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Abstract

This work proposes a novel approach for solving abductive reasoning problems in Bayesian networks
involving fuzzy parameters and extra constraints. The proposed method formulates abduction problems us-
ing nonlinear programming. To maximize the sum of the fuzzy membership functions subjected to various
constraints, such as boundary, dependency and disjunctive conditions, unknown node belief propagation is
completed. The model developed here can be built on any exact propagation methods, including clustering,
joint tree decomposition, etc.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Bayesian networks are widely used knowledge representation and reasoning tools for various do-
mains under uncertainty [1-7]. Since an expert system requires both predictive and diagnostic infor-
mation, two types of reasoning commonly are employed, namely deduction and abduction. Deduction
is a logical process from a hypothesis to deduce evidence where probabilistic relationships are in-
volved, and abduction is a logical process that hypothetically explains experimental observations [7].

Several methods have been developed for solving abductive reasoning problems in Bayesian
networks. Exact methods exploit the independence structure contained in the network to efficiently
propagate uncertainty [1,6,7]. Meanwhile, stochastic simulation methods provide an alternative ap-
proach suitable for highly connected networks, in which exact algorithms can be inefficient [7]. Re-
cently, search-based approximate algorithms, which search for high probability configurations through
a space of possible values, have emerged as a new alternative [8]. On the other hand, two key
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Fig. 1. (a) A Bayesian Network in Metastatic Cancer and (b) its tree structure as clustering B and C into a compound
node Z [7].

approaches have been proposed for symbolic inference in Bayesian networks, namely: the symbolic
probabilistic inference algorithm (SPI) [9] and symbolic calculations based on slight modifications
of standard numerical propagation algorithms [1,10].

The above methods have two limitations for abductive reasoning:

(1) All relevant parameters are assumed to be crisp.
(ii) Extra constraints or knowledge regarding belief propagation in Bayesian networks are difficult
to embed.

Those limitations restrict the usefulness of reasoning in Bayesian networks. First, the conditional
probabilities between a node and its parents could be fuzzy parameters because of the difficulties of
learning accurately the causal relationships among the nodes. Additionally, knowledge workers often
acquire additional information regarding inferences in Bayesian networks, particularly when facing
diverse diagnostic scenarios. This information can relate to boundary, dependency or disjunctive
conditions. The above limitations are illustrated below using an example from Pearl [7].

Metastatic cancer is a possible cause of a brain tumor and is an explanation for increased total
serum calcium. Either of these could explain a patient falling into a coma. Severe headache is
also possibly associated with a brain tumor.

Fig. 1(a) shows a Bayesian network representing the above cause and effect relationships.
Table 1 lists the causal influences in terms of conditional probability distributions. Each variable
is characterized by the probability given the state of its parents. For instance: C € {1,0} represents
the dichotomy between having a brain tumor and not having one, +c denotes the assertion C =1
or “Brain tumor is present”, and —c is the negation of +c, namely, C =0. The root node, 4, which
has no parent, is characterized by its prior probability distribution. The above information can be
used to solve the following reasoning problems.

Problem 1. Compute the posterior probability of every A, B, and C, given the conditional prob-
abilities in Table 1, and a situation involving a patient who is suffering from a severe headache
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Table 1
The associated conditional probability distribution of Fig. 1

P(+a) = 0.20

P(+b| + a) = 0.80 P(+b| — a) =020
P(+c|+a)=020 P(+c| — a)=0.05
P(+d| + b, +c¢) = 0.80 P(+d| — b,+c) = 0.80
P(+d| + b, —c) = 0.80 P(+d| — b,—c) = 0.05
P(+e| +¢)=0.80 P(4e| — ¢) = 0.60

(%)

1.0

% = P(+b| +a)
06 08 10

Fig. 2. The membership function p(x;) of xi.

(E =1) but has not fallen into a coma (D = 0); that is, compute P(a| — d,+e), P(b| —d,+e) and
P(c| —d,+e).

Current abductive reasoning methods [1,6-10] can solve Problem 1 successfully. However, if the
parameters in Table 1 are fuzzy numbers, conventional methods may have difficulty in answering
the queries. For instance, P(+b| + a) cannot be 0.8 but rather is a fuzzy number, say ¥, where
X1 = P(+b| + a), and is associated with a membership function p(%;), represented as follows (see
Fig. 2).

{1 (%) = 5(F — 0.6) — 5(|% — 0.8 + % — 0.8), 0.6<% <1,

where “| x| denotes the absolute value of a term .

The above expression and Fig. 2 mean that the interval of X; is between 0.6 and 1.0. If X; = 0.8
then u;(x;) =1, implying that ¥; = 0.8 is the most possible situation. If X; < 0.6 or x; > 1 then
w1 (x1) =0, the least-possible manifestation of X;. If X; =0.7, then p(xX;)=0.5.

