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Abstract—This paper proposes a new localization method for
mobile robots based on received signal strength (RSS) in indoor
wireless local area networks (WLANSs). In indoor wireless net-
works, propagation conditions are very difficult to predict due
to interference, reflection, and fading effects. As a result, an
explicit measurement equation is not available. In this paper, an
observation likelihood model is accomplished using kernel density
estimation to characterize the dependence of location and RSS.
Based on the measured RSS, the robot’s location is dynamically
estimated using the proposed adaptive local search particle filter
(ALSPF), which adopts the covariance adaptation for correcting
the system states and updating the motion uncertainty. To deal
with low sensor density in large-space environments, we present
a strategy based on the strongest signal with minimum variance to
choose a subset of detectable access points (APs) for enhancing
robot localization and reducing the computational burden. The
proposed approaches are verified by realistic low-density WLAN
APs to demonstrate the feasibility and suitability. Experimental
results indicate that the proposed ALSPF provides approximately
1-m error and significant improvements over particle filtering.

Index Terms—Kernel density estimation (KDE), particle filter
(PF), robot localization, wireless local area network (WLAN).

I. INTRODUCTION

N recent years, mobile robots have been increasingly being

used in a wide range of indoor services [1], [2] and human
interaction [3], [4] applications such as domestic services [5],
security [6], and rehabilitation [7]. To achieve this autonomy,
localization is one of the greatest challenges that need to be
overcome in order for mobile robots to achieve successful au-
tonomous navigation and perform their intended tasks without
human intervention. Accordingly, mobile robots should be able
to determine their position and orientation by perceiving their
environment using the sensors with which they are equipped or
by means of fusion with the infrastructure. Many popular robot
localization systems apply the sensors such as vision [8] and
range finders [9]. Their performance might be degenerated by
obstacles.

Recently, several kinds of radio-based localization solutions
have been developed using existing wireless infrastructures
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such as radio frequency identification (RFID) [10], wireless
sensor networks (WSNs) [11], and wireless local area networks
(WLANSs) [12]. The different wireless location systems uti-
lize different types of radio frequency measurements, such as
time of flight (TOF), time difference of arrival, and received
signal strength (RSS) [10], [12]. Solutions using delays or
angle measurements are complex and not widespread because
the specific hardware is too expensive or fragile in cluttered
and dynamic environments. Conversely, RSS-based approaches
have received more acclaim as RSS values are easily obtained in
wireless networks. In addition, WLANSs have become a critical
enhancement to public spaces, and wireless information access
based on IEEE 802.11 is now widely available, and the RSS
sensor function is available in every 802.11 interface [12]. As
a result, WLAN-based indoor localization is being considered
a feasible solution. Many successful solutions are presented in
[25], [28]-[30], and [35]-[37].

In this paper, we consider the localization of the mobile
robots in practical WLAN environments in which only a few
access points (APs) are available. The chief difficulty in this
critical condition is predicting RSS and dealing with its non-
Gaussian noise from interference, reflection, and fading ef-
fects in non-line-of-sight (NLOS) environments. We present a
WLAN-RSS fingerprint-based robot localization system. In the
offline phase, kernel density estimation (KDE) [41] based on
the RSS training set is proposed to build the observation likeli-
hood model for radio map since an explicit measurement model
is unknown due to the complexity of indoor environments. In
the online phase, to solve the problem of only few APs being
detectable in low sensor density and large space, we propose an
approach that uses the strongest signal and minimum variance
(SSMV)-based AP selection procedure to choose a subset of
detectable APs such that the information of all APs is more
efficiently utilized.

Moreover, a particle filter (PF) framework that is based on
sequential Monte Carlo (SMC) [14] is used to dynamically
track the robot’s position. In addition, to deal with some cases
in which most of the particles are prematurely concentrated
and losing diversity, we propose the adaptive local search
PF (ALSPF), which utilizes an adaptive local search (ALS)
algorithm to improve importance sampling and updates the
motion uncertainties using the adapted empirical covariance.
The following contributions are made in this work.

* A simple online radio map model using KDE, which
includes the uncertainties from the environment, is
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developed based only on RSS training pairs, instead of
building models that require extensive training effort for
parameter learning or fine-grained interpolation.

e An AP selection algorithm that selects the strongest
APs with smallest variance is proposed to deal with the
noisy NLOS propagation by the pedestrians or obstacles.
Our approach simultaneously reduces online computation
complexity, enhances global localization, and presents the
robustness to fewer APs applicable conditions.

e To enhance the accuracy, the proposed ALSPF is not
only based on the PF framework but also provides an
ALS to eliminate unreasonable estimates, instead of using
an exhaustive global resampling search, while presenting
approximately 1-m accuracy using only two APs with high
motion velocity.

Moreover, the amount and the scenario of the examined
routes are practical enough to be compared with related work on
radio-based robot localization [10], [15], [16], [18], [21], [24].

The remainder of this paper is organized as follows. In
Section II, we address related work and the problems to be
resolved. Section III gives a problem formulation of WLAN-
based robot localization. Section IV describes the proposed
radio localization systems. Section V presents the radio map
modeling using KDE. Section VI presents our experiments and
results. Finally, we conclude this paper in Section VII.

