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Estimation 
Optimum Beamformers for Monopulse Angle 

Using Overlapping Subarrays 
Ta-Sung Lee, Member, ZEEE, and Tser-Ya Dai 

Abstmct- We here derive the optimum sum and difference 
beamformers for monopulse target locabation using a linear ar- 
ray. The beamformers are constructed, treating as superelements 
two overlapping mbarrays. Removing the common factor associ- 
ated with the superelement pattern from the angle error function 
leads to a dosed-form target angle estimator independent of any 
adaptive nailing performed. Performance analysis of the angle 
estimator is conducted, and a procedure is developed to construct 
the beamformers, which achieve the minimum estimation vari- 
ance under Gaussian noise. It is shown that the optimum angle 
estimator using the maximum overlapping subarrays is efficient 
for a moderately high signal-noise ratio ( S N R )  and a small off- 
boresight angle. The proposed method can be easily modilied to 
incorporate interference cancellation. 

I. INTRODUCTION 

HE classical sum-and-difference monopulse tracker rep- T resents a type of angle estimator that works in beam 
pattern domain. With the sum and difference patterns known a 
priori, the angle of a target may be determined via the ratio of 
the difference data to the sum data. In phased array systems, 
the sum and difference beams can be formed independently 
by two sets of complex weights applied at the array elements. 
With the flexibility of independent beamforming, optimum 
patterns can be synthesized under various criteria, such as 
minimum power [l], uniformly low sidelobes [2], [3], and 
maximum likelihood (ML) [4]. These optimum beamformers 
are constructed in an attempt to achieve some degree of 
improvement in angle estimation by enhancing the sidelobe 
suppression capability of the array. 

In the above-described open-loop monopulse scheme, the 
sum and difference patterns must be computed or measured 
beforehand. In case the analytic expressions of the patterns are 
not available, a look-up table may be used as a mapping from 
the difference-to-sum ratio to the target angle. However, the 
table look-up method is of limited use for an array performing 
adaptive nulling. In that case, the sum and difference patterns 
vary with time. It is thus desired to obtain an angle estimator 
independent of any nulling that must be performed. Vu [5] 
described a method of beamforming to achieve this. In his 
method, two identical nonoverlapping subarrays of a uniform, 
linear array (ULA), tapered with the same set of weights, are 
used as two superelements possessing the same pattern. As a 
result, the sum and difference pattems synthesized with the 
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superelements share a common factor. Dividing out this factor 
from the angle error function yields a simple, exact solution 
for the angle estimate. A similar idea was used earlier in 
the development of the three-aperture method for low-angle 
radar tracking [6]. A trade-off in Vu’s two-aperture method 
is that the number of interferers that can be suppressed via 
simultaneous nulling is reduced to slightly less than one-half 
the number of elements. 

As an extension to the two-aperture method, a class of 
beamforming schemes working with two identical overlap- 
ping subarrays of a ULA is developed. Closed-form angle 
estimators are derived accordingly. To assess the performance 
of the proposed method, the first- and second-order statis- 
tics of the angle estimator are derived, and a procedure is 
presented for constructing the optimum beamformers that 
achieve the minimum estimation variance under Gaussian 
noise. It is shown analytically that the optimum estimator using 
the maximum overlapping subarrays attains the Cramer-Rao 
lower bound (ClUB) for a moderately high SNR and a small 
off-boresight angle. On the other hand, the optimum two- 
aperture estimator exhibits better accuracy for a low SNR and 
a small off-boresight angle, or for a moderately high S N R  
and a large off-boresight angle. The proposed method can be 
easily modified to incorporate simultaneous nulling via either 
supervised or unsupervised techniques when the environment 
is contaminated with strong external interference. 

