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Power Scaling in a Diode-End-Pumped
Multisegmented Nd:YVO4 Laser With
Double-Pass Power Amplification

Yu-Jen Huang, Wei-Zhe Zhuang, Kuan-Wei Su, and Yung-Fu Chen

Abstract—We demonstrate a high-power master oscillator
power amplifier with the double-pass configuration based on the
specially designed multisegmented Nd:YVQ, crystals. A powerful
mathematical technique on the basis of the Fourier eigenfunction
expansion method is developed for precisely calculating the tem-
perature distribution inside the gain medium. A seed Nd:YVO,
oscillator under dual-end pumping is subsequently constructed for
efficiently emitting the output power of up to 50 W. Moreover,
under a total incident pump power of 244 W at 808 nm, as high
as 108 W of the output power at 1064 nm is further generated in
our developed master oscillator power amplifier system. Theoret-
ical and experimental results clearly reveal that the gain medium
with multiple doping concentrations is practically valuable for con-
structing a high-power end-pumped laser without bringing in sig-
nificantly thermal effects.

Index Terms—Diode-pumped laser, high-power laser, master
oscillator power amplifier, multisegmented laser crystal.

I. INTRODUCTION

VER the past few decades, high-power solid-state lasers
O were rapidly developed because they are useful for many
scientific studies and industrial applications [1]-[3]. For the ex-
tension of the power scale-up in the end-pumped oscillator, the
noticeable thermal gradient and accompanied mechanical stress
inside the gain medium are the most critical issues to be solved.
This is due to the fact that the homogeneous doping profile in
the active element leads to the exponential decay of the pump
light along the longitudinal direction. With an undoped mate-
rial to effectively serve as a heat sink, the composite crystal
has recently proven its feasibility in reducing the spatial gra-
dient of the temperature and the thermally induced mechanical
stress [4]-[7]. More recently, the Nd: YAG crystal with increas-
ing doping concentrations was proposed to show that employing
the so-called multi-segmented crystal could not only avoid the
risk of the thermal fracture inside the laser material, but also
maintain the high optical conversion efficiency [8], [9].
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The concept of the master oscillator power amplifier (MOPA)
offers another means for boosting the output power of a laser,
and it has been widely realized in fiber- and bulk-based architec-
tures [10]-[14]. The required high-power performance can be
relatively easily achieved in the MOPA by partially decoupling
the problems usually encountered in the high-power laser oscil-
lator, including the possible instability caused by the multi-mode
interactions, thermal-lensing effect, and so on. The Nd:YVO,
crystal, due to the large product of the stimulated emission
cross section and the upper-state lifetime, can produce much
higher optical gain as compared with other Nd-doped laser ma-
terials. To date, most of the Nd:YVO, amplifiers are based on
the single-pass configuration [12]-[14]. However, some recent
works have shown that the double-pass architecture seems to
be a more efficient design for scaling the output power of the
pulsed oscillator [15], [16]. In this work, an efficient high-power
MOPA based on the multi-segmented Nd:YVOy crystal is suc-
cessfully realized for emitting output power greater than one
hundred watts in the continuous-wave operation. We first utilize
the Fourier eigenfunction expansion method to develop a pow-
erful mathematical technique for analytically solving the heat
conduction equation of the anisotropic crystal with a rectangu-
lar geometry. Theoretical analysis manifestly reveals that the
smoother temperature distribution could be achieved inside the
multi-segmented crystal than the conventional composite one.
Based on the calculated results, we construct a dual-end-pumped
multi-segmented Nd:YVO, oscillator for efficiently producing
the output power of 50 W. We subsequently design two types
of MOPA and make a systematical comparison between both
configurations. It is experimentally found that the power gain
obtained from the double-pass MOPA is generally larger than
that obtained from the single-pass one. Consequently, the output
power could be further scaled to reach 108 W at 1064 nm under
a total incident pump power of 244 W at 808 nm, corresponding
to the optical conversion efficiency of up to 44.3%.