Fuzzy membership functions can be expressed in various ways. For example, denote x; =
P(+d| + b,—c) and express p;(X7) as the following function (Fig. 3).

(%) = 10(F;—0.7) — 5(|%,—0.8| + £7—0.8)—5(|%,—0.85| + #,—0.85), 0.7 < %7 < 0.95.

Here p7(x;7) is a trapezoid membership function and comprises four line segments, where 0.8 < x
< 0.85 has the maximal membership. A fuzzy membership function is frequently a concave function.

This work defines the fuzzy parameters x;, i =1,2,...,8, where P(+b|+a)=2x, P(+b| —a) =1,
P(+c|+a)=3%;, P(+c| —a)=x4, P(+d|+b,+c)=35, P(+d| — b, +¢c) =X, P(+d|+ b, —c)=%7, and
P(+d| — b,—c) =xg. Table 2 lists the membership functions of the fuzzy parameters, among which
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Fig. 3. The membership function p7(x7) of x7.

Table 2
The membership functions of fuzzy probabilities

Fuzzy parameter wi(Xi) Domain of ¥;

X1 =P(+b| +a) 5(% —0.6) — 5(|x1 — 0.8] + £, — 0.8) [0.6,1]

X =P(+b| —a) 10(x> — 0.1) — 10(|%> — 0.2] + %, — 0.2) [0.1,0.3]

X3 =P(+c| +a) 10(x3 — 0.1) — 15(|%3 — 0.2] + %3 — 0.2) [0.1,0.25]

X4 =P(+c| —a) 25(x4 — 0.01) — 17.5(|%4 — 0.05] + x4 — 0.05) [0.01,0.15]

X5 =P(+d|z1) 5(Xs — 0.6) — 5(]%s — 0.8] + x5 — 0.8) [0.6, 1]

X6 = P(+d|z2) 10(x6 — 0.7) — 10(|x6 — 0.8] + X6 — 0.8) [0.7,0.9]

X7 ="P(+d|z3) 10(x7 — 0.7) — 5(|]%7 — 0.8] + %7 — 0.8) [0.7,0.95]
—5(|%7 — 0.85| + %7 — 0.85)

X3 = P(+d|zs) 25(xs — 0.01) — 12.5(|%s — 0.05| + x5 — 0.05) [0,01.09]

—25(|%s — 0.07| + %5 — 0.07)

u7(x7) and ug(Xs) are trapezoid membership functions while the remainder are triangular functions.
Next, consider Problem 2.

Problem 2. Compute the belief distributions P(a| — d,+c), P(b| — d,+c), and P(c| —d,+c), given
the fuzzy membership functions in Table 2 and some constraints related to belief propagation.

Current abductive reasoning methods have difficulties in solving Problem 2 since it involves fuzzy
information and extra constraints.

Consider abductive reasoning with constraints. For a given Bayesian network, knowledge workers
(such as clinicians) may have professional judgments regarding the features of certain nodes and the
relationships among them in particular diagnostic backgrounds. These features and relationships can
take the form of various constraints.

(1) Boundary constraints: From additional information or observations, clinicians can infer that the
posterior probability of 4 given £ =1 and D =0 should be higher than 0.1 but lower than 0.3,
which is expressed as

0.1 < P(+a| — d,+e) < 0.3. (1.1)

(i1) Functional dependency: The beliefs of certain nodes are functionally dependent. For example,
clinicians can judge that the posterior probability of B is roughly a certain multiple of that of
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A given E =1 and D =0, which is expressed as
P(+a| —d,+e) <2P(+b| —d, +e). (1.2)

(iii) Disjunctive constraints: Sometimes disjunction may occur between nodes. For example, a doctor
may estimate that either P(+a| — d,+e) or P(+b| — d,+e) is equal to or below 0.2, which is
expressed as

Either P(+a| —d,+e) <02 or P(+b| —d,+e) <0.2. (1.3)

By introducing these constraints into the reasoning system, the following problems are formulated.

Problem 2.1. Compute the belief distributions P(a| —d,+c), P(b| —d,+c), and P(c| —d,+c), given
the fuzzy membership functions in Table 2 and the following constraints.

0.1 < P(+a| —d,+e) <03,
P(+b| — d,+e) < 2P(+c| — d, +e)
Either P(+a| —d,+e) <02 or P(+b| —d,+e) <0.2.

Problem 2.1 is more complicated and difficult than Problem 1 when solved using current propa-
gation methods.

This study develops a new approach for solving Problem 2.1 based on optimization techniques.
Section 2 first presents the mathematical expressions of reasoning with fuzzy parameters as well as
the techniques for linearizing the nonlinear absolute terms. Section 3 then formulates Problem 2.1 as
a nonlinear program and introduces some constraints relating to belief propagation. Next, Section 4
illustrates several numerical examples. The final section presents some concluding remarks.