II. RELATED WORK

In WLAN positioning, the techniques can be categorized
into range-based positioning [13], [15], [20], [23] and location
fingerprinting [12], [25], [26], [28]-[30], [33], [35] [37]. The
range-based approaches rely on range measurements that com-
pute the position of a mobile terminal based on the wireless
measurements with some base stations whose locations are
given. Distances can be converted from either RSS or time-
based methods with TOF measurements. The multilateration
approach [12] based on some propagation models only can be
applied for static or very slow motion conditions of mobile
terminals. Recently, many applications using this scheme for
chirp spread spectrum (CSS)-based localization systems have
been proposed [19]-[21] since the distances between mobile
CSS tags can be simply measured with the CSS base stations
fixed at known coordinates. However, in reality, this requires
complex network infrastructure, which is not presented in to-
day’s conventional network installations. Recently, ultrasonic
signals also have been mainly used for indoor localization due
to their low cost and simple installation [17], [22]-[24]. The
addressed propagation models are sensitive to disturbances, i.e.,
the faster the mobile terminal moves, the more the localization
errors increase.

In addition, range-based methods are forced to deal with
bias and the noisy distance due to the interference in NLOS
environments. Most of existing solutions for radio-based robot
localization assume requiring high sensor density and slow
velocity and are usually tested in simple environments, which
might not be suitable for practical application.

In WLANS, the most feasible solution for RSS-based local-
ization is the location fingerprinting [25]. This method directly
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Fig. 1.  WLAN environment and task space for a mobile robot. A number of
APs are installed in the area, and the mobile robot is equipped with a mobile
device (such as a smartphone or a laptop) to receive WLAN-RSS values for
localization.

uses a radio map to characterize the RSS—position relationship
through training measurements at anchor points (ANs) without
the assumption of isotropic RSS contours, invariance to receiver
orientation, and exact knowledge of AP locations. Fingerprint-
ing consists of offline and online stages; during the offline stage,
RSS is collected at ANs to build the radio map. In the online
stage, the mobile terminal location is estimated by matching
RSS in the radio map [25], [28], [29]. Since RSS can be used
in most wireless devices, mobile robots are able to measure the
RSS with WLAN adapters to facilitate the robot localization
[301, [37], [38].

III. PROBLEM STATEMENT

In this paper, our primary focus is on the radio localization of
mobile robots through RSS readings with low-density WLAN.
As depicted in Fig. 1, we want to track the position of the
mobile robot using WLAN-RSS measurements. In our work,
there is no need for the locations that are equipped with APs
to be known—which is more practical for real applications.
Based on the location fingerprinting, the WLAN-RSS values
are collected as training pairs at each AN to build radio map
models using KDE. A number of commercial off-the-shelf APs
are installed in the testbed, and the mobile robot is equipped
with a mobile device to receive the WLAN-RSS measurements.

Fig. 2 gives an overview of the proposed radio-based robot
localization system, which is divided into two phases: an offline
training phase and an online estimation phase. In the training
phase, determination of the dependence between the RSS and
a certain location is carried out. This is a challenging task in
indoors due to radio interference, multipath fading, shadowing,
and NLOS caused by indoor propagation. Because the WLAN-
RSS values are measured in a complex environment, we pro-
pose the use of a nonparametric regression scheme based on
KDE to extend the flexibility of location fingerprints as the
sensed RSS in the online stage may not be accurate but is
relevant to the neighborhood.

As shown in Fig. 2, the work is in two phases and is based
on the location fingerprints that use a radio map to implicitly
characterize the RSS—position relationship through training
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Fig. 2. Schematic of the proposed localization scheme. In the offline phase, a

training stage is proceeded to build the radio map, and an ALSPF is provided
to dynamically estimate the robot position in real time.

measurements at ANs with known coordinates [30]. In the
offline training phase, the radio localization works as fol-
lows: Given a set of base station APs in WLAN B =
{b1,b2,...,bn, }, each capable of transmitting radio signals
periodically in a field 7 C R2, where N is the total number of
base stations (i.e., APs) installed in the task space, in the offline
training phase, we measure the signal strengths at each AN to
build a radio map that is a set R = {x},,ri, r{ } 4, where
Nan is the total number of ANs, [; € R? is the known training
location (also called the AN) labeled by 2-D Cartesmn co-
Li[lu,l"' TI“NB] > _L,j
is the averaged RSS vector at xi, from b; in B, r, =
[To 155 is the RSS standard deviation
vector at xi, fromb;,j =1,..., Ng.

During the online estimation phase, a new RSS observation
rj is measured by the mobile device equipped on the robot,
where k € R is the time instant, ry, = [rg.1,..., Tk Nps) L CON-
tains RSS measurements from Npg ; APs at time k, and 7, ;
is the received RSS value from b; (j =1,..., Npp,, and
Npg,i, is the number of detectable AP at time k). The set R =
{xi,,r), , 2 }NAN s collected in a database in the offline phase
to construct the probabilistic observation likelihood by KDE for
the online phase to determine the sample importance weights.

di _ T
ordinates x{, = [z}, , i, )]", r

7 7
ey » and 7

IV. PROPOSED RADIO LOCALIZATION ALGORITHMS

Here, we present details on the proposed radio localization
system. To enhance the robustness of estimation, the ALS
algorithm is involved in the resampling to dynamically cor-
rect motion uncertainties by updating the empirical covariance
matrix. In addition, an AP selection strategy is proposed to
improve estimation stability.

