane
mirror backed against a Kerr medium, a converging lens,
and another end flat mirror can be analytically described
in this manner.7

We present a fully analytic approach, based on a renor-
malized q parameter 7 that is transformed by the ABCD
law as the beam propagates in the cavity, to study a
four-mirror figure-Z laser cavity with a Kerr medium
placed between the curved-mirror pairs. With the self-
similar point of the q parameter located at one of the exit
planes of the Kerr medium, the derivation is drastically
simplified. Various optical properties, such as power-
dependent beam-spot sizes, stable conditions for KLM,
KLM strength, and optimal mode locking are analytically
investigated.

2. GENERAL FORMULATION

To develop an analytic theory of KLM in a resonator, we
use the q representation of a Gaussian beam of amplitude
AO and beam radius w, and we approximate the self-phase
shift AlD in the Kerr medium of length dz and nonlinear
refractive index n2 by a parabola:

A t = 2A n 2 Ao2 exp(-2r 2 /w 2 )dz
A

2An2A o ( w dz.A WU2J

Haus et al.7 showed that the propagation equation of 1/q
satisfies

d (1 = + K I2

and the Kerr parameter K is defined as
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Fig. 1. Four-mirror figure-Z laser cavity with a Kerr medium
of length s placed between curved mirrors. M and M4 are flat
mirrors. M2 and M3 are curved mirrors with focal length f.

K= non2,

in which P is the cavity power and no is the linear refrac-
tive index. After renormalizing the q parameter as

=Rep- + Imt F A1 , q1 qq

they find that

d I 1
dz q= q/2

which is identical to the free-space propagation equation
of 1/q. Therefore the problem involving self-focusing can
be analyzed as free-space propagation.

For precise fitting of experimental data8 an adjustable
correction factor a can be contained in Kerr parameter
K The definition of K is modified as K = P/Pcr, with
Pcr = aA2 /(8irnon2), where a is the correction factor and
Pcr is the critical power of self-trapping. Since the above
formula of critical power contains an adjustable correction
factor, the results presented here can be applied even for
high beam power (P Pcr).

The laser under consideration is a four-mirror figure-Z
cavity laser as shown in Fig. 1. The cavity consists of two
flat end mirrors (Ml and M4) and a pair of curved mirrors
(M2 and M3) with the same focal length f. A laser rod
(also a Kerr medium with nonlinear index n2) of length
s and index of refraction no is placed between the curved
mirrors. The distance between M1 and M2 (M3 and M4)
is di (d2), and the distance between M2 (M3) and end face
(could be Brewster-angle cut) I (II) of the Kerr medium
is rl (r2). The q parameter at M1 is qi jy1 = jrwl2/A,
where A is the free-space wavelength and wl the Gaussian
beam radius at the output couplers at M1.

Let the ABCD matrix propagating from Ml via M2 to
end face I be

L A 1 B1 1
C1 D1 j

and the round-trip matrix from end face II via M3 and M4
back to end face II be

L A 2 B2 1.
C2 D2 j

Using the renormalized q-parameter concept to transform
the qi parameter through the Kerr medium and the re-
quirement of self-consistence at end face II, one obtains a
quartic equation of yi 2 , i.e.,

a4(Yl2)4 + a3(y1
2)3 + a2 (y1

2 )2 + a1(y 1
2 ) + ao = 0,

where the coefficients a4, a3 , a2 , a,, and a are functions

of the Kerr medium length and the matrix elements of
the two ABCD matrices. Since a quartic equation has
analytic solutions, the KLM laser cavity can, in principle,
be described by an analytic approach.

3. RESULTS AND DISCUSSION

To simplify our discussion, we consider the case of a sym-
metrical laser cavity with r = r2 = r and di = d2 = d.
Since ql, the q parameter at M1, must be equal to q4 at
M4 because of cavity symmetry, with q = q4 = Yl =
jrwl 2 /A, the q parameter at I, qI, can be related to q1
by the linear transfer matrix. Furthermore, the renor-
malized q parameter at I, qVI, is calculated as

( j Im +1 -K
-Yi 2(f - r) + (f - d)(rf + df - rd) - jylf 2Vi7-K

Y 2(f - r)2 + (rf + df - rd)2
(1)

One can obtain q11 at output II by transforming the qj'
parameter at the input into q11' at output II by the relation
qii = q1' + s/no = qI' + L, where L = s/no is the optical
path and no the effective index of refraction.