2. Posterior probabilities with fuzzy parameters

First this study reviews the conventional methods for computing the posterior probabilities with
crisp parameters. Consider the Bayesian network in Fig. 1(a) with the crisp information in Table 1.
Clustering [1,7] can transform Fig. 1(a) into an equivalent tree structure in Fig. 1(b), where nodes B
and C are collapsed into a compound node Z =B&C. Let Z ={z,22,23,24} be a set of cardinalities
of Z and zy =(+b, +c¢), zz=(—b,+c), z3=(+b, —c), and z4=(—b, —c). Moreover, let Wy denote the
state of all variables except Y; for example, Wy={(z1, —d +e),(z2, —d+e),(z3,—d +e),(z4, —d +e)}.
From Pearl [7], the value of P(y|Wy), which is the distribution of y conditioned on the value Wy,
can be calculated as below considering every instance of y.

4
P(+a|Wy) = ouP(+a) Y P(z| + a)P(—d|z)P(+elz),
i=1
4
P(—a|W,) = 04P(—a) Y P(z;| — a)P(—d|z))P(+e|z),

i=1
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1
P(+b|W5) =05y | |P(a) Y P(zi|a)P(—d|z)P(+elz:) | ,
a=0 i=1,3

1
P(=b|Ws) =05 Y |P(a) > P(zla)P(—d|z)P(+e|z)| ,

a=0 L i=24

1
P(+c|We)=ac Y |P(a) Y P(zi|a)P(—d|z)P(+elz) | ,

a=0 L i=1,2 _
1

P(—c|We)=ac Y |P(a) > Pzila)P(—d|z)P(+elz)| , (2.1)
a=0 i=34

where oy, og, and o¢ are the normalizing constant ensuring that
P(+a|Wy) + P(—a|lWy) =1,
P(+b|Wp) + P(—b|Wp) =1,

P(+c|We)+ P(—c|We)=1. (2.2)
From (2.2), then intuitively
1
T A== Z;:o P(a) Z?:l P(zi|a)P(—d|z;)P(+e|z;) (2:3)
and
2> Y P(a)P(zila)P(—d|z)P(+elz) = 1. (2.4)

The value of P(+a|W,) in (2.1) is obtained below for the data in Table 1:
P(+a|W,)=a(0.2)[(0.8)(0.2)(1 — 0.8)(0.8) + (1 — 0.8)(0.2)(1 — 0.8)(0.8)
+(0.8)(1 = 0.2)(1 —0.8)(0.6) + (1 — 0.8)(1 — 0.2)(1 — 0.05)(0.6)].
Similarly,
P(—a|Wy)=oa(1 —0.2)[(0.2)(0.05)(1 — 0.8)(0.8) + (1 — 0.2)(0.05)(1 — 0.8)(0.8)
+(0.2)(1 = 0.05)(1 — 0.8)(0.6) + (1 — 0.2)(1 — 0.05)(1 — 0.05)(0.6)].

From (2.1) and (2.3), then o =2.432, P(+a|W,)=0.097, and P(—a|W,) = 0.903.
The answers to Problem 1 are

P(a| — d,+e) = (0.097,0.903),
P(b| — d,+e) = (0.097,0.903),
P(c| — d,+e) = (0.031,0.969).
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#(X)

q 4 a3 ayds

Fig. 4. A membership function of fuzzy probability.

The following illustrates another approach for calculating the posterior probabilities with fuzzy
parameters.

Consider a membership function u(X) of ¥, as shown in Fig. 4. This piecewise linear function
generally is expressed as

si(ay — ay), a; <X < a,
waz) + s2(as — az), a» <X < as,
Wx) = q m(as) +s3(as —az), a3 <X < aa, (2.5)
wlag) + sq(as —aq), a4 <X < as,
0 elsewhere.

Computing the above expression is complex. Consequently, this work employs an efficient method
of expressing a piecewise linear function. Consider the following proposition.

Proposition 1. Let w(x) denote the membership function of fuzzy variable X, as displayed in
Fig. 4, where a;,j = 1,2,...,m represent the break points of w(x), and s;,j =1,2,...,n are the
slopes of line segments between a; and a;.,, and ((X) is the sum of absolute terms [11,12]:

~ - S; — Si—
HE) = fa) + il —an) + Y = (=g +x — ). (2:6)
j=2
Remark 1. For u(x) in (2.6), if and only if s; —s;—; < 0 for all i=2,3,...,n, then u(xX) is a concave
function.

Remark 2. Generally, a fuzzy membership function u(X) in the reasoning system is expected to be
maximized and is assumed to be a concave function.