A. Standard PF

In this paper, we assume that the robot lies on a planar indoor
environment and that its position is described by a vector x;, €
"= which is defined as

Xk = [xk yk}T
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where n, is the dimension of state. At each time instant k,
sensors deliver measurements z; € Rt"*> for the robot. The
aim is to provide an estimate Xj of the state x;. Based on
the assumption of Markovian dynamics, the system dynamical
model and measurement model are defined by

X = f(Xp-1, W) (1

zi, = h(Xp, Vi) 2)

where f(-) : R x R — R"= is referred to as the transi-
tion function of state x;_1, and A(:) : R x R™ — R"= is
referred to as the measurement function. Furthermore, wj, and
vy, are the discrete white zero-mean noise processes, i.e., Wy ~

N(0,Q) with covariance matrix Q = dlag(a o) and vy, ~

N (0, R) with covariance matrix R = diag(a7,...,07 y, ).

The SMC approach is an approximation technique for solv-
ing the Bayesian filtering problem by representing p(x|2z1.x)
using a set of Ng samples of the state space (particles) with
associated weights. At the time instant k, a set of particles is
defined by

Sy = {(x},wi) li=1,...,Ng}
where xi = [2% yi]" € 2 and wi € R denote the ith particle
state and the associated importance weight, respectively. The
weights are normalized such that Y, wi = 1.

Based on the linear velocity vy, provided by encoders and
heading angle 0), measured by using an inertial measurement
unit (IMU) with compass, a particle containing the robot posi-
tion in 2-D space at time instant £ and the particle motion can
be predicted by the following equation:

vg - Tg - cos O
Vg - TS - sin F)k

X =f (%} 1) +We =%}, + [ k (3)

where Ts represents the sampling time of 2-D motion of the
robot, and the noise covariance matrix Q = diag(T2/2,T2/2).
The expectation of state estimate Xp,_; also can be
obtained by

Xpk-1 = f(Xp-1jp-1) “)
Pyjp-1 = Zwk (X} — Rkpo1] [k —fik\kq]T +Q. ()

The posterior p(xx|z1.x) and the system state Xy, can now be
approximated [14] by the following equations:

p(Xk|z1.1) Zwk (xi — x},) (6)
Xpjk = [Xk|Z1:k]
Ns
= /xk - p(Xp|Z1:)dx) = Zwi -x;, (D)
i=1

Pyk = Zwk [xh — Xpe] [xk — Xk\lc]T (3)

where d(-) is the Dirac delta function.
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B. Proposed ALSPF

In the SMC algorithm, the choice of the proposal distribution
q(xi|x} 1, 2zx) directly impacts the efficiency. Reference [14]
provides a straightforward choice of proposal distribution for
importance sampling as follows:

q (xplxi 1 2k) =p (Xkx,1o20) =p (xilx 1) ()
with weight

wi=wi | p (zk\x};) . (10)

The dynamism of indoor propagation, however, causes radio
conditions to deviate from the RSS map [30], [33]. With the
PF, most of the particles occasionally prematurely concentrate
at a wrong point induced by noise-disrupted RSS observations
and thereby losing diversity and resulting in failed estimations.
Two conditions that occur in online estimation processes are
taken account as follows.

1) Particle degeneracy (PD): A common problem with the
PF is degeneracy, which implies that a large amount
of computational effort is devoted to updating particles
whose contribution to the approximation to p(xy|z1.x) is
zero. A suitable measure of degeneracy of the algorithm
is the effective sample size Neﬁ‘ [14], i.e.,

Negg = Ns !

> (wp)?

n=1

an

2) Infeasible estimate (IE): In dynamical environments, the
WLAN-RSS, robot velocity, and orientation might be dis-
turbed by unpredictable noise, which causes the state to
be predicted to an infeasible region, as shown in Fig. 3(a).

To improve the robustness of importance sampling, the pro-
posed ALS algorithm is a one-step search procedure, which can
be used for detecting feasibility (PD and IE). Hence, the ALS
algorithm mitigates the adverse effects of environmental noise
and corrects the estimated states. The proposed ALSPF utilizes
an adaptively local varying area to search for a more reasonable
estimate based on the recent motion velocity. This releases the
limitation of the search area based on fixed uncertainty statistics
by PF at the failed estimation instants. The illustration for
ALSPF is presented as follows.

1) Detect IE: Fig. 3(a) shows that the robot location is
predicted to be in an infeasible region; thus, particles will
be degenerated at this region.

2) Evaluate ALS region A: Instead of proceeding using
global resampling, which is an exhaustive search that will
cause a high estimation variance, we propose an ALS
strategy to efficiently evaluate a new result of estima-
tion at time instant k. The search strategy is done in
accordance with an ALS region that is determined by the
average of the robot velocity to compute the boundary of
the area A C R? and is defined as follows:

A={(z,y)|Axr <z < Axy, Ayvr <y < Ayy} (12)
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Fig. 3. Tllustration of the proposed ALS algorithm. (a) IE condition occurs due
to noisy measurements. (b) IE condition is detected, and the ALS algorithm is
performed by expanding a reasonable area to search for a better solution (a one-
step search). (¢) Evaluation of a new estimate and covariance by the surviving
particles.

where

Axp =k k-1 — Uk - TaLs (13)
Axu = Zp-1k-1+ Uk - Tars
Ayvr = Jk-1jk-1 — Uk - TaLs (14)
Ayu = Op-1jk—1 + Uk - TaLs

and Tars is a time window that depends on the sensor
sampling rate, and 7 is an averaged linear velocity.
Based on the computed searching area A, the particles
are generated in the area using a uniform sampling such

that x§, = [z} y,i]T, 1=1,...,Ng € Awith

zi ~U(Axr, Axv) yp ~U(Ayr, Ayy), i=1,...,N,.