II. PROBLEM FORMULATION 

Consider the scenario of a single far-field target illuminated 
by a uniform, linear array (ULA) radar consisting of M 
identical elements separated by a half wavelength. Due to the 
planewave assumption, the array data, in complex envelopes, 
received at a certain sampling instant can be put in the 
following M x 1 vector form: 

(1) 
where ut = sin(&), with et being the angle of the target 
with respect to the broadside of the array, as shown in Fig. 
1. The scalar represents the target echo received at some 
reference point of the array. The M x 1 vector a M ( u t )  is the 
direction vector accounting for the phase variation across the 
array. Finally, the M x 1 vector n is composed of the additive 
noise (including both internal and extemal ones) present at 
the M elements. It is assumed that these noise components 
are jointly Gaussian distributed. Setting the reference point at 
the array center, we have (2), as shown at the bottom of the 
next page, with K = M and U = ut for (1). The superscript 

x = t a M ( u t )  + n 

0018-926X/94$04.00 0 1994 JEEE 



652 IEEE TRANSACTIONS ON A " N A S  AND PROPAGATION, VOL. 42, NO. 5, MAY 1994 

Broadsii Target weight vector c. These tapered subarrays may be viewed as 
superelements having the same pattern ~ ( u )  = c H a M - L ( u ) .  
The sum and difference beams are then formed with weight 
vectors g = [g1,g2IT and h = [h1,h2lT, respectively, 
treating these superelements as two elements separated by L/2  
wavelengths. Invoking the principle of arrays, the sum and 
difference patterns can be factorized as 

s (u )  = c(u> (g;e-jzLul2 + g ; e j m 2 )  

d(u) = .(U) ( h;e-jnLUI2 + h;ejTLuI2). (5 )  

It is noteworthy that s(u)  and d(u)  share a common factor 
.(U). For a specific boresight angle uo, we choose 

g1 = e-jnLuo/2 - * - 92 

hl = - j e - j n L U o / 2  = h* 2 (6) 

Fig. 1. Geometry of the array. 

to make g and h conjugate symmetric. Substituting (6) into 
(5) and taking the ratio yields 

(7) 
= tan{ rL(u - uo) }. 

T denotes the transpose. We observe that the direction vector 
exhibits conjugate symmetry. The sum and difference data 
for monopulse estimation are formed by applying two sets 
of weights on x: 

A* Of 

It is easily verified that the subarray-based weight vectors 

c = sHx; A = dHx (3) exhibit the following factorizations: 

where s and d are the M x 1 sum and difference weight vec- 
tors, respectively, and the superscript H denotes the complex 
conjugate transpose. 

In open-loop monopulse localization, the target angle esti- 
mate Gt is determined via 

where 

(4) G =  

where .(U) = sHaM(u) and d(u) = dHaM(u) represent the 
sum and difference patterns, respectively. @ ( U )  is referred to 
as the angle error function and represents the true p value 
under no noise. Equation (4) can be solved by searching over 
the spatial passband of the sum beam for a best match between 
both sides. If @ ( U )  is known a priori, then a calibration curve 
relating p and Gt can be used. The former approach is time 
consuming for a large array, whereas the latter is of limited 
use in the case of adaptive nulling, for @ ( U )  varies with time. 
Motivated by the work of Vu [5] and Cantrell er al. [6], we here 
propose a method of beamforming based on two overlapping 

H= 

subarrays that yields a closed-form angle estimate, regardless 
of any nulling performed. We first investigate the distinctive 
structures of the sum and difference weight vectors obtained 
with this scheme. 

nI. STRUCTURE OF BEMORMERS AND ANGLE ESTIMATION 
For convenience, assume that M is even. Consider de- 

composing an M-element ULA into two sub-ULA's of size 
M - L, as shown in Fig. 1. Suppose that a beamformer is 
attached to each of the subarrays with the same ( M  - L) x 1 

S = G C  ; d = H c  

-jz,* 0 

jz0 
are M x (M - L) banded Toeplitz matrices, with zo = 
ejnLUoI2, and O K  the K x 1 zero vector. 

Exploiting the similarity in structure between G and H 
reveals that s and d share a set of 2L common weights in 
the following fashion: 

s = ["I; d = [ i ] -jr1 

r2 jr2 
(10) 

(9) 
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where r1 and 12 are L x 1 vectors. This represents a saving 
of 2L independent complex weights in the implementation of 
the beamformers. 