If w(xX) in (2.5) is a concave function and is to be maximized, then the following proposition is
used for convenient linearization.
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Proposition 2. Maximizing a concave function u(x) in (2.6) requires solving the following linear
program [11,12]:

m J
o st -a 1235350 (v 1300
j=2 k=1

S.t. x+d| = ay,

x+d,+d; = a;s,

X+d]+d2+"'+dm—l Zama

O < dl < a,
O<dk71<ak_akfl, fOl’ k:2,3,...,m,
x € F(feasible set). 2.7)

Proof. Since d; < a; —aj—, then clearly x > a, — (dy+dy+ - -+ di—1 +dy) = a1 — (d1 +d, +
---+dy_1), so constraint x +d +d, + - -+ dr_» = a;— is converted by constraint x + d| + d, +
et di s+ diy = ap, for k=23,...,m. O

From Proposition 2, the concave nonlinear membership functions are transformed into equivalent
linear functions.

3. Abductive models with fuzzy parameters

Building upon Section 2, the abductive model for solving Problem 2.1 is formulated below.

Model 1.
8
max Y () (3.1)
i=1

st. (24),
0.1 < P(+a|—d,+e) <03,
P(+b| —d,+e) < 2P(+c| — d, +e),
Either P(+a| —d,+e) <02 or P(+b| —d,+e) < 0.2, (3.2)

where the objective function maximizes the sum of all fuzzy membership functions. Since (2.4) con-
tains numerous nonseparate nonlinear terms, Model 1 is a highly nonlinear and nonconvex program.
This work deals with the disjunctive constraint first and takes care of the nonlinear issue in Section 4.
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Proposition 3. A4 disjunctive constraint f(X) <0 or g(X) <0 can be expressed by the following
inequalities:

M0, — 1) < f(X) < MO, + M(1 — 0),
M0, — 1) < g(X) < MO, + M(1 — 0,),
e<0,+0, <1, (3.3)

where 0y and 0, are 0—1 variables, M is a relatively large number, and ¢ is a relatively small
positive number.

The four possible combinations of 6; and 0, can be checked as follows: (1) for 6; =1, 6, =1
the constraints are 0 < f(X) < M and 0 < g(x) < M, which are inactive constraints; (2) for 6, =0,
0, =1 then —M < f(x) <0 and 0 < g(¥) < 2M, meaning that when ¢g(X) >0, f(xX) must be 0
or less; (3) for 0, =1, 0, =0, the constraints are 0 < f(X) < 2M and —M < g(xX) < 0, which
implies that when f(x) > 0, g(X) must be 0 or less; (4) for 6; =0, 6, =0 the constraints become
—M < f(X) <M and —M < g(X) < M, which are inactive constraints. The third constraint in (3.3)
excludes the combinations ¢, =1, 6, =1 and 0; =0, 6, =0. To summarize, (3.3) implies that either
f(X) <0 or g(x) <0 must be satisfied.

4. Numerical examples

Abductive reasoning problems in certain applications are solved below using the proposed
constrained optimization approach.

Example 1. Problem 2.1 is solved using the following program:
8
max Z (X )
i=1

st () =5 — 0.6) — 5(% — 0.8] + £ — 0.8),
(%) = 10 — 0.1) — 10(|% — 0.2] + % — 0.2),
15(F) = 10(F5 — 0.1) — 15(]F5 — 0.2] + 55 — 0.2),
1a(F4) = 25(F5 — 0.01) — 17.5(]%4 — 0.05| + %4 — 0.05),
us(Fs) = 5(Fs — 0.6) — 5|5 — 0.8 + &5 — 0.8),
ws(Fs) = 10(Fs — 0.7) — 10(|Fs — 0.8] + 6 — 0.8),
(%) = 10(F; — 0.7) — 5(|%7 — 0.8 + %7 — 0.8) — 5(|%7 — 0.85] + %7 — 0.85),
ps(Fg) = 25(Fs — 0.01) — 12.5(|5 — 0.05] + 5 — 0.05)
— 25(|%5 — 0.07| + F5 — 0.07), (4.1)
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202553 (1 — %5)0.8 + 0.2(1 — %1)%3(1 — %6)0.8
10271 (1 = 53) (1 — #)0.6 +02(1 — 71) (1 — 3)(1 — 75)0.6
£ 0.8%,%4(1 — 75)0.8 + 0.8(1 — £2)%a(1 — 76)0.8
F0.8%(1 — 54) (1 — $)0.6 + 0.8(1 — %) (1 — 74) (1 — 75)0.6] = 1,
0.1 < P(+a|—d,+e) <03,
P(+b| —d,+e) < 2P(+c| — d, +e),
Either P(+a| —d,+e) < 0.2 or P(+b| —d,+e) < 0.2,
X; € F(feasible set). (4.2)

First (4.1) is linearized using Proposition 2 and then the initial program is altered into the
equivalent program as follows.