5)

3) Update the estimate: In Fig. 3(c), after sampling at the
ALS area A, the particles are selected by evaluating
the observation likelihood p(zx|x}). As a result, the
new particle set Sj, = {(x},w})[i=1,...,N§} can be
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TABLE 1
ALGORITHM 2: ADAPTIVE LOCAL SEARCH PARTICLE FILTER

¢ Draw N samples from the importance distribution:

- Prediction: X, ~ p(x, | X, ,,Z,, ), i=L.,Ng

¢ [IF location estimate ’A‘HH is infeasible or N, <N, :

- Perform ALS: Calculate ALS region A using (13) and (14).

- Draw N; samples in the adaptive search region by uniform
random number generation using (15).

- Importance sampling in ALS region A : Assign the particle a
weight, o] = p(z, |x}) .

- Resampling: Roulette-wheel resampling.

- ALS Update: Calculate sample mean and empirical covariance
from the selected Ng samples to compute f&,d,f and the empirical

covariance B, using (16) and (17).

- Uncertainty Update: Use rsz,(Ik to update the process

uncertainties (1).
« ELSE
- Importance

sampling: Assign the particle a weight:

@, = p(z;|%,), i=1sNs.
- Update: Calculate f(klk and £, using (16) and (17),

- Resampling: Roulette-wheel resampling.
* END IF

provided, and the new sample mean and empirical covari-
ance are computed as follows:

Ng
I Z i i
Xk‘k ~ UJk, 'Xk
i=1

Ng
7
Py, = E Wy, -
=1

4) Evaluate the process uncertainty: We utilize the results in
Fig. 3(c) and the covariance matrix Py, in (17) to update
the robot motion process uncertainties by using nsz‘ k
to update o2 and o2, where 7) is a confidence level or a
scalable step size for the state prediction.

Consequently, the ALSPF algorithm is used to enhance the
importance sampling by anticipating the PD problem and adapt-
ing its covariance accordingly to mitigate deviated estimates.
The complete ALSPF algorithm is summarized in Table 1.

(16)

— — T
(X% — Ko 1pe-1] [Xh — Re-1p-1] 7)

C. Base Station Selection Strategies

Until recently, many researchers have studied how to im-
prove the positioning efficiency while achieving an acceptable
accuracy. This motivates the need for AP selection techniques
in WLAN positioning [25]-[33], [37], [39]. Reference [31] first
utilized the subset of APs to reduce the computational cost for
APs with the strongest signal. Discriminant-based approaches
can provide a subset of APs to reduce complexity and ensure
the most discriminative view of the RSS environment [27],
[30], [32]. Reference [30] offers an AN-based AP selection
technique that uses the Fisher criterion as the selection criterion
and minimizes the correlation between the selected APs. Never-
theless, for a low-sensor-density case, it might be inappropriate
to choose APs according to the offline AN since the online RSS
observations vary dramatically.

In this context, we explore robot localization in low-AP-
density WLAN environments. In such a density-constrained

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 61, NO. 12, DECEMBER 2014

TABLE 1II
ALGORITHM 3: STRONGEST SIGNAL WITH MINIMUM VARIANCE
FOR BASE STATION SELECTION

* Inputs: At time instant k, the RSS observation set {r,_, ,.r} ,

where N, is a window frame size, and 1, =[r,,...,7 NB]T , where N, is
the total number of APs.
* Step 1) Compute the moving averaged RSS T, =[7,, ...,7,(71\,3]7 using

1 M
r= Z Y

— (18)
Ny 5

¢ Step 2) Rank APs form the set {r,....,7; y,} into {1",....,nV"} in

descending order of mean value 7, ,i=1,...,N, , then determine a

‘max

ranking index from {;}™,...,7 "} for base stations:

- B

index

. pmax max
LB B
* Step 3) Select M measurement vectors from {r,_, ,...I; } to be the set that

: max
{r‘%ww:w'"m .4.,1‘,(7NW*‘BW} by referring the order of B, intoa M xN,,

dimension RSS matrix Z™ :

max _ o max SmaxqT _ T
S LT =TTy ] = [rk—NW:k,B,"‘“ e rkaW:k,B;:“] ’

M, M,, ent .