II. THEORETICAL ANALYSIS ON TEMPERATURE DISTRIBUTION

Fig. 1(a) schematically depicts the thermal model of the
multi-segmented crystal with a rectangular geometry used for
our theoretical analysis, which is end-pumped from two sides.
The lengths for each side of the crystal are a, b, and c, re-
spectively. The current multi-segmented crystal is made up of
five sections with three doped materials between two undoped
end-caps, where the doped parts are characterized by pump ab-
sorptions oy, g, and a3, and heat source densities ¢ (z, y, z),
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Fig. 1. (a) Configuration of the multi-segmented crystal with a rectangu-

lar geometry for the theoretical model; Temperature fields inside the gain
medium for: (b) YVO4 /0.1 4+ 0.3 + 0.1% Nd:YVO4/YVOy, (¢) YVO4/0.2%
Nd:YVO4/YVOy, and (d) YVO4/0.1% Nd:YVO4/YVOy, crystals; (¢) On-axis
temperature raise as a function of the axial position for the gain medium.

@2 (x,y, z), and g3(x,y, z), respectively. The z coordinates for
every transverse plane are denoted as ¢y, c;, ¢2, ¢3, ¢4, and cs,
respectively. Note that ¢y and c; are virtually equal to O and c.
The temperature field inside a rectangular crystal obeys the heat
conduction equation in the Cartesian coordinate, which is given
by [17]:

T (x,y,2) T(z,y,2)
K.'t y
0%x 0%y
PT(x,y, =
+Kzi(822y ) ) M

where q(I, Y, Z) =q1 (xa Y, Z) + q2 (l‘, Y, Z) + QS(‘T7 Y, Z) is the
total heat source density, K, K, and K are the thermal con-
ductivity coefficients along the x, y, and z axes, respectively.
For the edge-cooled laser crystal, the temperatures at the lat-
eral sides are assumed to be a constant value 7j, while the
two end surfaces could be reasonably supposed to be adia-
batic since the heat transfer coefficients between the crystal and
air are very small. Therefore, the boundary conditions can be
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expressed as [18]:

T(Oa y,Z) = T(MT((L@/, Z) = TO
T(JT,O,Z) :To,T(l’7b,Z) :TO (2)
T (z,y, 2) T (z,y,2)
ZY:2) ) ZWIYE)
0z z=0 0z z=c

The solution to the temperature field subject to the above
boundary conditions could be formally represented by a prod-
uct of three orthogonal sets of eigenfunctions sin[(n7/a)x],

sin[(mm/b)y], and cos[(I7/c)z] plus a constant value Tj, that
is:

T(x,y,2

i i iAmnl sin (nﬂ-x>

n=1m=11[=0

. /mm I
X sin (Ty) cos (Cz> + Ty 3)

where A,,,,; are the coefficients to be determined. Substituting
(3) into (1), the heat conduction equation becomes:

B . (m‘r ) . (mﬂ' )CO I
ml S | — SIN | ——— 5 —_—
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= 7q(g:7ya Z)

>3y
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nm 2 mi 2 Im\?
Ko () + 8 () + K (> ]
(5)

Using orthogonal properties of sine and cosine functions:

d ST <s’7r ) d
sin(—xz)sin | —z | de = =0s.¢ (6)
/0 ( d ) d 2
d ST <s’ > d
cos [ —x ) cos dr = =0, ¢ 7
/0 ( d ) d 27

where these are valid for integer numbers of s and s’, the coeffi-
cients A,,,,; can thus be solved as a triple Fourier series for the
function g(x, y, 2):

8 1

nml =

abe [K (@)2 LK, (?)2 + K. (l:ﬂ
[ [ e () ()

cos ( . > dxdydz.
(®)

For a fiber-coupled laser diode, the pump intensity distribu-
tion could be approximately expressed as a top-hat function.
When the pump beams are injected along the central axis of the
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laser crystal, the heat source densities could be expressed as