8
max Z pi(X:)
i=1

st () =S5GE — 0.6) — 2[5 — 0.8 +d)],
1) = 10(% — 0.1) — 2[10( — 0.2 + da)],
1) = 10(F; — 0.1) — 2[15(Fs — 0.2 + d3)],
1a(E) = 25(Fa — 0.01) — 2[17.5(s — 0.05 + )],
ps(Xs) = 5(xs — 0.6) — 2[5(Xs — 0.8 + ds)],
16(Fs) = 10(Fs — 0.7) — 2[10(Fs — 0.8 + d )],
1) = 107 — 0.7) — 2[5(F7 — 0.8 + do ) + 5(7 — 0.85 + dot + dn)],
1s(Fs) = 25(Fs — 0.01) — 2[12.5(F5 — 0.05 + g ) + 25(Fer — 0.07 + ds1 + o)),
X1+d; =208, 0<d; <038,
X2+d, 202, 0<

X3+d; =202, 0<

\Y

Xs+ds =005 0<ds<0.05,

\Y

Xs+ds =08, 0<ds<

\Y

Xe+de =08 0<ds<
X7+dn+dn =085 0 8, 0<dpn <005,
Xy +dg +dg, =007, 0 05, 0<dg <0.02,

(4.2) (4.3)
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Table 3
Solution table of Example 1

Objective value 3.0240

BEL(a+) 0.1058

BEL(b+) 0.20

BEL(c+) 0.10

% 0.9600 1) 0.2000
X 0.2800 W(x2) 0.2000
X3 0.2168 U(X3) 0.6643
A 0.1300 1(Zs) 0.2000
Xs 0.6400 U(Xs) 0.2000
X6 0.7200 U(X6) 0.2000
f2 0.7360 1(%7) 0.3596
X3 0.0700 U(Xs) 1.0000

To ensure belief propagation the lower bound of the membership functions is set at 0.2; that is, the
membership of every fuzzy parameter must equal or exceed 0.2, which excludes scenarios involving
poorly estimated parameters.

LINGO 8.0 solves (4.3) in less than 1 s. The solutions are oo = 2.6642 and

4
P(+a| +d,—e)=aP(+a) Y P(zi| + a)P(—d|z)P(+e|z;) = 0.1058,
i=1

P(+b|+d,—e)=a Y _ |P(a)_ P(zila)P(—d|z)P(+e|z)| =0.20,
a=0,1 i=13
+a
P(+c|+d,—e)= Y |P(@)>  P(zla)P(~d|z)P(+e|z)| =0.1.
a=0,1 i=1,2

Table 3 lists the detailed solutions.

The results of this model differ from those for Problem 1. For example, P(+a| + d,—e) changes
from 0.097 to 0.1058, P(+b|+d, —e) from 0.097 to 0.2, and P(+b|+d,—e) from 0.031 to 0.1. This
variance results from the constraints that dominate the belief propagation. Readers may have deduced
that Problem 1 can be considered a special case in which every membership of the fuzzy parameters
converges on 1. Under certain circumstances, knowledge workers may need to compromise among
diverse, even conflicting information sources, causing fuzzy parameters to differ from their most
possible values.

Example 2 (Bacterial infections). The following is another example involving urinary tract infections
simplified from Leibovici et al. [13]. From Fig. 5, this example uses a Bayesian network as the
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Patho,: Klebsiella pneuvmoniae ~ UTIL Urinary Tract Infection Sign,: Pseudomon
Patho,: Pseudomonas acruginosa Test;: grow of microorganisms in the blood  Sign,: Hematuria
Patho,: Escherichia Coli Test,: grow of microorganisms in the urine Sign,: Flank pain
Test,: nitrite test Sign,: Urinary symptoms
Sign,: Leuko

Sign,: Fever factors

Fig. 5. A Bayesian network of Urinary Tract Infection [13].

knowledge base for the bacterial infections. To ensure simplicity without loss of generality, all
random nodes are assumed to be binary and organized accordingly. Table 4 lists the conditional
probability distributions of the variables, including eight fuzzy parameters listed in Table 5. The
random nodes and their states are briefly introduced below.

Pathogens. patho;: They are microorganisms that cause urinary tract infection. This example
involves three pathogens: patho, (Klebsiella pneumoniae) patho, (Pseudomonas aeruginosa) and
pathos (Escherichia coli). The manifestation states are severe (patho; = 1) and mild
(patho; =0).

Urinary tract infection. uti: The states are severe (uti = 1) and mild (uti = 0).