B. Closed-Form Angle Estimator and Performance Analysis 

yields 
Substituting (7) in (4) and taking the real part of both sides 

(11) 
2 

TL 
Gt = U, + -tan-' {Re{p}}. 

For a reasonably accurate angle estimate, p should be nearly 
a real scalar. This requires lJsHaM(ut))  >> lsHnl and 
I(sHaM(ut)( >> IdHnl. In other words, the S N R  at the 
array elements and the sum beamformer SNR gain must be 
moderately high. 

Under Gaussian noise assumption and the conditions stated 
above, the mean and mean square of the estimation error 
but = Gt - ut are given approximately by [7] 

and 

3p2 IbH%nb12 (13) 
+ . r r 2 ~ 2 ( 1 +  p2)4 1 ~ 1 4 1 s ~ a M ( u ~ ) 1 4  

where p = @(ut), b = d - ps, and %n = E{nnH} is 
the noise correlation matrix. The estimator is less biased for a 
small p ,  or a small off-boresight angle lat - u,I. 

IV. 0- QUIESCENT BEAMFORMERS 
In the absence of any extemal interference, it is adequate 

to model the noise as spatially white, i.e., the components 
of n are zero-mean, uncorrelated complex Gaussian random 
variables with the same variance a:. In this case, E{&} and 
E{(SU~)~}  are obtained by substituting %n = a z I ~  in (12) 
and (13), respectively, where IM denotes the M x M identity 
matrix. Our goal here is to determine the sum and difference 
weight vectors that minimize E{(Sut)2} .  

A. Minimum Variance and Eficiency of the Estimator 

the off-boresight angle is small, such that E{Sut} M 0 and 
In constructing the optimum beamformers, it is assumed that 

2u: dHd 
E { ( S U t ) 2 }  M var { G t }  M ~ 

T2L21JI2 lSHaM(Uo>I2 

(14) 
- 2u: C ~ H ~ H C  
- 

r2 L2 ICH G H a M  ( U,) l 2  
where we have used the approximations p M 0, b M d and 

Minimizing (14) with respect to c is a linearly constrained 
minimum variance (LCMV) problem [8] whose solution is 
given by 

BM('llt) M BM(U0). 

c = X ( H H H ) - ' G H a M ( u , )  (15) 

where X is a normalizing scalar. Substituting (15) back into 
(14) yields the expression of the minimum variance: 

2a: 1 var {iit}min M - 
T2L2 kI2 ag (U, )G( HHH) -' G aM (U,) . 

(16) 
Some algebraic manipulations [7] show that Var{Gt}min is 
independent of U,, and in particular 

60: 
Var{'t}min +Ij12M(M2 - 1 )  for L = 1 ,  

M 
for L = -. (17) 

2 

Note that L = 1 corresponds to the case of maximum 
overlapping subarrays, and L = M / 2  corresponds to the two- 
aperture method. For a large M ,  the latter is approximately 
33% larger than the former. The values of Var{iit}min as a 
function of L are depicted in Fig. 2 for M = 10,20,40 and 80. 
For all cases, Var{Ot},in appears to be an increasing function 
of L, though it is not monotonic. With a certain degree of 
confidence, we can say that Var{Gt}min are bounded between 
by the two expressions in (17). 

Interestingly, it is found that the minimum variance achieved 
with L = 1 is identical to the CRLB for iit given x as data [9], 
[lo]. Brennan [9] showed that under the high SNR, large M, 
and small pointing error assumptions, the CRLB can be nearly 
achieved with judiciously designed amplitude comparison and 
phase comparison monopulse estimators. On the other hand, 
the ML angle estimator [4] was shown to be asymptotically 
efficient in that the estimation variance approaches the CRLB 
as the SNR or M increases [lo]. Similar results hold for the 
proposed estimator. As stated in Section 111-B, the analysis was 
based on the assumption of moderately high SNR and sum 
beamformer S N R  gain. Since the S N R  gain is proportional 
to M, and inversely proportional to the pointing error, the 
analysis results will be more accurate as the SNR and M 
increase, and as the pointing error decreases. This in turn 
implies that the optimum angle estimator for L = 1 becomes 
efficient under the same three assumptions. The minimum 
variance achieved with the two-aperture method coincides 
with that of the phase comparison estimator using the uniform 
weighting [9]. As will be shown shortly, the optimum weights 
for the two-aperture method are indeed uniform. Numerical 
results demonstrate that the two-aperture estimator performs 
relatively well with a low SNR or a large off-boresight angle. 
This is the case for which the assumptions made in Section 
111-B do not hold. 