Qi(xayaz) = [qIL (Iayaz) + qi,R(Iayaz)]
XH(Z — CZ')H(CZ‘+1 — Z)H

G ()]

i—1

(€))
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6.0 (2,y,2) = n——""— [Te ot ao)
p s=0
aiRn‘ReiamcHliZ) N
Qi,R(l"’yaZ) =n 7T(4J12) H
s'=0
x e @ (enrosr=enii) =123 (11)

where H() is the Heaviside step function, w), is the pump radius,
P, 1 and P, r are the incident pump power from the left
and right side of the crystal, N is the number of the doped
sections, and 7 is the fractional thermal loading. For a four-level
solid-state laser with low doping concentration under the laser
condition, the fractional thermal loading can be simply given by
the quantum defect 1 — 1, /A1, where A, and A are the pump
and lasing wavelengths. Note that we intentionally introduce
two null parameters o and «y for the general expression of
qgi(x,y, z). Substituting (9) into (8) and integrating z from 0 to
¢, the coefficients A,,,,,; can be simplified as

8 (AL +AiR)
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with the following parameters: N =3,a =0=3 mm, ¢) =0
mm, ¢; =2 mm, ¢co = 10 mm, c3 = 20 mm, ¢; = 28 mm,
c=c5; =30 mm, K, =5.23 W/(m-K), K, =5.1 W/(m-K),
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K, =51W/(mK),o =0.16mm ", ay =048 mm !, ag =
0.16 mm™!, wy = 350 um, Ty = 291 K, A, = 808 nm, and
A, = 1064 nm, we calculate the distribution of the tem-
perature field inside the a-cut multi-segmented YVO,/0.1 +
0.3 +0.1% Nd:YVO4/YVOy, crystal for the case of Py, =
Py r =54 W, as shown in Fig. 1(b). For the purpose of
comparison, the temperature distributions for the conventional
composite YVO4/0.2% Nd:YVO,/YVO,; and YVO,/0.1%
Nd:YVO,/YVOy crystals with the same dimensions are also
calculated, as displayed in Fig. 1(c) and (d). The values of n and
m used for the calculation are both from 1 to 41 for symmetry,
while for / it is ranged from O to 80. Our calculation has shown
that these chosen index values are sufficient for the tempera-
ture variation within 10~2 while keeping the computation time
to be not more than ten minutes. We also compare the Fourier
eigenfunction expansion method with the finite-element analy-
sis [17] and find that only a small difference between these two
approaches is observed. However, the computation time for the
Fourier eigenfunction expansion method is several times faster
than that for the finite-element analysis. Fig. 1(e) illustrates the
on-axis temperature raise with respect to the axial position for
these three types of crystal. It can be clearly concluded that not
only the maximum temperature raise could be effectually re-
duced, but also the heat could be spread more uniformly inside
the multi-segmented crystal. The theoretical analysis is consis-
tent with the experimental results on the focal length of the
thermal lens investigated in our previous study [19]. This indi-
cates that the multi-segmented crystal is a promising approach
for developing a high-power end-pumped laser, as will be fur-
ther experimentally demonstrated as follows. It is worthwhile
to mention that the similar analysis has been previously per-
formed for the multi-segmented Nd: YAG rod with a cylindrical
geometry, where the temperature field is expanded by a series of
Bessel functions [20], and the potential for such crystal design
in power scaling was experimentally realized. We also want to
address that if the pump intensity distribution does not follow
the top-hat function, the heat source densities (9)—(11) and thus
the coefficients A,,,,; expressed in (12)—(14) should be modi-
fied, which would result in slightly different temperature values.
For example, we have computationally found that the tempera-
ture peak value for the Gaussian pump intensity distribution is
4-6% higher than the value obtained from the top-hat pumping,
whereas the morphologies of temperature distribution are quite
similar to each other.

III. PERFORMANCE OF THE DUAL-END-PUMPED
MULTI-SEGMENTED OSCILLATOR

The experimental arrangement of high-power dual-end-
pumped continuous-wave oscillator with the five-segmented
Nd:YVOy crystal is schematically shown in Fig. 2(a). A plane
mirror with anti-reflection at 808 nm on the entrance side and
high reflection at 1064 nm as well as high transmission at 808 nm
on the other side was employed as the front mirror. The coating
characteristic of the folding mirror was the same as that of the
front mirror, except that the angle of incidence was designed to
be 45°. The a-cut YV O,/0.1 4+ 0.3 + 0.1% Nd:YVO,/YVOy,
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Fig. 2. Experimental setup for the: (a) diode-pumped YVO,/0.1 + 0.3 +
0.1% Nd:YVO4/YVOy laser with dual-end pumping, (b) double-pass MOPA
configuration, and (c) single-pass MOPA configuration.