Signs and symptoms of urinary tract infection. sign;: These signs are manifestations possibly
originating from uti. Fig. 2 presents six possible signs: sign; (suprapubic pain), sign, (frequent
micturition), signs (flank pain), sign, (Urinary symptoms), signs (serum albumin) and signe (fever).
The manifestation states are present (sign; = 1) and absent (sign; = 0).

Bacteriological tests. test;: test; (growth of microorganisms in the blood), test, (growth of mi-
croorganisms in the urine) and test; (nitrite test). The outcomes of bacteriological tests are positive
(test; = 1) and negative (test; =0).

Consider a scenario in which a patient is suffering frequent micturition (sign, = 1), flank pain
(sign; = 1) and urinary symptoms (signs = 1), but has not fallen into suprapubic pain (sign; = 0),
serum albumin (signs = 0) or fever (signg = 0). Moreover, the bacteriological tests display positive
results in both fest; and fest;, but negative results in zest;. The evidence set E = {e} = {sign; =0,
signy = 1,signy = 1,signg = 1,signs = 0, signe = 0, test; = 1,test; = 1,test; = 0}. The next step is to
compute the belief distribution of every patho;, patho,, pathos; and uti.
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Table 4

The conditional probability distribution of Example 2

P(+ patho,) = 0.1
P(+ pathoy) = 0.09

P(+ pathoz) = 0.09

P(+uti| + pathoi,+ pathos, + pathos) = 3
P(+uti| + pathoi, — patho,, + pathos) = X2
P(+uti| + patho\,+ patho,, — pathos) = X3
P(+uti| + pathoi, — patho,, — pathos) = %24
P(+uti| — pathoi,+ patho,, + pathos) = %»s
P(+uti| — pathoi, — patho,, + pathos) = X
P(+uti| — pathoi,+ patho,, — pathos) = %27
P(+uti| — pathoi, — patho,, — pathos) = X3

P(+signi| + uti) = 0.6
P(+signy| + uti) = 0.9
P(+signs| + uti) = 0.6
P(+signs| + uti) = 0.8

P(+signi| — uti) = 0.01
P(+signy| — uti) = 0.10
P(+signs| — uti) = 0.05
P(+signs| — uti) = 0.05

P(+signs| + uti) = 0.6
P(+signg| + uti) = 0.7

P(+signs| — uti) = 0.10
P(+signg| — uti) = 0.01

P(+test;| + pathoy) =0.7
P(+test;| + pathor) =0.9
P(+test;| + pathos) = 0.8

P(~+testj| — pathoi) = 0.1
P(+test;| — pathoy) = 0.1
P(+test;| — pathos) =0.2

Table 5
The membership functions of fuzzy probabilities in Example 2

Fuzzy parameter H2i(X2i) Domain of X
X21 5(%21 — 0.6) — 5(|x21 — 0.8] + %21 — 0.8) [0.6,1]

X2 10(X2 — 0.7) — 10(|%22 — 0.8] 4 %22 — 0.2) [0.7,0.9]

X2 20(¥23 — 0.7) — 20(|%23 — 0.75] + 23 — 0.75) [0.7,0.8]

X24 10(X24 — 0.5) — 10(| %24 — 0.7| 4 24 — 0.6) [0.5,0.7]

X25 10(x25 — 0.7) — 10(|xX25 — 0.8] + %25 — 0.8) [0.7,0.9]

X26 20(x26 — 0.55) — 20(|x26 — 0.6] 4 K26 — 0.6) [0.55,0.65]
X27 10(X27 — 0.4) — 10(|%27 — 0.5 4 27 — 0.5) [0.4,0.6]

Xog 10025 ) — 100( |25 — 0.01] 4- %25 — 0.01) [0,0.02]

Based on observation, the clinician inferred that the belief that pathogen 3 is active ranges from
0.3 to 0.5. Moreover, since pathogens 1 and 2 are complementary, either pathogen 1 or 2 has the
belief of 0.5 to be active. The following implements the above problem as the following model.

8
max Z Hoi(X2;)

i=1
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st. po1(F21) = 5(F21 — 0.6) — 5(|¥21 — 0.8|%21 — 0.8),
15(Fra) = 10(2s — 0.7) — 10(|Z22 — 0.8] + Frp — 0.8),
123(X23) = 20(xX23 — 0.7) — 20(|xX23 — 0.75] + X3 — 0.75),
f24(¥24) = 10(X24 — 0.5) — 10(|¥24 — 0.6] + X24 — 0.6),
Ha5(Xa5) = 10(Xp5 — 0.7) — 10(|x25 — 0.8] + %25 — 0.8),
126(F26) = 20(Fag — 0.55) — 20(|firs — 0.6] + Frs — 0.6),
17 (F27) = 10(F27 — 0.4) — 10([F27 — 0.5] + 27 — 0.5),
fos(¥23) = 100(F25 — 0) — 100([¥25 — 0.01] + X5 — 0.01),

DIDIDIDY

pathoy pathoy pathos uti

P( patho,)P( patho,)P( pathos)

x P(uti| patho,, patho,, pathos) HP(sign‘,-|path01, patho,, pathos)
J

X HP(testk\pathol, patho,, pathos )] =1,
k

0.3 < P(pathosle) < 0.5,
Either P(patho,|e) = 0.5 or P(pathoyle) = 0.5. (4.4)

After linearizing the nonlinear concave membership functions, (4.4) is converted into (4.5).

