
Int J Parallel Prog (2014) 42:875–899
DOI 10.1007/s10766-013-0256-7

Parallelizing Complex Streaming Applications on
Distributed Scratchpad Memory Multicore
Architecture

Shin-Kai Chen · Cheng-Yu Hung ·
Ching-Chih Chen · Chih-Wei Liu

Received: 17 November 2010 / Accepted: 22 June 2013 / Published online: 4 July 2013
© Springer Science+Business Media New York 2013

Abstract Multicore processors can provide sufficient computing power and flexibil-
ity for complex streaming applications, such as high-definition video processing. For
less hardware complexity and power consumption, the distributed scratchpad mem-
ory architecture is considered, instead of the cache memory architecture. However,
the distributed design poses new challenges to programming. It is difficult to exploit
all available capabilities and achieve maximal throughput, due to the combined com-
plexity of inter-processor communication, synchronization, and workload balancing.
In this study, we developed an efficient design flow for parallelizing multimedia appli-
cations on a distributed scratchpad memory multicore architecture. An application is
first partitioned into streaming components and then mapped onto multicore proces-
sors. Various hardware-dependent factors and application-specific characteristics are
involved in generating efficient task partitions and allocating resources appropriately.
To test and verify the proposed design flow, three popular multimedia applications
were implemented: a full-HD motion JPEG decoder, an object detector, and a full-HD
H.264/AVC decoder. For demonstration purposes, SONY PlayStation�3 was selected
as the target platform. Simulation results show that, on PS3, the full-HD motion JPEG
decoder with the proposed design flow can decode about 108.9 frames per second (fps)
in the 1080p format. The object detection application can perform real-time object
detection at 2.84 fps at 1280 × 960 resolution, 11.75 fps at 640 × 480 resolution, and
62.52 fps at 320 × 240 resolution. The full-HD H.264/AVC decoder applications can
achieve nearly 50 fps.

S.-K. Chen (B) · C.-Y. Hung · C.-C. Chen · C.-W. Liu
Department of Electronics Engineering, National Chiao Tung
University, Hsinchu, Taiwan
e-mail: skchen@twins.ee.nctu.edu.tw

123

876 Int J Parallel Prog (2014) 42:875–899

Keywords Parallel programming · Streaming application · Multicore architecture ·
Distributed scratchpad memory architecture

1 Introduction

Owing to the so-called brick wall [8], i.e., the memory wall, the instruction-
level parallelism (ILP) wall, and the power wall, performance gains achieved by
increased operating frequency have been greatly diminished. This limitation brings
a dramatic change to microprocessor design. To meet the ever-increasing demand
in computing power, modern systems on a chip adopt multicore solutions. Intu-
itively, a multicore processor can be considered as a group of well-organized
cores. The cores may be homogeneous or heterogeneous, and they can be cou-
pled together tightly or loosely. The most common interconnection network designs
include the bus, ring, mesh, and crossbar. Polling, mailbox, or shared memory tech-
niques are used to implement inter-processor communication (IPC). The performance
achieved by using a multicore processor is strongly dependent on the target soft-
ware and its implementation. However, multicore programming poses new chal-
lenges.

Conventional software programming was typically sequential, based on C and simi-
lar languages, resulting in sequential execution, flattened shared memory, and implicit
data communications. Thus, if a conventional program is not recoded, it will run on a
single core, and its performance can only be improved by taking advantage of ILP and
sub-word data-level parallelism (DLP), e.g., single-instruction multiple-data (SIMD).
If the resulting latency cannot meet the real-time constraints, we can achieve increased
performance and efficiency from the multicore processor, by re-coding the program as
a parallel, multithreaded version. Instead of sequential execution, tasks are allocated
to different cores and are processed concurrently.

Flattened shared memory with cache support is utilized in today’s dual-core
and quad-core platforms. Legacy software programming follows the shared mem-
ory multiprocessor programming model, which is rather simple. The centralized
flattened shared memory is ideal for inter-core data exchange. Unfortunately, the
bandwidth of the shared memory and the cache coherence logic can cause bot-
tlenecks. As a result, hardware complexity grows exponentially as the number of
cores increases. Consequently, distributed or hybrid memory systems now rely on
special memory transfer mechanisms, e.g., direct memory access (DMA) [8]. Sim-
ilar performance can be attained if memory transfer operations are inserted in the
right place.

The programmer is now responsible for generating concurrent tasks, managing
non-uniform memory access explicitly, and considering coherence and synchroniza-
tion between cores. In addition to the application-specific characteristics, hardware-
dependent factors make programming difficult, time-consuming, and error-prone.
Workload balancing, synchronization, and IPC overhead complicate software pro-
gramming and seriously degrade performance. These factors are always critical in
achieving the peak performance of the distributed scratchpad memory multicore
processor.