crystal consisted of two undoped end-caps with the lengths of
2 mm, and three active parts with the lengths of 8, 10, and
8 mm, corresponding to the doping concentrations of 0.1, 0.3,
and 0.1%, respectively. Our multi-segmented crystal was de-
signed for the dual-end pumping to make the generated heat
more uniform inside the gain medium, and thus a superior laser
performance could be achieved. The transverse cross section of
the crystal is 3 mm x 3 mm. Both end faces of the gain medium
were coated to be anti-reflective at pump and lasing wavelengths.
The laser crystal was wrapped with indium foil and mounted in
a water-cooled copper holder with the temperature at 18°C. A
flat mirror with the reflectivity of 85% at 1064 nm was utilized
as the output coupler. The pump sources were two 808-nm fiber-
coupled laser diodes with the nominal powers of 60 W for each.
The numerical aperture and core diameter of the coupling fiber
were 0.22 and 600 pum, respectively. The pump beams were
reimaged into the laser crystal with the spot radii of 350 pm
through two convex lenses with the focal lengths of 25.4 mm
and the coupling efficiencies of 95%. The cavity length of the
whole resonator was around 70 mm.

First of all, the laser oscillator was carefully optimized for
the maximum output power under an incident pump power of
108 W. Then, the output power at 1064 nm as a function of the
incident pump power at 808 nm was measured, as exhibited in
Fig. 3. The pump threshold is around 5.2 W, and the maximum

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 21, NO. 1, JANUARY/FEBRUARY 2015

=N
S

w
S
u.

'S
=)
ntensity

1060 1070 1080 1090
Wavelength (nm)

S}
=3

o

—O— oscillator

=

Output power at 1064 nm (W)

0 20 40 60 80 100 120
Incident pump power at 808 nm P,

in, oscillator (

W)

Fig. 3. Dependence of the output power at 1064 nm on the incident
pump power at 808 nm for the diode-pumped YVO,/0.1 + 0.3+ 0.1%
Nd:YVO4/YVO, laser. Inset: corresponding optical spectrum for the laser
output.

output power as high as 50 W is efficiently generated under
an incident pump power of 108 W. The corresponding slope
and optical conversion efficiencies are evaluated to be 48.6 and
46.3%, respectively. The beam quality factor was measured to
be better than 1.8 with a knife-edge method. The output radi-
ation was linearly polarized along the ¢ axis of the Nd:YVOy,
crystal, and the extinction ratio was found to be larger than
200:1. More importantly, no thermal fracture inside the gain
medium was observed during the experiment. Combined with
our previous studies [19], it can be clearly deduced that utilizing
the multi-segmented crystal is practically valuable in scaling the
output power for diode-end-pumped laser system without intro-
ducing considerable thermally accompanied detrimental effects.
The spectral information for the developed Nd:YVO, laser was
recorded with an optical spectrum analyzer (Advantest 8381A)
with the resolution of 0.1 nm. The central wavelength of the
laser output locates at 1064.8 nm with the full width at half
maximum of approximately 0.3 nm, as displayed in the inset of
Fig. 3. In the following section, we design two types of MOPA
to further scale the output power at 1064 nm.