~max

e Step 4) Compute the RSS variance for {z™,...,Z}

where Z™ =20, 2™ [, N, > M >M

} using the
following:
Nw
Zmax = max 12
- - g =z
5] [cov@) A 5

1
.~max NW - 1
Cov(}™) gy
Mo M

n=1

(19)

SM

e Step 5) Rank the set {5,...,5,} in ascending order and determine a
ranking index set with an ascending order of variance {s,,...,5,,} :

- B BMt, L BEMY

index

 Step 6) Select m measurements by referring the order of B

index

v
- Produce z, =[rk,B,’“'“ 7ol s m<M,meMN.

cees ) pmin

condition, the accuracy of localization is highly dependent on
the precision of sensor measurements. The APs with weak
signal strengths or unstable linkages should be excluded in
the online positioning stage. Therefore, we propose a strategy
based on the strongest RSS mean with minimum variance to
choose a subset of detectable APs to be the source of observa-
tions of the radio localization. The goal of Steps 1-3 in Table II
is primarily to find the AP that has stronger strength mean. In
(18), it provides a moving averaged RSS observation vector
(Step 1). Accordingly the strength can be ordered (Step 2), and
weak APs should be ignored. Then, a subset of stronger APs
is chosen (Step 3). Therefore, Steps 4-6 in Table II proceed to
select a set of stable APs from the results of Step 3 with a stable
observation measure using (19). Finally, Step 6 outputs the set
of base stations that are used for the online estimation. In gen-
eral positioning techniques, the estimation approach requires
at least three base stations, whereas the proposed SSMV-based
radio localization system only requires two.

V. RADIO MAP MODELING

For the radio-based localization with WLAN, the radio map
characterizes the RSS—position dependence through training
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Fig. 4. Examples for KDE-based radio map models. Suppose we only select two APs for observation likelihood updating, if a particle is sampled at a point on
the map with the corresponding measurement, the probability density is estimated by the kernel estimator with the local RSS information. Note that the vertical
axis provides the likelihood probability with the Gaussian kernel. (a) Smooth factor o = 1. (b) Smooth factor o = +/10. (c) Smooth factor o = /20.

measurements at ANs [12], [26], [27], [30], [32], [33], [37]. The
radio map model can be categorized into deterministic model
and probabilistic model—the former associates with each AN
point of the environment a mean RSS value for each node, and
the latter represents a probability distribution of RSS values.
The positioning techniques based on the deterministic radio
map can be referred to as the location fingerprinting [16]. In
contrast, the stochastic radio map is more realistic as it takes
into account possible dynamic variations in the environment.
To compare the localization performance, we not only propose
a probabilistic approach using KDE but also address a deter-
ministic method that applies the neural fuzzy system to the map
interpolation.

A. Proposed Probabilistic Approach: KDE for
Radio Map Modeling

In this paper, we propose a radio model based on an em-
pirical RSS distribution using a KDE [40] due to its success
in the approximation of probability density distributions. In
addition, the radio model can be formed as a density function
instead of an explicit measurement model to characterize the
RSS—position relationship. Because the RSS distribution is
spatially dependent, KDE can be used to infer the measurement
contribution to the update according to the locally relevant
training data information, which provides successful flexible
density estimation with NLOS propagation. After choosing a
subset of detectable APs using the SSMV algorithm, the index
set BN of detectable APs presents the measurement zy =
[T, Bminy - Tk, Bg;m]T for updating ALSPF from WLAN-RSS
observations ry. The kernel density estimator requires a set of
training pairs from radio map R = {x!,, r! r,, ri }AY, which is
used to comprise the training pairs selected by B2 . In order
to approximate the observation likelihood model p(zk|xk),
multivariate Gaussian kernel-based density estimation is used
to evaluate the significance weight and is given as follows:

e .|

202 (20)

NaN
= Z 271_0_2 1/2 exp

where
& = [xi

is composed of the ith particle state and the online RSS ob-
servation zy, = [ry, pmin, ... 77n]€7B:1yuLin]T, which is produced by
the SSMV algorithm, and o > 0 is a smoothing parameter.
In the preceding formulation, p(zx|xx) is determined using a
Gaussian mixture obtained from a spatially distributed set of
sets, and the measurement equation is essentially replaced by
the approximation. Fig. 4 demonstrates three examples of radio
map modeling using KDE with different smoothing factors. It
can be seen that the results from distributions of radio maps are
adapted to the distinct RSS variation and NLOS problem [30]
to provide the model robustness.

T

i m7T i
Yk (Zk) ] = |:f17k. Y Tk},Bi‘“"? ey rk.,ngin

B. Deterministic Approach: Neural-Fuzzy-Based
Radio Map Interpolation

The neural-fuzzy-based system ANFIS [34] allows a deter-
ministic approach to interpolation problems, which is applied
to interpolate the training data pairs of WLAN-RSS to achieve
fine-grained radio map models. In the training phase, on the
basis of radio map R = {x{,,r’, ri }NAN the adaptive neuro
fuzzy inference system (ANFIS) based learning associates the
inputs (AN positions x%) with the corresponding target (RSS
mean value rfL) to generate an interpolated RSS map. In the on-
line phase, if given the input values x] and z3, a predicted RSS
y* is inferred via (21) through the trained ANFIS network’s
weights o and membership functions f [34], i.e.,

y = ai - fi (21, 23) + az - fo (21, 23) 21
@1 + Qo
Then the observation likelihood p(z|xy) based on ANFIS is
given as follows:

(e Gl

2ro’ 2072 @2)

wy, =

where ¢’ is a smooth factor, and (%) is the expected RSS
value found using (21) with the particle state vector X, and zy,
is the RSS measurement.
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Fig. 5. Map of the experimentation site (53 m X 54 m). The gray region
comprising the main hall and hallways is the area of interested and feasible
area for robot traveling. The red triangles indicate the areas equipped with off-
the-shelf APs; their locations are assumed to be unknown.