123

Int J Parallel Prog (2014) 42:875–899 877

Data partitioning and function partitioning are two general approaches normally
used to analyze an application [28]. The data partition scheme exploits DLP to cre-
ate concurrent tasks. To achieve DLP, the original data stream is partitioned into
disjoint or parallel segments. These segments are served by different cores simul-
taneously. Usually, the cores share the same program. In the case of an N -core
processor, if the N -parallel DLP technique is applied on an application, then the
workload of each core is reduced to 1/N , and the latency becomes 1/N . The
data partition method usually pursues extra data parallelism by raising the gran-
ularity of the data segments. Consequently, each core requires a larger buffer or
memory to hold the temporary data. If the local memory is not large enough,
performance could be degraded significantly due to the additional movement of
data.

On the other hand, function partitioning decomposes the application into tasks (or
processes) according to its functionality. The core is then in charge of serving one or
more tasks. With step-by-step processing, the program could be executed and com-
pleted in a software pipeline. However, this may introduce IPC overhead between
cores. The IPC overhead is frequently the most significant factor in the performance
of the multicore processor. In data partitioning, cores exchange information only if
true data dependencies exist among the different segments; however, function parti-
tioning always suffers from IPC overhead between tasks. Different agglomeration and
allocation of tasks result in different IPC overhead. By reducing the IPC overhead or
by hiding it in the function partition scheme, higher multicore performance can be
achieved. Furthermore, when the number of cores change from N to 2N , the designer
can easily readjust the segments in the data partition scheme. However, repartitioning
and reallocation of tasks may be necessary in the function partition scheme if better
performance and efficiency is required.

Workload balancing and IPC overhead are important issues regarding multicore
performance. Unfortunately, these primary factors are usually at odds with each other
and must be balanced. If we simply make tasks small and apply dynamic task dispatch-
ing, workload balancing is conceptually fulfilled as long as the application provides
enough concurrency. On the other hand, to minimize IPC overhead, we would attempt
to run the program on a single core, as long as the necessary data fits in the local mem-
ory. The balancing process, which depends on software programming and hardware
porting, is rather complicated and time-consuming.

Programming models facilitate multicore programming, because they hide numer-
ous hardware details and serve as an abstraction layer to bridge software and hardware.
Using a programming model, programmers can easily develop a parallel program on
a simpler virtual platform. The Kahn process network [15] or streaming program-
ming model [17] is used with streaming multimedia applications. In this model, pro-
grammers are responsible for decomposing the application into a data-flow process
network, which is a graphical structure containing data and processes. The data prim-
itive is a stream, i.e., a continuously ordered set of data, and the FIFO-communicated
processes are expressed in terms of the operations applied on the stream. The oper-
ations include data load/store, mathematical computations, and data communication
through the interconnection network. Depending on its input queue, the process per-
forms its functions when a stream is available and places the resulting stream in

123

878 Int J Parallel Prog (2014) 42:875–899

its output queue, typically the input queue of another process. In this manner, the
processes in the stream programming model can be activated simultaneously. Finally,
the processes are allocated to the physical cores, and the FIFO queues between the
processes are managed by the on-chip interconnection network and memory sub-
system. The streaming programming model simply defines the task partition and
the interactions between tasks, which is a general programming model suitable for
porting streaming multimedia applications on all kinds of multicore processors. We
rely on the streaming programming model to analyze general task decomposition
and allocation. To perform specific optimizations, advanced programming models are
required.

The streaming programming model simplifies the programming into a partition
problem and an allocation problem. An application is partitioned into numerous
components, which are then allocated to physical cores. However, the process to
gain efficiency in partition and allocation is still complicated. The performance of
a parallelized streaming application on a multicore platform Ttot can be modeled
as follows:

Ttot = Tseq + Tpar

Tseq + MAX
[
Tproc

]

Tseq + MAX
[
Tcmp + Tcomm

]

Tseq + MAX
[
�(Tcomp + Toverhead) + Tcomm

]

An application may include a sequential part Tseq and a parallel part Tpar . Only a par-
allel part can be partitioned and accelerated by a multicore. When porting to multicore
processing, the time spent processing the parallel part is reduced, depending on the
processor with the heaviest workload, which is Tproc. The performance is degraded by
both the computation time Tcmp and the data communication Tcomm. The computation
time is the summation of the execution time of each component Tcomp allocated to the
critical processor. Unfortunately, the partition process creates computation overhead.
Different components are unable to share intermediate data, which can cause extra
execution time Toverhead .