IV. COMPARATIVE INVESTIGATION BETWEEN DOUBLE-
AND SINGLE-PASS MOPA CONFIGURATIONS

Fig. 2(b) and (c) schematically depict the experimental lay-
outs for the MOPAs with double- and single-pass configurations,
respectively. All retro-reflecting mirrors were coated for high re-
flection at 1064 nm. The same coupling system was also utilized
in the amplification stage, except that the magnified ratio is dif-
ferent. The amplified medium was a three-segmented Nd:YVO,
crystal with a 2-mm-long undoped YVO, crystal bonded to a
0.1-% doping Nd:YVO, crystal with the length of 8 mm, and
followed by a 0.3-% doping material with the length of 5 mm.
The active medium was wrapped with indium foil and mounted
in a water-cooled copper block at the temperature at 18°C. An
145-W fiber-coupled laser diode at 808 nm was employed to
pump the Nd:YVO, crystal with the spot radius of 800 pm. The
laser beam emitted from the master oscillator was collimated
by a plano-convex lens with the focal length of 80 mm. For
the double-pass MOPA configuration shown in Fig. 2(b), the
laser beam propagated the amplified medium twice achieved
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by a retro-reflecting mirror with a small inclined angle; while
only one trip through the Nd:YVO, crystal for the laser beam
was adopted in the single-pass MOPA architecture described
in Fig. 2(c). It should be point out that the crystal structure
used in the amplifier stage was different from that utilized in
the oscillator stage. This is because the input seed and ampli-
fied radiations pass the same side of the active medium in our
double-pass MOPA configuration aimed for single end pumping
from the opposite face of the crystal. Moreover, if the Nd:YVO,
crystal with a dimension of 3mm x 3 mm x 30 mm (as used in
the oscillator stage) was adopted, the amplified laser radiation
would be easily blocked by the surrounded copper holder, re-
sulting in a significant decrease of the output power.

Initially, we varied the input seed power from the master
oscillator to systematically compare the amplified abilities for
two configurations with the incident pump power at the am-
plification stage to be fixed at 136 W. Fig. 4(a) illustrates the
power gains for the double- and single-pass MOPA configura-
tions versus the incident pump power at the amplification stage.
The power gain G is defined as the ratio of the amplified power
P,mp to the input seed power Pic.q at 1064 nm. It can be ob-
viously seen that the power gain achieved in the double-pass
MOPA architecture is generally larger than that obtained from
the single-pass MOPA architecture, especially for the low input
seed power. Experimental results also manifestly reveal that the
power gain decreases by increasing the input seed power for
both configurations, this is a typical behavior for the power am-
plifier [13], [15], [16]. When the input seed power is changed
from 0.8 to 50 W, the power gains are experimentally found to
decrease from 8 to 2.16 for the double-pass MOPA frame and
from 2.95 to 1.76 for the single-pass MOPA frame, respectively.
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In order to well characterize these two types of power ampli-
fier, the gain curves are fitted by a Frantz-Nodvik model for a
continuous-wave operation [21], [22]:

P)amp
Pseed

F)sat Pseed
= Inq1 -1 1
Pseed . { + GO [QXP < Psat ) :l } ( 5)

where P, is the saturation parameter and () is the small-signal
gain. For the single-pass MOPA configuration, the saturation pa-
rameter and small-signal gain are characterized by P,y = 45 W
and Gy = 2.9, respectively. On the other hand, P,y =25 W
and Gy =9 are obtained with the double-pass MOPA config-
uration, confirming the relatively high-gain and low saturation
power provided by this amplifier structure.

We further investigated the dependence of the amplified
power on the incident pump power at the amplification stage
when the input seed power was fixed to be 50 W, as exhibited in
Fig. 4(b). Under an incident pump power of 136 W, the ampli-
fied power for the single-pass MOPA configuration is acquired
to be 88 W. On the other hand, the amplified power as high
as 108 W is achieved for the double-pass MOPA frame under
an incident pump power of 136 W, which is remarkably larger
than that obtained from single-pass MOPA frame. The beam
quality factors were generally better than 2.2 and the polariza-
tion remained linear after either single- or double-pass MOPA
configurations. According to the results demonstrated here, it is
believed that employing the multi-segmented crystal combined
with the double-pass MOPA configuration is suitable for ac-
complishing a reliable, efficient high-power diode-end-pumped
laser system.

G:

V. CONCLUSION

In summary, a novel Nd:YVO, crystal with multiple doping
concentrations has been originally fabricated for constructing
a high-power MOPA system. The temperature field inside a
rectangular-shaped laser crystal has been precisely calculated
by a powerful mathematical model on the basis of the Fourier
eigenfunction expansion method. Based on the theoretical
analysis, a reliable continuous-wave YVO,/0.1 4+ 0.3+ 0.1%
Nd:YVO,/Y VO, oscillator is successfully developed to gener-
ate the output power of up to 50 W with dual-end pumping.
Moreover, we have designed a double-pass MOPA to remark-
ably boost the laser power to reach 108 W under a total incident
pump power of 244 W, corresponding to the optical conversion
efficiency of 44.3%.
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