Both (20) and (22) are used for measurement update in the
importance sampling stage to compute the particle weights. In
addition, a feasible region C is adopted to filter the particles and
renew the particle weight as follows:

i_{w,i, ifﬂc};EC (23)

wy, = .
k 0, otherwise.

The proposed probabilistic approach utilizes the training data
and KDE to calculate the probability and provide a continuous
fine-grained radio map. Moreover, the KDE model was also
simple enough for online computation without storing a large
memory for map information and increasing the number of
training pairs. On the contrary, the interpolation-based ap-
proach required long-term training effort for the interpolation
procedure, in addition to a large number of training pairs
and large memory storage to achieve a fine-grained map. The
performance of the interpolation-based approach is limited as
it is trained using only the specific deterministic target, i.e., the
RSS mean value, which might induce the inappropriate RSS
prediction results in NLOS propagation environments.

VI. EXPERIMENTS AND RESULTS

This section describes the results of experiments conducted
using the proposed robot localization method. The problem
considered in the framework of this paper concerns low-density
WLAN environment. Experiments were carried out on the
first floor of the engineering building of National Chiao Tung
University (Taiwan), as shown in Fig. 5. The dimensions of the
experimentation region used for localization were 54 m x 53 m
(2862 m?), which is a bigger area than those used in [16],
[20]-[22], [25], [28]-[31], and [33]. At the site of the exper-
iment, commercial off-the-shelf APs whose coordinates were
not needed were installed, and a smartphone was attached
to the mobile robot to receive WLAN-RSS values for an
acquisition program. In addition, we implemented all the al-
gorithms in an industrial computer (2-GHz Intel Core2 central
processing unit).
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Fig. 6. Developed mobile robot in this paper.

Fig. 6 shows the wheelchair robot that was designed to
provide user transportation service in WLAN environments.
The sensors equipped on the robot are IMU, encoders, laser
range finder, and ultrasonic sensors. Since the sampling times of
the deployed sensors measuring RSS, velocity, and orientation
are 2, 5, and 25 Hz, respectively, we set the system updating rate
as 2 Hz. Our WiFi scanning can be implemented by software
without additional hardware and will not increase the cost.

A. Training Data Set

We installed ten commercial off-the-shelf APs in the testbed,
and each AN was covered by six APs on average, and at least
two APs were detectable for some outlying areas on the map.
In the testbed, WLAN-RSS values were collected for 236 ANs
(training locations) with a separation of 2 m. For each AN,
a total of 200 samples was collected at a sampling rate of
2 samples/s. The AN coordinates and measured offline RSS
data were used to build the radio map R = {x{,,r’, v’ }]/A¥,
which is also called the RSS fingerprints. Please note that ANs
for radio modeling should cover all the areas traversed by the
robot. If the robot traverses a zone that has no radio map
information, the estimator will be diverged from the current
estimation due to the seriously mismatched RSS measurements.

B. Testing Data and Route Types

Test data were collected over three days and were separated
from training days to reflect the mismatch between training
and testing conditions in the real-life operation of the system
and capture variations of environmental uncertainties. The test
samples were collected for four types of test routes, which are
summarized in Table IV and considered as follows.

1) Simple transportation: These routes consisted of straight

paths from a source to a destination with turns at most 90°
along the way.
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2) Pathway round trip: This test case considered movement
scenarios of the pathway with direction reversal such as
moving from one office to another office and then back to
the original office.

3) Lobby round trip: This case considered motion scenarios
with a round trip for guidance service in a museum or at
an art show.

4) Entire floor round trip: This test case considered scenar-
ios that are a combination of the previous three scenarios,
and the distance traveled was the longest one. R4 was
examined for a wide variety of challenges in WLAN lo-
calization. This included the most limited partial coverage
of sensors, the RSS interference, and the NLOS problem
due to pedestrian bodies or unknown obstacles in the
environment.

Consequently, the training sets were collected over the five
days, and the test data were collected in the span of another
three days. This setup ensured that the 11 800 training samples
and 4600 testing samples were disjoint enough to provide
realistic results. In addition, the average speed of the robot is
0.56 m/s. Therefore, the provided experimental scenarios and
data sets were extensively comparable with related work [7],
(8], [13], [15], [16], [21]-[23], [28], [29], [33].

C. Performance Metric

We adopted the distance error as the performance metric,
which was evaluated using root-mean-square error (RMSE)
with the Euclidean distance between the true position and its
estimate. Therefore, the RMSE for the jth route, i.e., e;, and
the average RMSE (ARMSE), i.e., €.y, are defined as follows:

K.
1 J )
ej = F] ;(xkﬂ» — Xk)2 (24)
Ngr
1
€Cavg = Ni]% ; €; (25)

where xj, is the ground truth obtained by recording the traversed
labels on the floor with a laser pointer equipped on the robot,
X},; is the estimate of x;, in the jth route, K is the length of
the route, and Ny, is the total number of the routes.