In order to raise the performance, Tseq, Toverhead , and Tcomm must be reduced
and the load must be balanced among processors. The Tseq is strongly dependent
on the application, and algorithmic transform can help reduce Tseq. Communica-
tion overhead Tcomm is usually the critical obstacle to parallel programming. To
address the problem, most multicore architectures provide hardware support, such
as high-speed interconnection networks and DMA chips. High-speed interconnec-
tion networks utilize a complex topology and a strong arbiter to allow high-volume
concurrent data transfer, which is usually supported to further raise the bandwidth.
DMA is a standalone data transfer engine, which can perform data transfer while
processors take care of computation. Both these devices prefer massive continuous
memory access and can highly reduce Tcomm. The load balancing and Toverhead are
managed by the partition-and-allocation process. The number of components and
the level of granularity resulting from partition are the most crucial factors in load
balancing. The granularity of each component depends on the application, which is

123

Int J Parallel Prog (2014) 42:875–899 879

difficult to control; therefore, the number of components is usually raised to improve
load balancing. However, large numbers of components complicate the allocation
process, which may lead to unnecessary data communication and increased com-
putation overhead Toverhead . On a multicore platform with n cores, the theoreti-
cal n processing time reduction is possible only if most of the application is par-
allelizable and can be perfectly partitioned into n equal and independent compo-
nents. However, porting most applications may not be practical, especially when n is
high.

In this paper, based on the streaming programming model, we parallelize complex
streaming applications on a distributed scratchpad memory multicore architecture. Var-
ious hardware-dependent factors and application-specific characteristics are involved
in generating an efficient task partition. A workload-balancing process-allocation algo-
rithm is applied to guarantee the best performance for multicore processing. For our
experiment, we choose the commercial SONY PlayStation�3 (PS3) as the target plat-
form. Three popular complex streaming applications were implemented: a full-HD
motion JPEG decoder, an object detector, and a full-HD H.264/AVC decoder. The
CPU on the SONY PS3 is a Cell processor [18], which is a distributed scratchpad
memory multicore processor.

On the PS3, the motion full-HD JPEG decoder with the proposed algorithm can
decode at about 109 frames per second (fps) in the 1080p format. The object detec-
tion application with the proposed algorithm improved the performance by about
16 %, compared with that of the parallel detector from CellCV [23]. Recently, an
object recognition system for Cell was proposed in [27]. At the QVGA resolu-
tion, it can detect objects in real-time at 22 fps. Using scaling factors similar to
those in [27], the object detector with the proposed algorithm can process a QVGA
source at a maximum of 63 fps. Finally, a state-of-the-art H.264/AVC decoder on
a Cell processor has been proposed [2,20], and its best frame-rate performance
on the PS3 is about 35.1 fps with full-HD quality. With our efficient design flow,
the H.264/AVC decoder can achieve almost 50 fps with full-HD quality on the
PS3.

The rest of this paper is organized as follows: Sect. 2 demonstrates the design
flow that parallelizes complex streaming applications on the distributed scratchpad
memory multicore architecture. Section 3 provides a brief introduction to the mul-
ticore architecture of PS3. The porting of two DLP streaming applications to PS3
(frame-based motion JPEG decoder and slice-search-window-based object detection)
is presented in Sect. 4. Section 5 describes a real-time high-definition H.264/AVC
decoder using mixed data and function partitioning. Finally, Sect. 6 concludes
this paper.

2 Parallelizing Streaming Applications on Distributed Scratchpad
Memory Multicore Architecture

Multicore programming introduces additional partitioning and allocation steps, which
are unfamiliar to most programmers used to working on single-core architectures. The
goal of these steps is to reduce processing time by balancing the workload of the cores

123

880 Int J Parallel Prog (2014) 42:875–899

as much as possible while minimizing the resulting IPC overhead. In general, the finer
the task granularity, the better workload balancing can be achieved. Unfortunately,
large amounts of tasks complicate the allocation step, which may lead to unnecessary
data communication, thereby increasing IPC overhead dramatically. In this section, we
briefly introduce the design flow we adopted to parallelize multimedia applications on
distributed scratchpad memory multicore architectures, to attain the best design that
balances conflicting demands.

A few research studies focused on multicore programming for distributed scratch-
pad memory architectures. Some [2,13,20,26,27] parallelized specific applications
according to their detailed dataflow, and efficient porting results were obtained. How-
ever, their proposed solutions were difficult to apply to different applications, and new
programming models [21,22,25] were proposed. These new programming models
provided libraries and compiling tools that hid the tedious tradeoffs. Other research
studies [5,16] developed automatic code generation based on existing programming
models.

Since the capabilities of compiling tools are still limited, these programming mod-
els are rather complicated. They rely on fine-grained partitions to ensure load bal-
ancing. For complex applications, such as H.264, using these programming models
can be difficult for programmers. The limited capacity of scratchpad memory brings
another challenge, especially when the program codes, the stack, and the heap all
reside in the scratchpad memory. Some studies [1,3,14] focused on the automatic
handling of memory allocation, by concentrating on accelerating the execution of a
single thread on a single core with scratchpad memory and hiding the details from
programmers.