Because of the symmetry property the imaginary parts
(beam waists) of both 1/q, and 1/q11 are equal, and their
real parts (curvatures) have opposite signs. By relating
1/qII = -Re(1/q1 ) + j Im(1/qi), one obtains an equation
involving only yl2 and simply a guadratic equation of yl2 ,
i.e.,

a(y, 2 )2 + b(y1
2 ) + C = 0, (2)

with

a= ( f-r)2 (L + 2r-2f),
b = 2(f - r)(rf + df - rd)[(L + 2r)(d - f) - 2df + f2]

+ Lf 4(1 - K),

c = (d - f)(rf + df - rd)2[(L + 2r)(d - f) - 2df]

= (d - f)2(rf + df - rd)2(L + 2r - d-f)

Before solving Eq. (2), let us consider the asymptotic
limit of low nonlinear index or low laser power, i.e., K 0.
Since the spot size is always a positive real number, the
only possible solution to yl2 for K = 0 is y

2 = (d -
f)2[2df/(d - f) - (L + 2r)]/(L + 2r - 2f). For d >
f, which is generally true for mode-locked lasers, the
stable condition of this cavity must satisfy 2f < (L +
2r) < 2df/(d - f) or 0 < 8 < [2df/(d - f)] - 2f, where
L + 2r = s/no + 2r is the effective separation of curved
mirrors and = L + 2r - 2f is defined as the stability
parameter. The stable condition also ensures that a > 0
and c < 0. It is trivial to solve the general solution to
Eq. (2) as y12 = [(b2 - 4ac)"/2 - b]/2a. We obtain that
the stable conditions are not only ac < 0 but b2 - 4ac > 0.
The former condition is equivalent to the condition for
K = 0, which regulates the lower bound of the stable
condition to be 8 > 0, and the latter condition determines
the upper limit of the stability parameter.
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Fig. 2. Calculated spot size: curve (a) at M1 and curve (b) at
M2 as functions of the stability parameter under cw operation.

After knowing Yi, we can calculate the beam radius at
M1 and the radii anywhere inside the cavity by trans-
formation by the ABCD law. For example, the spot size
y(z) at a distance z from M1 is presented as y(z) = yl[l +
(Z/yl) 2 ].

Consider that the symmetric Ti:sapphire laser has d =

85 cm, f = 5 cm, and a 9-mm-long Ti:sapphire rod as the
Kerr medium (no = 1.76 and n2 = 3 X 10-20 m2 W"', with
correction factor a 5.35 and Pcr 2.6 MW as in Ref. 8).
In the no KLM (K = 0) limit, the spot size at the output
coupler decreases monotonically as the separation of the
curved mirrors increases, as is shown in Fig. 2, curve (a)
in terms of the stability parameter. The spot size goes
to infinity when = 0 and to zero when 8 = 6.25 mm.
However, the spot size in front of the curved mirror goes
to infinity when the separation is adjusted to the edges
of the stable region [see Fig. 2, curve (b)]. The output
spot size is 1.0 mm for cw operation at the center of the
stable region ( 3 mm).

Because the efficiency of self-amplitude modulation
that is due to the optical Kerr effect is determined by
the rate of change of the spot size as the laser power
increases, we define the KLM strength4 as

F =--1 dw 8lrnon2 1 dy2

w dP K=o aA2 4 y
2 dK K=O

the stability parameter increases. To yield positive F
for KLM by insertion of an aperture at z = 80 cm, the
stability parameter range is 3 < 8 < 6.25 mm, which is
more restrictive than that of cw operation. The KLM
strength reaches a maximum of 10- W` at the edge
of the stable range, where = 6.25 mm. Since the
KLM strength achieves its maximum value at end face
I, one can insert a hard aperture close to end face I to
obtain KLM action. Instead of inserting an aperture,
we can also use the apexes of the dispersion prisms
to clip the optical beam. For instance, we can place
a prism as close to M2 as possible (say, its apex is
located at z = 80 cm), and locate the other at a dis-
tance that is adjusted to compensate for the second-
order group-velocity dispersion, e.g., 51 cm for Ref. 1.
Each apex clips the opposite side of the optical beam.
The behavior of this clipping mechanism is equiva-
lent to that of a vertical slit, and KLM action is obtained.

Since the renormalized q parameter is valid with in-
tracavity power P < Pr, Fig. 4, curve (a) shows that the
beam spot size at z = 80 cm decreases monotonically and
reaches a minimum of 1.32 mm at the cavity power near
0.83Pcr. To show how the spot size at the center of the
Kerr medium is affected by increased cavity power, Fig. 4,
curve (b) depicts the beam spot size first mildly chang-
ing from 19 to 16 Am as the cavity power varies from 0
to 0.73Pcr, then drastically increasing as a result of self-
trapping. Besides the small change (17%) of the spot

0.10

C)1
k
0

-J

0.05

0.00

-0.05

-0.10

* - (3)

The larger the F value, the larger the KLM efficiency is.
By deriving y with respect to power P (or K), we ob-
tain dyI2 /dK = (Lf4 yl 2 )/(b2 - 4ac)' 2, which is always
greater than zero. The spot size at the output coupler is
a monotonically increasing function of laser power, and
thus KLM is not attainable by insertion of an aperture at
the output coupler for this type of laser. This result con-
tradicts that for an asymmetrical cavity design,2' 4 where
the hard aperture was inserted at the output coupler. 