B. Optimum Quiescent Weight Vectors 

Substituting (9) and (15) into (8), along with some algebraic 
manipulations [7] yields the closed-form expressions of so 
and do, the optimum quiescent weight vectors associated with 
U, = 0 (the weight vectors for U, # 0 are obtained via 
progressive phase shifting) 

s,(k) = s,(M - k + 1 )  = ( M  + 1)(2k - 1 )  - 2k2,  
d,(k) = -d,(M - k + 1 )  = - j (M - 2k + l ) ,  

k = l ,  ...,+ (18) 
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Fig. 2. Values of the minimum variance achieved with the optimum quiescent estimator for M = 10,20,40, and 80. The S N R  was fixed at 0 dB. 

for L = 1, and 

so@) = s,(M - k + 1) = 1, 

d,(k) = -do(M - k + 1) = - j ,  k = 1, .  . . , (19) 

for L = M / 2 ,  where v(k) denotes the lcth component of 
the vector v. It is noteworthy that the optimum difference 
weights for L = 1 exhibit the linear odd symmetry. Brennan 
[9] showed that the linear odd symmetric weighting yields 
the minimum angle estimation variance attaining the CRLB 
for the phase comparison monopulse estimator. Davis et al. 
[4] showed that the difference weights associated with the 
ML monopulse estimator under spatially white Gaussian noise 
exhibit the linear odd symmetry as well. In fact, the linear 
odd symmetric weighting yields the maximum normalized 
boresight slope for the difference pattern associated with a 
ULA with one-half wavelength spacing [ 111. The optimum 
weights for the two-aperture method are uniformly distributed 
as expected. This is the best weighting method if the same set 
of weights are used for both the sum and difference channels. 

mode of the radar. The sum and difference beams are then 
formed accordingly to put hard nulls in these directions [5 ] .  In 
the unsupervised case, the interfering signals are suppressed 
via some kinds of adaptive beamforming techniques, such as 
those based on the minimum power criterion [ l ]  and the ML 
criterion [4]. We now derive the optimum beamformers for 
both cases. 

A. Supervised Case 
Let Qi, i = l,.. ., J, be the J estimated interfering 

directions. The execution of simultaneous nulling requires that 
a null be synthesized in each of the interfering directions for 
the common pattern .(U). Denote as e = [el, ea,. . . , ~ J + I ] ~  
the weight vector associated with the constrained pattern factor 
e(u) = eHaJ+l(u) of ~ ( u )  with J nulls at Gi, i = 1 , .  . . , J. 
Decomposing c in accordance with (8) gives 

c = Ef (20) 

where 

v. OPTIMUM BEAMFORMERS INCORFQRATING 
INTERFERENCE CANCELLATTON 

In the presence of strong external interferers, it is necessary 
to perform simultaneous nulling for the sum and difference 
beamformers. Simultaneous nulling can be performed in either 
the supervised or unsupervised way. In the supervised case, 
the interfering directions are first estimated via some kinds 
of off-line direction finding algorithms during the passive 

E= 

0 
e2 el 
: e2 ’. 

eJ+1 * .  el 
eJ+1 e2 

0 .  