Our research attempts to develop a general design flow that starts from a sim-
plified programming model and attains a high-performance parallel program for
distributed scratchpad memory multicore architectures using coarse-grained par-
titioning. We started with an optimized single-core program, assuming that all
functionalities have gone through a conventional single-core optimization, such
as SIMD and loop unrolling. In other words, we assumed that the computations
would not change drastically during the optimization. To deal with the limited
scratchpad memory, we applied dynamic code mapping [14] and circular stack
management [3] to the program code and the stack, respectively. All memory
spaces were allocated statically to prevent the use of heap variables, as suggested
by [10].

The design flow is shown in Algorithm 1. Data partitioning normally benefits the
workload balance, because workloads resulting from data partitioning are more pre-
dictable and flexible than task partitioning, even with data-dependent computations.
Multiple levels of DLP exist in streaming applications, and relying on DLP allows us
to completely avoid the IPC overhead.

123

Int J Parallel Prog (2014) 42:875–899 881

The selection of the data segment granularity is critical in data partitioning. To
reduce data movements and unnecessary IPC operations, larger data segments are pre-
ferred; however, oversized data segments may violate system specifications, because
large data segments usually result in longer latencies, which some applications might
not endure. In addition, the required temporary storage could exceed system memory.
Even when a large data segment granularity meets the system specifications, it could
still suffer from memory overflow. Memory allocation techniques, such as dynamic
code mapping and circular stack management, allow us to assign a large data seg-
ment to a single core; however, this technique could create overhead associated with
switching memory blocks between the local memory and the global memory. If we
assume that a balanced workload could be achieved, the sum of Toverflow and Tipc

could be used as the ideal data segment granularity. Toverflow indicates the time wasted
due to insufficient local memory, while Tipc refers to the time spent in IPC. Both over-
heads can be estimated from the benchmarks taken from a single core implementation.
The use of double buffering or even multiple buffering may influence the choice of
granularity level. Double buffering can overlap time spent in computation and com-
munication, while multiple buffering can overlap operations from multiple iterations.
Both techniques require additional local memory, which can be an important concern
when selecting the granularity of the data segments. On the contrary, we can take full
advantage of the local memory when dealing with computation-intensive applications.
Buffering techniques have limited results, and thus can be considered at the end of the
optimization process.

123

882 Int J Parallel Prog (2014) 42:875–899

After selecting the proper granularity for the data segment, we allocate the processes
to evenly distribute the workload. Compared to process allocation, data partitioning can
more easily attain workload balance, because the workload of each partition is more
predictable. If a longer process blocks a single core, further partitioning is usually
available with a small penalty. When dealing with data-dependent applications, we
have to rely on dynamic allocation mechanisms to slice the processes into finer pieces
based on the current workload. Finally, hardware-dependent techniques are activated
to hide the IPC overhead and data movements. Hardware resources of the multicore
are fully-utilized to achieve the best possible performance.

Data partitioning is broadly adopted in multicore programming. However, it does
not produce the desired performance all the time. In some applications, enormous data
dependencies exist among data segments, which impose constraints to concurrency.
Simply applying data partitioning may result in a large overhead in the synchronization.
In this situation, the multi-stage (or software pipelined) function partition scheme must
be applied.

The application is first decomposed into processes by applying function partition-
ing. The initial partition usually starts from basic function blocks. After investigating
the characteristics of each process, the process can be properly allocated, as we will
discuss later. From the results of the initial process allocation, we can also estimate the
benefit of further partitioning. In distributed scratchpad memory architecture, commu-
nication can be overlapped with computation. No additional IPC overhead is generated
if all communications are covered by computation. If the total amount of communica-
tion time Tcomm approaches or even exceeds computation time Tcomp, we define it as
communication saturation, which indicates that we are no longer able to hide the com-
munication. Any increase in communication time will transform into IPC overhead.
In order to achieve the best work balance without introducing considerable IPC over-
head, the algorithm gradually partitions and allocates the processes until load balance
is attained or communication is saturated.

If performance could still be improved, critical processes are identified and further
partitioned. A critical process is one whose workload exceeds a predefined threshold.
We define the total workload of the application as Ttotal . If the number of cores available
for data acceleration is N , then we define WLthreshold for each process as

WLthreshold = Ttotal

αN
,

where α is the granularity factor controlling the number and granularity of processes.
For an N -core architecture, the threshold is initially set to 1/N of the total workload
Ttotal. During each re-partition, the granularity factor α is doubled to produce a finer
partition.