8
max Z H2i(X2;)

i—1

st. Wy, (X21) =5(X21 — 0.6) — 2[5(x2; — 0.8 + d21)],
Uir, (X22) = 10(X22 — 0.7) — 2[10(X22 — 0.8 + d22)],
Iy (X23) = 20(X23 — 0.7) — 2[20(x23 — 0.75 + d23)],
Uiy (X24) = 10(X24 — 0.5) — 2[10(X24 — 0.6 4 d24)],
s (X25) = 10(X25 — 0.7) — 2[10(x25 — 0.8 + ds)],
Uiy (X26) = 20(X26 — 0.55) — 2[20(X26 — 0.6 + d26)],
U,y (X27) = 10(X27 — 0.4) — 2[10(X27 — 0.5 + d27)],
i (X28) = 100(xX25 — 0) — 2[100(x25 — 0.01 4 d2s)],
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Table 6
Solution table of Example 2

Objective value 8

BEL( patho+) 0.7784

BEL( patho,+) 0.5630

BEL( pathos+) 0.3396

BEL(uti+) 0.9924

fZI 0.8 ﬂz[(fﬂ) 1
X2 0.8 122(X22) 1
f23 0.75 /,L23(f23) 1
X24 0.6 124(X24) 1
JZZS 0.8 ,LL25(JZ25) 1
X26 0.6 126(X26) 1
X27 0.5 127(X27) 1
f2g 0.01 ,uzx(fzg) 1

P( patho,)P( patho,)P( pathos)

DIDIDIDY

pathoy pathoy pathos uti

X P(uti| pathoy, patho,, pathos) H P(sign;| pathoy, patho,, pathos)
J

X HP(testk|path01, patho,, pathos )] =1,
A

0.3 < P(pathosle) < 0.5,

Either P( patho,le) = 0.5 or P( pathoyle) = 0.5. 4.5)
With LINGO 8.0, approximately 5 s are required to obtain the solution. The calculation results are
o= 15266017,

P(patho, + |e) = 0.7784,
P( patho, + |e) = 0.5630,
P( pathos + |e) = 0.3396,
Pluti + |e) = 0.9924.

Table 6 summarizes the detailed results.

Example 3 (Just-in-time techniques and firm performance). The third example uses the Bayesian
network to model the relationship between just-in-time purchasing (JITP) techniques and firm per-
formance [14]. JITP is an important component of supply chain management in managing inventory
flows. Several key factors link the JITP process and firm performance, and Fig. 6 models the rela-
tionships among these factors. Tables 7 and 8 summarize the probability distributions of the nodes
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Fig. 6. A Bayesian network of the relationships between JITP techniques and performance measures [14].

Table 7

The conditional probability distribution of Example 3

P(tp+) =33

P(su+ |tp+) =3
P(t}’ + |tp+) = X34
P(ta+ |su+)=10.7
P(gd + |su+)=0.8
P(im+ |gd+)=10.3
P(tq + |su+)=04
P(fm+ |tg+)=0.7
P(er + |tr+)=0.6

P(su+ |tp—) =X33
P(tr + |l‘p—) = X35
P(ta + |su—)=0.1
P(gd + |su—)=0.3
P(im + |gd—)=0.1
P(tqg + |su—)=0.05
P(fm+ |tg—)=0.1
P(er + |tr—)=0.1

Table 8

The membership functions of fuzzy probabilities in Example 3

Fuzzy parameter

H3i(X3:)

Domain of X3;

X31
X32
X33
X34
X35

5(x31 — 0.1) — 7.5(|x31 — 0.3] + %31 — 0.3)
5()?32 — 0.4) — 5(|)€32 — 0.6‘ + X3 — 0.6)
20(X33 — 0.05) — 20(]%33 — 0.75| 4+ X33 — 0.1)
10(F34 — 0.5) — 5([F34 — 0.6] + %35 — 0.6) — 5(|F34 — 0.7] + %34 — 0.7)
10GEss — 0.1) — 5([f3s — 0.2] + 35 — 0.2) — 5(|F35 — 0.3] + %35 — 0.3)

[
[
[
[
[

0.1,0.4]
0.4,0.8]
0.05,0.15]
0.5,0.8]
0.1,0.4]
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and fuzzy parameters. This study hypothesizes a scenario in which inventory management perfor-
mance is good (im+), employ relationship is poor (er—), transportation performance is good (ta+),
and financial and market performance is poor ( fm—). The problem involves calculating the belief
distribution of all unknown nodes, top management commitment (¢p), supplier value-added (su),
training (#r), quantity delivered (¢d), and time-based quality performance (¢g). The reasoning model
is formulated as (4.6).