0 eJ+1 
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is an (M - L) x (A4 - L - J) banded, Toeplitz matrices. The 
(M - L - J )  x 1 vector f corresponds to the unconstrained 
pattern factor f(u) = fHaM-L-J(u) of .(U). Thus c may be 
viewed as composed of a fixed part E and a free part f .  Assume 
that G;, i = 1,. . . , J, are fairly accurate, such that the noise 
parts in the beamformer outputs are essentially free of any 
interfering signals and can be assumed to be spatially white. 
In this case, the optimization problem described previously 
remains unchanged in structure, but it is modified into that of 
minimizing 

(22) 
20: fHEHHHHEf  
L21JI2 lfHEH GHaM(u,) l 2  Var{Gt} M - 

with respect to f .  Solving for f and using (20), we obtain the 
optimum c vector 

c = XE(EHHHHE)-'EHGHaM(u0) (23) 

Substituting (23) into (22) yields the minimum variance 
achieved with simultaneous nulling 

1 
aE(u,)GE(EHHHHE)-lEHGHaM(u0) 

X 

(24) 

B. Unsupervised Case 

In this case, the original noise correlation matrix hn is 
used in (12) and (13). In practice, R,, can be estimated 
by the sample data correlation matrix formed with a set 
of independent sample vectors collected during the passive 
mode of the radar. Following the procedure described in 
Section IV-A, we obtain the optimum weight vectors and 
minimum variance by replacing H H H  with HH&,H in 
(14H16). In order to minimize the estimation variance, the 
optimum beamformers will attempt to suppress the interfering 
power contained in &n by putting a deep null in each of 
the interfering directions. This is similar in principle to the 
minimum variance adaptive array schemes [8]. In particular, 
the proposed method so modified may be regarded as a 
variation of the Duvall's adaptive array [12]. 

VI. SIMULATIONS RESULTS 

Computer simulations were conducted to ascertain the per- 
formance of the proposed angle estimator. The ULA employed 
was composed of 20 identical elements spaced by one-half 
wavelength. The target angle was ut = 0. In the results, 
all sample statistics were obtained based on 500 independent 
runs, and the SNR in dB was defined at element level as 
10 loglo( l.!J2/o:). For brevity, we show only the results 
associated with L = 1, 5, and 10. 

The first set of simulations examines the performance of 
the optimum quiescent angle estimator under spatially white 
Gaussian noise. The optimum beamformers constructed in 
Section IV-A were used for all cases, and the corresponding 
patterns are plotted in Fig. 3 for L = 5. Note that the sum and 
difference patterns exhibit 14 common nulls corresponding to 

10 

Fig. 3. 
beamformers. M = 20, L = 5, U, = 0. 

Sum and difference pattems associated with the optimum quiescent 

3 

Fig. 4. 
for several SNR values. M = 20, uo = ut = 0. 

Sample mean square error of the optimum quiescent angle estimator 

c(u).  Fig. 4 shows the sample mean square error (MSE) of fit 
for several SNR values. The corresponding CRLB was also 
plotted for reference. As expected, the angle estimates were 
more accurate as the SNR was increased. The sample MSE 
decreased as L was decreased, attaining the CRLB for L = 1 
with SNR > -5 dB. This confirms the analysis results for the 
optimum estimator. At low SNR, the sample MSE behaved 
oppositely as a decreasing function of L, being lower than the 
CRLB for the extreme case of S N R  < -10 dB. An evaluation 
of the corresponding sample means in this case indicates that 
the estimator was biased. 

The second set of simulations examines the effect of point- 
ing error on the optimum quiescent estimator. In this case, 
the boresight angle of the optimum beamformers was varied 
from -5' to 5 O ,  and the S N R  was fixed at 10 dB. Note that 
the 3-dB beamwidth of the array is approximately 2.9'. Figs. 
5 and 6 show the sample MSE of f i t  and the corresponding 
theoretical values from analysis, respectively. We observe that 
the simulation results are consistent with the analysis results 
for a broad range of boresight angles. For a small off-boresight 
angle, the estimator performed better with a small L. For a 
large off-boresight angle, the opposite was true. In particular, 
the sample MSE achieved with the two-aperture estimator 
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Fig. 5. 
for 

Sample mean square error of the optimum quiescent angle estimator Fig. 7. Sum and difference Pamms associated with the Optimum 
beamformers incorporating supervised interference cancellation. M = 20, 
L = 5, uo = 0. The interfering directions are -45', 20'. and 27'. 

off-boresi&t angles. M = 20. me sm wBs fixed at B. 