The function re-partitioning process is far more complex than that of data parti-
tioning. The ideal cut points are at positions that have minimum live contexts, i.e.,
temporary data, to help limit IPC overhead. Based on the partition threshold, potential
cut points are set, and physical cut points are explored around these potential cut points.
Finally, we review the granularity of new partitions to decide if additional cut points
are required to hold the partition threshold. After that, the processes are re-ordered

123

Int J Parallel Prog (2014) 42:875–899 883

and re-allocated. We can also consider the DLP-enhanced parallel function partition-
ing scheme, where the process network is unfolded and the number of processes is
doubled. By applying concurrency on the different iterations, the workload-balance
can be improved, while reducing the IPC overhead.

The resource allocation procedure assigns the processes in the process network to
physical cores. Before the allocation, processes are categorized into three types: con-
trolling tasks, computation tasks, and communication tasks. Controlling tasks might
contain more branch operations than computations, and part of the decision-making
can be replaced by a look-up table. On heterogeneous platforms, it is better to allocate
controlling tasks to the multicore processor rather than the digital signal processors
(DSPs). Computation tasks calculate data, while communication tasks transfer data.
Distributed scratchpad memory multicore environments typically provide DMA sup-
port; therefore, explicitly specified inter-core data transfers can overlap with computa-
tion tasks. Memory optimization with the help of DMA is critical. In some applications,
IPC overhead can even be eliminated. This phenomenon should be taken into account
during the allocation of processes.

In general, it is best to assign adjacent connected subtasks to the same core to
prevent IPC overhead and reduce data movements, and it is important to disperse
communication tasks to different cores. For simplicity, the latencies associated with
serving the process allocated to a specific core are denoted by CostW and CostIPC ,
which represent the computation time and the total waiting time, respectively. We
can measure both latencies during the execution; however, in this subsection, we only
consider the problem of allocating the resources of the DSPs.

Algorithm 2 describes the proposed workload-balancing process-allocation algo-
rithm. Depending on the process network, the processes are allocated as follows:
(1) the process closest to the output node of the process network is processed first,
so that the computation flow of the process network is unhindered. (2) Only active
processes are examined for allocation at each time epoch. In addition, exactly one
active process is chosen to be allocated at a specific time. A process is “active”, if
all its successor processes are allocated. If two or more DSP cores are available, a
simple round-robin selection policy is applied. We assume that, unless a task is small,
most of the computation-intensive processes are essentially equivalent. Otherwise, the
critical processes will be sliced appropriately. Consequently, off-loading processes to
a specified core will have a latency that is initially equal to or less than Ttotal/N . The
active process Pi will be allocated to the lth core, if the lth core is available and the cost
function Cost(l, Pi) is minimized. In Algorithm 2, the for-loop in lines 4–16 searches
for the Pmin with the minimum cost. During the evaluation of a candidate process Pi

on the lth core, the total computation time CostW (l, Pi) and the communication time
CostIPC(l, Pi) are calculated. CostW (l, Pi) refers to the summation of workloads that
were already allocated on the lth core, denoted by CostW (l), and the computation time
of Pi , denoted by CostW (Pi). Similarly, the term CostIPC(l, Pi) is equal to the sum-
mation of IPC overhead previously allocated on the lth core, denoted by CostIPC(l),
and the communication time required by Pi , denoted by CostIPC(Pi). However, if Pi

is connected to some process Pj that was already allocated on the l-th core, the IPC
between Pi and Pj , denoted by CostIPC(Pi , Pj), can be removed from CostIPC(l, Pi).
The elimination of the unnecessary IPC is achieved by the for-loop in lines 7–11 in

123

884 Int J Parallel Prog (2014) 42:875–899

Algorithm 2. With respect to memory optimization, only the longer of the two time
values—the total workload allocated or the total waiting time—is considered in the
cost function.

After the allocation, we can estimate the benefits of further partitioning, in terms
of core utilization and computation/communication ratio. With the ideal allocation,
each computing resource is efficiently utilized at 100 %, which demands both load-
balancing and IPC elimination. Finer partitioning leads to a more balanced workload,
but it can increase IPC overhead at the same time. Through appropriate allocation,
memory optimization can hide the IPC overhead if the total computation time is less
than the total communication time. Otherwise, extra communication time should be
considered. Assuming that re-partitioning does not introduce computation overhead,
the performance can be estimated using a synthetic workload.

3 Cell Broadband Engine Architecture

For demonstration and validation purposes, the commercial SONY PlayStation�3
was selected as the target platform. PS3 uses a Cell processor as its CPU.