D. Localization Results and Performance Evaluation

In order to show the feasibility and suitability of the methods
with a low sensor density, the experimental routes in Table III
are examined. The radio signal quality is influenced by the mo-
bile terminal movement; thus, the limitation of robot velocity
should be clarified for the robustness and performance of radio
robot localization. The robot speed in experiments is dynami-
cally changed due to several motion behaviors in tasks, such as
high-speed traveling in free space or slowly moving in crowded
space and stop or turning. As can be observed in Table IV, the
proposed algorithms are examined more strictly with a lower
density WLAN environment. Moreover, the amount and the
scenarios of the examined routes are complex and practical
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TABLE 1II
TESTING ROUTES AND MOTION SCENARIO

Route Route Avg. Avg. Avg. detectable
scenario index length velocity AP number
Simple 60.58m 0.54 m/s 6.69
transportation
Pathway R2 80.00m 0.77 m/s 54
round-trip
Lobby R3 7694m 038 mis 7.45
round-trip
Entire floor 4 276.70m  0.57m/s 5.82
round-trip

enough to be compared with related work on radio-based robot
localization [10], [15], [16], [18], [21], [24].

In our work, we adopted Ng = 500 for ALSPF and set the
time average window Tars = 10 for the ALS algorithm, and
the threshold N7 (see Table I) is set to be 50 (10% of Ng). The
implemented localization procedures were completed within
0.5 s, which provides real-time operation since the WLAN-RSS
sampling rate was 2 Hz in this study.

1) Tracking Results: In Fig. 7, a visualized example (R4)
is compared between the true trace and the estimated ones
obtained by the proposed radio localization system. In the on-
line estimation phase, while the mobile robot moves along the
routes, the attached smartphone of robot measures the WLAN-
RSS values from APs. After gathering the RSS observations,
ALSPF updates the estimated coordinates of the mobile robot
based on the KDE radio model with 2 APs selected by the
SSMV algorithm. Fig. 7 presents a combination of all the
motion scenarios by performing entire floor round trip; its
starting point is located at point @) in the lobby. It can be
seen that the proposed radio localization can track the mobile
robot precisely in the WLAN environment; after such a long-
term tracking, it was observed that good tracking was presented
without accumulative errors.

Table V shows the error statistics of the tracking results
achieved by ALSPF with the KDE model and SSMV AP
selection for each motion test cases. The proposed approach
effectively and successfully performs under varied movements,
higher speed, and realistic noisy measurements induced by the
limited partial coverage of APs, NLOS conditions due to walls,
and multiple pedestrians. As a result, these cases reveal that
the developed localization system is accurate and reliable in
tracking the mobile robot under different motion scenarios.

2) Effect of AP Selection: Fig. 8§ compares the ARMSE
obtained from the ALSPF with respect to three AP selec-
tion schemes, namely, SSMV, strongest observation RSS [39],
which is the most conventional approach, and random selection.
The strongest criterion ranks APs in descending order of their
RSS mean values, and the random criterion randomly selects
a few of detectable APs regardless of their RSS values. In
this context, the AP selection approaches that satisfy sufficient
coverage of APs are inapplicable and not implemented in
this study since there are only few detectable APs along the
examined routes. Hence, different to related studies [25], [30],
[31], [33], [39], this paper concerning a low AP density, the
comparison of AP selection is based on 2-5 APs.

In this paper, the selection of SSMV algorithm is performed
to choose the APs with respect to the minimum variance over
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TABLE 1V
COMPARISON OF EXAMINED EXPERIMENTS FOR RADIO-BASED ROBOT LOCALIZATION
Robot System  Testbed size (m?) Radio source Radio sensor precise  Sensor density Robot velocity (m/s) Examined routes

This study 2862 WLAN Low 286.2 m*/BS 0.56 (Average) 40
Park [15] 26.4 RFID High 0.13 m%/tag 0.12 (Average) 3

Cho [21] 81 CSS High 20.5 m*/BS 0.3 (Average) 1
Cheng [22] 63 WSN and Ultrasonic High 9.0 m*/BS Static 1

Song [24] 1.34 Ultrasonic sensor High 0.335 m*BS 0.4 (Average) 3

Note: BS is the base station.

I Lo
True position
--@-- Estimated position (ALSPF)

|

I
It

-

Fig. 7. Estimated trajectories of R4 using the proposed (dashed line) WLAN
localization and (solid line) ground truth. The node @) is the starting location
and the destination.

TABLE V
LOCALIZATION RESULTS FOR EACH TEST CASE
Total Error mean Error std | ARMSE
Test case
routes (m) (m) (m)
Simple 16 1.24 0.54 1.42
transportation
Pathway round-trip 16 1.26 0.66 1.52
Lobby round-trip 4 0.96 0.50 1.13
Entire floor round 4 0.86 0.73 1.35
3.5
3
2.5
E N u2AP
; m3AP
%’ 15 4AP
= 5AP
14
0.5
0 =
Proposed SSMV Strongest Random
Fig. 8. Effect of adopted AP selection. The results are obtained by ALSPF

with the KDE-based radio model.

the set of APs with the strongest RSS mean. Fig. 8 indicates
that SSMV significantly outperforms the results of strongest
and random selection in each case of deployed numbers. The
performance degradation of the method with the strongest RSS
is attributed to the redundant noise from the unstable APs.

Ground truth
seeefiyes PF
--©-- ALSPF

IT

Fig. 9. Scatterplot of estimated locations (R1) with and without ALS

algorithm.