-3.6 I 1 

- 3 4  
- L-1 
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-67 

Fig. 6. Theoretical mean square error of the optimum quiescent angle 
estimator for several off-boresight angles. M = 20. me sm wBs fixed 
at 10 dB. 

Fig. 8. Sample mean square enm of the optimum angle estimor incorpo- 
rating supervised interfemnce cancellation for several S N R  values. M = 20, 
uo = ut = 0. The interfering directions are -45O, 20°, and 27'. 

was significantly smaller than the other two over the range 

Summarizing at this point, it is found that the optimum 
estimator improves as L is decreased under good estimation 
conditions, while the opposite is true under poor estima- 
tion conditions. This serves as a criterion for choosing the 
appropriate subarray size in constructing the beamformers. 
For example, the two-aperture estimator may be used in the 
preliminary stage, in which a coarse angle estimate is obtained. 
The subarray size is then increased as the boresight angle 
approaches the target angle. When the radar nearly boresights 
the target, it should switch to the estimator using the maximum 
overlapping subarrays to exploit its efficiency. 

The third set of simulations examines the performance 
of the optimum angle estimator incorporating interference 
cancellation. Three Gaussian jammers were assumed at 81 = 
-45O, O2 = 20°, and O3 = 2 7 O ,  with power levels equal 
to 20 dB, 10 dB and 10 dB, respectively, relative to the echo 
power. First, the optimum supervised beamformers constructed 
in Section V-A were used, and the corresponding patterns are 
plotted in Fig. 7 for L = 5. We assumed that the estimated 
interfering directions were correct. Note that although the 

2 O  5 [Ut - u,1 5 4O. sidelobes were significantly modified within the interfered 
regions, the general pattern shapes were not changed much 
compared to the quiescent ones. This confirms the efficacy 
of the minimum variance objective function in preserving 
the desired pattern shapes. Fig. 8 shows the sample MSE of 
fit for several SNR values. The results are observed to be 
similar in trend to those shown in Fig. 4. Second, the optimum 
unsupervised beamformers described in Section V-B was used. 
For evaluation purposes, the true noise correlation matrix was 
used. The resulting patterns obtained with SNR = 10 dB are 
plotted in Fig. 9. They look quite similar to those shown in 
Fig. 7, except that the nulls at the interfering directions are less 
defined. As in the supervised case, we found that the sample 
MSE's shown in Fig. 10 are comparable to those obtained 
with the quiescent estimator. These results demonstrate that the 
minimum variance property was well retained in the process 
of interference cancellation. 

VII. CONCLUSION 

A simple method of monopulse target localization using a 
ULA has been proposed. A closed-form angle estimator was 
obtained with judiciously chosen beamformers constructed 
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I I 

spatial Angle (degree) 

Fig. 9. Sum and difference patterns associated with the optimum beam- 
formers incorporating unsupervised interference cancellation. A4 = 20, 
L = 5 ,  uo = 0. SNR = 10 dB. The interfering directions are -45‘, 20°, 
and 27’. 

6 . 5  L I 
-20 -15 -10 -5 0 5 10 15 20 

w R  (a) 

Fig. 10. Sample mean square error of the optimum angle estimator in- 
corporating unsupervised interference cancellation for several S N R  values. 
A4 = 20, uo = ut = 0. The interfering directions are - 4 5 O ,  20°, and 2 7 O .  

with two overlapping subarrays. The optimum beamformers 
that achieve the minimum variance of the estimator were 
derived for the Gaussian noise case. Supervisedunsupervised 
simultaneous nulling was incorporated to retain the perfor- 
mance of the angle estimators under strong external inter- 
ference. Analysis results and computer simulations confirm 
that the optimum estimator using the maximum overlapping 
subarrays exhibits the following merits: 1) It attains the CRLB 
with a moderately high SNR and a small off-boresight angle, 
and 2) it provides the largest degree of freedom for adaptive 
nulling. The two-aperture method, on the other hand, exhibits 
robustness under poor estimation conditions in that it produces 
the smallest mean square error 1) with a low SNR and a small 
off-boresight angle, and 2) with a moderately high SNR and 
a large off-boresight angle. The results presented in the paper 
may be used as criteria for choosing the right subarray size 
in target localization. 