The Cell processor, which is a heterogeneous distributed scratchpad memory mul-
ticore processor, was designed for high performance multimedia and entertainment
applications. It is comprised of two kinds of processing elements: (a) 1 PowerPC
processor element (PPE), and (b) 8 synergistic processor elements (SPEs), connected
by a ring-based inter-core network called the element interconnection bus (EIB). The

123

Int J Parallel Prog (2014) 42:875–899 885

PPE and SPEs share a similar instruction set architecture, but their actual behav-
ior is very different. The PPE is a general-purpose, dual-threaded, 64-bit PowerPC
processor, supporting vector/SIMD multimedia extension instructions. The operating
system can run on the PPE and take full control of the system; whereas, the SPE is
designed for data-rich computation-intensive SIMD and scalar applications. Using a
similar SIMD intrinsic design, each SPE provides 128 quad-word SIMD registers,
thus allowing compilers or programmers to deploy high-performance applications. To
allow programmers to port applications easily on the PPE, the software on the PPE
follows a conventional programming model. Moreover, the PPE can access the whole
memory space, while the SPE can only access its own 256KB scratchpad memory,
called the local store (LS). Its own memory flow controller unit exchanges data with
other elements or peripherals in the EIB. The memory flow controller (MFC) is simply
a DMA with a 16-entry instruction queue. With the memory flow controller, the SPE
can simultaneously perform computation and communication tasks.

Synchronization between elements in the Cell is done by mailbox and special sig-
nals. Signals perform the same functionality as mailboxes. Normally, data is exchanged
between PPE and SPEs using mailboxes, while signals are utilized in inter-SPE syn-
chronizations. When the SPE needs to use the memory flow controller specifically,
mailboxes or signals are used to communicate with other elements in the EIB. Theoreti-
cally, every element in the EIB can fill their mailboxes or signals with data by accessing
corresponding memory-mapped addresses. The interconnection network EIB consists
of four token rings, two clockwise and two counterclockwise. Each ring can simul-
taneously provide three non-overlapping 128-bit data communications. Because the
EIB runs at 1.6 GHz, the potential peak bandwidth achieved is 204.8 GB/s.

An SPE program must be initialized from the PPE. During the initialization, the PPE
creates a service thread for an SPE, loads the program code on the SPE, and activates
the SPE. Controlling information is passed between the PPE and SPEs through 32-bit
mailboxes. The service thread on the PPE is in charge of providing system services
for the SPEs. As a result, an SPE can ask for system services, like file access, directly.
However, the system service request from the SPE is terribly slow, and its use is
discouraged [18]. Even though the PS3 uses the Cell as its CPU, only six SPEs are
accessible to the programmers.

A few official and third-party programming models [21,22,25] are available for the
Cell processor. Most of the programming models aim at hiding data communications
from the programmer to reduce programming complexity caused by managing the
scratchpad memory. These models show promising performance for applications using
data partition; however, we chose to handle task partition by using the asymmetric-
thread runtime model [11] in the following case studies. The task management and
data communication required in streaming programming model are handled manually
using functions in the Cell software design kit.

More detailed information about the Cell processor can be found in [7,18,19].

4 DLP Streaming Applications

In DLP streaming applications, the workload balance is usually accomplished nat-
urally. The key design issue is how to determine the ideal data segmentation in

123

886 Int J Parallel Prog (2014) 42:875–899

order to fully utilize the hardware resources. In this section, we discuss two dif-
ferent DLP streaming applications that were implemented on the PS3: (a) the motion
JPEG decoder, and (b) the object detector. Several design issues related to hardware
architectures were carefully evaluated in the attempt to obtain the best performance.

4.1 Frame-Based Motion JPEG Decoder

JPEG, a well-known standard [24], has been broadly used around the world for image
compression. In multimedia, motion JPEG is an informal class of video formats, which
is simply a series of digital compressed JPEG frames. Due to its low computational
power demand, motion JPEG is used in portable devices with video-capture capability,
such as digital cameras and cell phones.

As suggested by Algorithm 1 in Sect. 2, we chose to apply our algorithm to the
frame-based motion JPEG decoder. First, we simplified the open source program and
ported it to PS3 by using the released Cell software design kit [9,12]. The parallel
code structure of the motion JPEG decoder is described in Fig. 1. In the beginning,
the PPE extracts encoded frames from the file system, en-queues the frame sequences,
and dispatches the frames to SPEs in a round-robin manner. If input data is available,
the SPE applies the JPEG decoding algorithm and uses the memory flow controller to
pass the decoded result directly back to the frame buffer, which also resides in shared
memory. Finally, the PPE displays the decoded frames on the monitor in the proper
order. As a result, the SPEs accelerate all the computation-intensive parts, while the
PPE manages the memory and controls the system tasks.

To utilize the Cell processor fully, the planning and optimization of the dataflow are
carefully investigated. In typical JPEG decoding, the compressed input frames are of
variable length, but the decoded output frames are fixed-length; therefore, the storage
required by the output frames is enormously larger than that of the input frames. Note
that, in the SPE, both programs and data share a single 256 KB local memory.