Since dy2 /dK = (dy2/dy12 ) (dy12 /dK), where y is the
function of yl with a Gaussian beam transformation, the
F value can be calculated throughout the laser cavity.
Figure 3 shows that the KLM strength F is a function
of the position z and the stability parameter 8. By
setting 8 = 6 mm, we can see that the KLM strength
changes rather smoothly from approximately z = 30 cm
to z = 90 cm [see Fig. 3, curve (a)]. Figure 3, curve (b)
shows that the KLM strength at z = 80 cm increases as
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Fig. 3. Curve (a) KLM strength versus position measured
from M1 at 8 = 6 mm (left vertical scale); curve (b) KLM strength
versus stability parameter calculated at z = 80 cm (right vertical
scale).
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Fig. 4. Calculated power-dependent spot size at 80 cm for M1
[curve (a) left vertical scale] and the center of Kerr medium
[curve (b) right vertical scale].
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Fig. 6. Pumping design to favor KLM operation. The pump
beam must be focused to match the cavity mode.

size and because of the symmetry of the cavity, the beam
waist is located at the center of the gain material. There-
fore the overlap of the pump and the cavity beams can be
maintained to favor mode locking, and hence the laser ef-
ficiency may be better than that of an asymmetric cavity2' 4

as long as the cavity power does not go beyond 0.73PCr.

4. PUMPING CONSIDERATIONS
In addition to the hard-aperturing effect caused by inser-
tion of an aperture into the laser cavity, a soft-aperturing
effect caused by coupling between the pump-laser beam
and the cavity laser beam also occurs in the end-pumping
KIM lasers. While hard aperturing discriminates be-
tween the round-trip losses for KLM and cw operations,
the soft aperturing then discriminates between the pump-
ing efficiencies and thus the gains for KIM and cw op-
erations. Simultaneously minimizing insertion loss and
maximizing coupling efficiency for a high-power mode will
then optimize the mode-locking operation. Therefore, for
efficient KLM action, the soft-aperturing effect must be
considered.

To allow us to consider the soft-aperturing effect, beam-
spot sizes inside the Kerr medium are calculated and
plotted in Fig. 5 for various cavity powers. We observe
that beam-spot size for higher-power modes are always
smaller than lower-power modes as long as P < 0.7 3Pcr-
When cavity power is larger than 0.73Pcr, the spot size
near the center of the Kerr medium begins to increase.
Finally, at P = Pcr, the beam propagates in a guided mode
without variations of spot size (self-trapping).

Since the threshold pump power is lower and the cou-
pling efficiency is higher with smaller pump and cavity

beam-spot sizes,9 10 one can make the spot size of the
pump beam smaller than that of the cavity beam in the
Kerr medium by properly adjusting the location and fo-
cal length of pump lens. For P < 0.73Pcr, the spot size
of the KLM mode is always smaller than the cw mode
in the Kerr medium; thus soft aperturing always favors
mode-locking operation. Precise calculation will involve
the maximization of the coupling factor Fo introduced in
Refs. 9 and 10, where

Fo = f r(x, y, z)s(x, y, z)dv,

in which r(x,y,z) and s(x,y,z) are the pump- and the
cavity-beam distribution functions, respectively, and
the integration must be carried out all over the Kerr
medium and can only be done by our approach and the
renormalized-q-parameter method.

Once the spot size of the pump-beam waist is deter-
mined, we can proceed to calculate the location and fo-
cal length of the the pump lens. Let the focal length of
the pump lens be 4; the optical length between the beam
waist and pump lens is t, as shown in Fig. 6. The pump
lens has to transform the incident pump beam of 2w, (as-
suming a plane wave) down to 2wo. Using the ABCD
law, we have

t = [o(yp -YOV,

f = (O2 + t2)/t,
where yo = nwo 2 /A and yp = mrwp 2/A. Here t must
be larger than the optical length between the beam waist
and the curved cavity mirror; i.e., the pump lens must be
located outside the curved-mirror pair. For example, let
wo = 8 um; if we use an Ar+ laser as the pump source,
A = 514.5 nm and wp = 1.1 mm (Coherent Innova 310),
then t fp = 7.13 cm.

5. CONCLUSION

In this work we have introduced a new analytic approach
based on the aberrationless theory of self-focusing to
study a four-mirror figure-Z laser cavity with a Kerr
medium placed between the curved-mirror pairs. By
proper choice of self-similar points of the q parameter
and introducing the renormalized q parameter in the
Kerr medium, with this method we reduce the solution of
a nonlinear cavity to a quartic algebraic equation of y2 .
In the symmetrical case the quartic equation is further
reduced to a quadratic equation. Analytical expressions
of the spot size and KLM strength can be represented
as explicit functions of any position, through the cav-
ity, laser power, and stability parameter for a symmetric
figure-Z laser resonator. Both hard-aperturing and soft-
aperturing effects are discussed. We conclude that in
this cavity (1) the range of stability parameters for KLM
operation is more restrictive than that of cw operation;
(2) KLM strength achieves maximum value at the edge of
stability range; (3) self-amplitude modulation and group-
velocity dispersion compensation can be established by
a prism pair; (4) simultaneously obtaining a large effi-
ciency of pumping and KLM by self-aperturing is possible
for this cavity; (5) higher pumping efficiency and lower
insertion loss can be simultaneously obtained to favor
KLM operation.
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Fig. 5. Calculated spot size versus position
medium for various cavity powers P.
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