5
max Y psi(y)
i=1
st si(Ean) = 5@ — 0.1) — 7.5(1% — 0.3] + F51 — 0.3),
132(X32) = 5(X32 — 0.4) — 5(|%32 — 0.6] + X35 — 0.6),
p33(X33) = 20(X33 — 0.05) — 20(|¥33 — 0.75] + 33 — 0.1),
1a(Fsa) = 10(Fss — 0.5) — 5(|34 — 0.6] + 534 — 0.6) — 5(|F34 — 0.7] + F34 — 0.7),
1as(Fzs) = 10(Eas — 0.1) — 5(|ias — 0.2] + 35 — 0.2) — 5(|f3s — 03] + F35 — 0.3),

o Z Z Z Z Z [P(tp)P(tr|tp)P(su|tp)P(ta + |su)P(qd|su)P(tq|su)
tp

su o qd 1g
xP(er — |tr)P(im + |qd)P(fm — |tq)] = 1,
P(tp + |ta+,er—,im+, fm—) > 0.6,
P(su + |ta+,er—,im+, fm—) > 0.8. (4.6)

First the nonlinear concave membership functions are linearized, yielding (4.7).
5
max Y iz, (%31)
i=1

st pey(F31) = 5(F51 — 0.1) — 2[7.5(F51 — 0.3 + d31)],
Hi (¥32) = 5(X32 — 0.4) — 2[7.5(X32 — 0.6 + d32)],
iy (X33) = 20(X33 — 0.05) — 2[20(x33 — 0.1 + d33)],
sy (X34) = 10(X34 — 0.5) — 2[5(X34 — 0.6 + d341) + 5(¥34 — 0.7 + d342)],
Usss (X35) = 10(X35 — 0.1) — 2[5(X35 — 0.2 + d3s1) + 5(X35 — 0.3 + d352)],

o Z Z Z Z Z [P(tp)P(tr|tp)P(sult p)P(ta + |su)P(qd|su)P(tq|su)
tp su tr gd Iq

X P(er — |tr)P(im + |qd)P(fm — |tq)] = 1,
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Table 9
Solution table of Example 3

Objective value 3.4101

BEL(tp+) 0.6480

BEL(su+) 0.8

BEL(tr+) 0.3155

BEL(qd+) 0.8510

BEL(tq+) 0.1489

f31 0.3680 ,Ll31()€31) 0.3196
f32 0.7819 [132()?32) 0.0905
X33 0.1 w33 (X33) 1

f34 0.6 ,Ll34()€34) 1

X35 0.3 U3s(X35) 1

P(tp + |ta+,er—,im+, fm—) > 0.6,
P(su + |ta+,er—,im+, fm—) > 0.8. (4.7)

LINGO 8.0 solves the above program in approximately 5 s, obtaining the following results:
o= 30.2648,

P(tp + |ta+,er—,im+, fm—) = 0.6480,

P(su + |ta+,er—,im+, fm—) = 0.8,

P(tr + |ta+,er—,im+, fm—) = 0.3155,

P(qd + |ta+, er—,im+, fm—) = 0.8510,

P(tq + |ta+, er—,im+, fm—) = 0.1489.
Table 9 lists the details.

5. Conclusions

This study develops a nonlinear programming model for dealing with constrained abductive rea-
soning on Bayesian networks. This model can be built on any exact propagation methods in Bayesian
networks. The present study involves some fuzzy parameters and certain extra constraints. Optimiza-
tion techniques, including piecewise linearization, are adopted to solve this nonlinear programming
model and obtain optimal solutions to the abductive reasoning problems. Since the constraints in
this model are extremely nonlinear, and numerous nonseparable terms are involved, local optima
are obtained at the present stage. To enhance the solution quality, some global optimization tech-
niques [11,12,15] can be further used for extended studies. Simultaneously, various reasoning-related
constraints are considered, including boundary constraints, dependency and disjunctive constraints.
Compared to traditional methods that deal with constraints by dummy auxiliary nodes [5,7], this
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optimization model of abduction avoids network restructuring. All extra information related to rea-
soning is considered to be additional constraints in the proposed nonlinear program. We hope that
the approach presented here contributes to the field of probabilistic reasoning with constraints and
fuzzy information.
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