Program memory and data memory are further divided into input and output buffers.
With an I/O buffer smaller than 256 KB, the entire full-HD JPEG frame cannot be
stored in the data memory. Thus, additional data transfer operations are unavoidable.
We further noted that the size of each data transfer from the SPEs depends on the
I/O buffer configuration. In our implementation, we applied a simple, but efficient,
circular input buffer to accommodate the variable-length encoded frames. On the
other hand, we adopted a static output buffer for constant-sized output frames, as
shown in Fig. 2. For a 16 × 16 macroblock workload, the output buffer requires at
least 768 bytes. When decoding in the single I/O buffer configuration, several data
transfers and SPE computations are interleaved to complete the work. Consequently,
SPE utilization is low and influenced by the DMA transfer. The Ping-Pong buffering
or multiple buffering approach can help to address this problem, because it behaves
like an efficient pipeline process, where the SPE utilization approaches 100 %. The
I/O buffer configuration and the data-transfer size for each I/O call from the memory
flow controller to the SPE are important design parameters.

On distributed scratchpad memory architectures, like the Cell, SPEs cannot directly
access the shared memory but must call the DMA function, i.e., the memory flow

123

Int J Parallel Prog (2014) 42:875–899 887

PPE

While (true) do

tcb_ptr = dequeuetask ()

Foreach SPE do

Initiate_SPE()

End For

Initiate()

Foreach active task Tk do mfc_get (tcb, tcb_ptr)

enqueuetask (SPETk, tcbTk)

mfc_get (i_buffer, i_addr)

mfc_put (o_buffer, o_addr)

computation (i_buffer, o_buffer)

enqueueack (ackTk)

End While

End For

Foreach issued task Tk do

ackTk = dequeueack ()

End For

Foreach data segment do

End For

// Post-process tasks

// Issue active tasks

preprocess (Tk)

postprocess (Tk)

// Initiate SPEs

SPE

// Setup SPE

// Fetch task control block

// Perform computation

// Return ack

Fig. 1 Parallel code structure for motion JPEG decoder

Fig. 2 I/O buffer allocation of
motion JPEG decoder on PS3

LS

output buffer

n macroblocks

output buffer
A

DMA SPU

A

AB

B

circular
input buffer

16K bytes

16K bytes

n macroblocks

B

BA

controller. The total transfer size of a single call by the memory flow controller ranges
from 1 byte to 16 KB, whereas a single bus transaction carries 16 bytes per cycle. The
SPE Runtime Management Library [12] suggested that both source and destination
addresses of memory flow controller calls be maintained at a length of 128 bytes and
that the transfer size be an even multiple of 128 bytes.

Figure 3 summarizes the performances of the frame-based motion JPEG decoders
on PS3 when using different data transfer sizes per memory flow controller call. Six
SPEs are utilized in the experiment. Each bar in Fig. 3 contains two effects: the effects
of CostW (with the dark color) and the effects of CostIPC (with the light color). When

123

888 Int J Parallel Prog (2014) 42:875–899

102.2104.8105105

10

20

30

40

0

50

60

70

80

90

fps

transfer size (byte)

1 32 64
3.3

2 4 8 16

100

110

128 256 768

8.1

19.2

39.7

98.0
103.6 105.5 106.5 106.5

102.7

1 macroblock

768*2 768*4

101.4 99.5

768*8 768*12

92

3.5
8.2

19.4

40.4

101.3

106.2

77.9

108.2 108.6 108.7
105.2

Fig. 3 Decoding performance using different transfer sizes per memory flow controller instruction

10

20

30

40

0

50

60

70

80

90

fps

output buffer size (byte)
16 768 768*232 64 128 256

100

110

768*4 768*8

104.6
108.6 108.9

1 macroblock

80.4

92.8

100.2

106.7

768*12

100.3

64.1

80.7

92.9

103.3

108.9 108.9108.9

106.7 107.1 107.2 107.2 107.2

Fig. 4 Decoding performance using different output buffer sizes

the transfer size is less than 128 bytes, a portion of bandwidth is wasted. Even when
the transfer size exceeds 128 bytes but it is not a power of two, the performance also
degrades. Figure 4 shows the effect of output buffer size when using 6 SPEs and setting
the transfer size to 256 bytes. Due to the small data dependency between successive
macroblocks, the performance is saturated if the size of the output buffer is above
768 bytes. The motion JPEG decoder can accommodate exactly 16×16 macroblocks.

Figure 5 shows the decoding performance for a full-HD motion JPEG, using
different numbers of SPEs. The transfer size was set to 256 bytes and the output
buffer was set to 1,536 bytes. The performance of the original decoder was highly
degraded due to communication overhead and could not be scaled up linearly. When
the input/output buffers were properly allocated, the dataflow of the optimized decoder
showed excellent performance and achieved a linear increase in speed. The double

123

Int J Parallel Prog (2014) 42:875–899 889

Fig. 5 Performance of parallel
JPEG decoder

0

10

20

30

40

50

60

70

80

90

100

110

120

1SPE 2SPE 3SPE 4SPE 5SPE 6SPE
F

ra
m

es
 P

er
 S

ec
o

n
d

Original

Dataflow Optimized

Double Buffered

buffering technique can provide only a small increase in performance. With frame-
based parallelization, most inter-core data transfers, except for native ones, are elim-
inated. With dataflow optimization, the time spent in data communications is low
compared to actual JPEG decoding. The simulation results reveal that we have imple-
mented an efficient full-HD motion JPEG decoder on PS3, which can decode full-HD
motion JPEG at 108.9 fp/s.