REFERENCES 

[I] R. L. Haupt, “Adaptive nulling in monopulse antennas,” ZEEE Trans. 
Antennas Propagat., vol. 36, pp. 202-208, Feb. 1988. 

[2] C. L. Dolph, “A current distribution for broadside arrays which opti- 
mizes the relationship between beamwidth and side lobe level,” Proc. 
IRE, vol. 34, pp. 335-348, 1946. 

[3] E. T. Bayliss, “Design of monopulse antenna difference patterns with 
low side lobes,” Bell Syst. Tech. J., vol. 47, pp. 632-640, 1968. 

[4] R. C. Davis, L. E. Brennan, and L. S. Reed, “Angle estimation 
sith adaptive arrays in external noise fields,” ZEEE Trans. Aerospace 
Electron. Syst., vol. AES-12, pp. 179-186, March 1976. 

[5] T. B. Vu, “Simultaneous nulling in sum and difference pattern by 
amplitude control,” ZEEE Trans. Antennas Propagat., vol. AP-34, pp. 
214-218, Feb. 1986. 

[6] B. H. Cantrell, W. B. Gordon, and G. V. Trunk, “Maximum likelihood 
elevation angle estimation of radar targets using subapertures,” ZEEE 
Trans. Aerospace Electron. Syst., vol. AES-17, pp. 213-221, March 
1981. 

[7] T. S. Lee, “Efficient 2-D beamspace array signal processing for target 
tracking,” Microelectronics and Information Systems Research Center, 
National Chiao Tung University, Hsinchu, Taiwan, R.O.C., Tech. Rep. 
CS80-0210-D-009-14, May 1992. 

[8] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach 
to spatial filtering,” ZEEE ASSP Mag., pp. 4 2 4 ,  Apr. 1988. 

[9] L. E. Brennan, “Angular accuracy of a phased array radar,” IRE Trans. 
Antennas Propagat., vol. AP-9, pp. 268-275, May 1961. 

[lo] P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and Cram- 
mer-Rao bound,” ZEEE Trans. Acoustics, Speech, Signal Processing, 
vol. 37, pp. 720-741, May 1989. 

[ l l ]  D. A. McNamara, “Maximization of normalized boresight slope of a 
difference array of discrete elements,” Electron. Lett., vol. 23, no. 21, 

[12] B. Widrow, K. M. Duvall, R. P. Gooch, and W. C. Newman, “Signal 
cancellation phenomena in adaptive antennas: Causes and cures,” ZEEE 
Trans. Antennas Propagat., vol. AP-30, pp. 469478, May 1982. 

pp. 1158-1160, Oct. 1987. 

Ta-Sung Lee (M’94) was born in Tape], Taiwan, 
Republic of China, on October 20, 1960. He re- 
ceived the B.S. degree from National Taiwan Uni- 
versity, Taipei, Taiwan, in 1983, the M.S. degree 
from the University of Wisconsin, Madison, in 1987, 
and the Ph.D. degree from Purdue University, West 
Lafayette, IN, in 1989, all in electrical engineering. 

From 1987 to 1989 he was a David Ross Graduate 
Research Fellow at Purdue University. In Spring 
1990, be joined the faculty of National Chiao Tung 
University, Hsinchu, Taiwan, where he currently is 

an Associate Professor in the Department of Communication Engineering. 
His present research interests include sensor array signal processing, adaptive 
antennas for mobile communications, underwater acoustic signal processing, 
and blind equalization. 

Dr. Lee is a member of Phi Tau Phi. 

Tser-Ya Dai was born in Taoyuan, Taiwan, Republic 
of China, on May 9, 1968. He received the B.S. 
degree in electrical engineering from Chung Yuan 
Christian University, in 1990, and the M.S. degree in 
communication engineering in 1992 from National 
Chiao Tung University, Hsinchu, Taiwan, where he 
is currently pursuing the Ph.D. degree. 

His research interests include sensor array signal 
processing and the application of artificial neural 
networks. 