Thus, we squeeze the useful information into the relatively
lower dimension by a suitable AP rank provided by using
SSMV. Only the selected APs are retained for robot local-
ization. In addition, Fig. 8 shows that the proposed criterion
outperforms other methods and utilizes the fewest APs set to
achieve improvements of 0.45 m (27.43%), 0.33 m (21.02%),
0.49 m (30.24%), and 0.57 m (36.54%) over 2—5 APs, which, in
turn, reduces the computational cost required by each location
estimation. These indicate that SSMV effectively mitigates the
imprecise APs and redundant noise.

3) Effect of ALS Algorithm: Fig. 9 compares the tracking
results between PF and ALSPF based on the KDE model. In
Fig. 9, after the mobile robot passed through the corner of the
pathway, the estimated trajectory using PF is too close to the
wall because failed prediction around the corner happens due
to the fixed statistics of motion uncertainties, the major part
of particles are degenerated and prematurely concentrated at
a wrong point. Thus, the PF meets the IE while predicting
an erroneous estimation at corner, and then, the PD occurs.
Obviously, the trajectories of the PF deviate from ground truth;
however, the ALS algorithm demonstrates better accuracy and
robust performance because the IEs are removed, and it can suc-
cessfully provide corrected estimates and motion uncertainties
with the ALS algorithm instead of the global resampling. As a
result, Fig. 9 presents the effectiveness of the ALS algorithm
for the adaptive updating.

4) Effect of WLAN Density: Fig. 10 shows the effect of de-
creasing the number of detectable APs on positioning accuracy.
The sensor density is a challenge of the robustness and accu-
racy for the radio-based localization. The low-sensor-density
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Fig. 10. ARMSE versus the number of APs in the experimental environment.

1 T

|
! anns
0.9 =i = = g = ] -~ - """: ———————
1 1 ,* 1 1
| el "” !
08F----- === S e e F--- -
1 K (" 1 l
% 1 R Sl I S L]
£ I s
Q06F-—--md Ll
e}
e
o
5 05f-----@-L oL _ v L L
2
©
S 04b----f i L]
£
5
03} --- I
| RADAR [16]
I
02b--PL A || ===+ ANFIS + PF |
: ....... KNN + PF
01l @ ol 2 . | KDE + PF i
i || =@ Proposed: KDE + ALSPF
0 1 1 1 1
0 1 2 3 4 5 6
Error (meter)
Fig. 11. Empirical cuamulative probability of position errors.

conditions will degrade the performance in real operation of
a positioning system. Please note that our positioning system
only selects two APs from the detected AP set dynamically
using the SSMV algorithm. For the lowest density, the proposed
framework based on ALSPF with the KDE model achieved the
high level of accuracy and demonstrates the best performance
improvements of 1.28 m (44.46%), 3.07 m (64.96%), and
1.42 m (47%) over PF estimator with the KDE model, PF
estimator with the ANFIS model, and PF estimator with the
k-nearest neighbor (KNN) model. Therefore, these verified the
robustness of the proposed approach.

E. Comparison With Other Methods

To quantify the effectiveness, the proposed localization
system is compared with PF-based schemes with respect to
different radio map models. To ensure fair comparison of
algorithm performances, all methods use 500 particles and two
APs selected by the SSMV-based AP selection. Fig. 11 and
Table VI indicate that the ALSPF algorithm significantly out-
performs the other methods. In particular, Table VI illustrates
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TABLE VI
COMPARISON OF ARMSE RESULTS
Estimation Radio Map Errormean  Errorstd ~ ARMSE
Method Model (m) (m) (m)
RADAR [16] Training 6.04 5.03 7.84
Pairs
KNN [42] 2.18 0.89 2.44
PF ANFIS [34] 2.50 1.39 2.96
KDE 1.51 0.65 1.67
P q KNN [42] 1.41 0.89 1.72
ropose
ALSPF ANFIS [34] 2.05 1.01 2.31
KDE 1.08 0.61 1.35

the improvement brought by the ALS algorithm. The ALSPF
estimator achieves the improvements (ARMSE) with respect to
the KDE, ANFIS, and KNN models of 0.24 m (16.78%), 0.97 m
(37.59%), 1.12 m (49.39%) over the PF estimator based on the
KDE, ANFIS, and KNN models, respectively. Furthermore, we
can observe 86.08% improvement in ARMSE while applying
our method to RADAR [16].

VII. CONCLUSION

A radio-based robot localization with low-density WLAN
APs has been proposed in this paper. A new methodology based
on location fingerprints with KDE is used to deal with the
noisy data and environmental uncertainties and overcome the
lack of an explicit measurement model. Moreover, two online
strategies, i.e., SSMV AP selection and ALSPF, are proposed
to enhance positioning accuracy. The SSMV algorithm can
facilitate more efficient utilization of APs and be applied to
deal with low-density situations by selecting more precise
APs relatively. The unreasonable estimates can be removed by
cooperating with the ALS algorithm and particle filtering that
adaptively correct the robot location states in the importance
sampling stage. To demonstrate the feasibility of the proposed
localization system, we sufficiently examined the proposed
algorithms by extremely low AP density, high-speed robot
movements, several complex motion, and long-term routes.

The experimental results indicate that the proposed frame-
work is robust to the number of deployed APs and confirms the
effectiveness of ALSPF in improving accuracy when compared
with PFs and other radio models. Consequently, the proposed
new radio localization algorithms for mobile robots are suc-
cessfully performed and can accurately track the position with
low-density WLAN APs.
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