4.2 Slice-Search-Window-Based Object Detection

Object detection is an important computer vision and image processing application. It
identifies and locates semantic objects in digital images or videos. These objects could
be human faces, buildings, or cars and could be found regardless of their position and
scale. Based on Haar-like features and the AdaBoost method, Viola–Jones’s algorithm
is the first fast and robust object detection algorithm for real-time applications [29].
Fig. 6 illustrates the algorithm. Haar-like features, which are masks comprised of
2–3 rectangles, form the basis of the algorithm. Pixels masked by white and black
are weighted and summed up respectively as a feature sum. A weak classifier hm is
set if the feature sum exceeds a threshold. Weak classifiers, which are produced by
features, are further weighted and averaged to produce strong classifiers HM , which
indicate whether the examined area is an object or a non-object. Normally, thousands of
features are required to precisely distinguish an object from a non-object. The features
are ordered and grouped in stages, and the earlier stages could drop detections that were
highly uncorrelated. This early-termination fast algorithm reduces computations and
makes the detection data-dependent and communication-intensive. When detecting an
image, a detection window is deployed with an initially small window size. It traverses
the image in a raster-scan manner and scales up until the window size exceeds the
size of the image. The Viola–Jones object detection framework was implemented in
OpenCV, an open source computer vision library originally developed by Intel. A
parallel OpenCV decoder developed for the Cell can be found in [4,23,27].

Figure 7a demonstrates the parallel code structure of the conventional object detec-
tor. Object detection within the same search window size is treated as a process (or

123

890 Int J Parallel Prog (2014) 42:875–899

Fig. 6 Viola and jones object detection algorithm [29]

PPE Driver SPE Kernel

win_size = INIT_WIN_SIZE

While win_size < IMG_SIZE do

dequeue (taskwin_size)

win_size *= SC_FACTOR

End While

Foreach enqueued task do

Wait ackwin_size

End For

While (true) do

For y = 0 to IMG_HEIGHT do

For x = 0 to IMG_WIDTH do

obj_detect (x, y, win_size)

End For

End For

emit_ack (ackwin_size)

End While

Wait taskwin_size = dequeue()

(a) (b)

Fig. 7 Conventional parallel object detector: a Code structure. b Task Partition

task) as shown in Fig. 7b. These tasks can then be accelerated by SPEs. When porting
objects on distributed scratchpad memory architectures, discontinuous and irregular
shared memory access becomes a bottleneck. As the search window is stretched, we
calculate the feature sum using discontinuous pixel values. Because the memory flow
controller unit is designed mainly for large amounts of data communication, looking
for an 8-bit pixel value from the main memory is an expensive operation. Worse, we
have to take care of the memory alignment issue, which creates enormous overhead
in this case. When dealing with small search window sizes, several adjacent integral
values can be summed by the same memory flow controller call function for efficiency.

The local store is treated as a software-controlled cache. Due to the limitation
of local memory capacity, the tasks are categorized into two implementations, one
for search window sizes smaller than 88 × 84 bytes and another for larger window
sizes. The buffer is set at 7,392 bytes. The resulting tasks and their execution time
are shown in Fig. 8a, where each bar represents a task ordered by detection win-
dow size. The height of bars indicates the actual execution time of each task on the
SPE. Time wasted in communication is marked using a light color, while tasks in
different implementations are drawn using different colors. The resulting tasks from
window-size partitioning are very different from those in motion JPEG. Even after
memory optimization, the tasks still spend more time dealing with memory data
transfer, especially when using large window sizes. In addition, the granularity of
the resulting tasks varies, which makes workload balancing more difficult. The actual

123

Int J Parallel Prog (2014) 42:875–899 891

67,730

45,972

71,609

21,609

40,088

28,846

97,470

57,741

39,383

12,973

9,353
7,168

3,693
1,291 411

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a)

SPU0

SPU1

SPU2

SPU3

SPU4

SPU5 97,470

86,587

79,882

80,554

80,068

80,776

100%

88%

81%

82%

82%

82%

(b)

1

2

3

4

5

6

7

8

9 10

11

12

13

14

15

Multicore Execution Time

Comp. Time of Small Window Task (µs)
Comm. Time of Small Window Task (µs)
Comp. Time of Large Window Task (µs)
Comm. Time of Large Window Task (µs)

Utilization

Fig. 8 Workload analysis of conventional parallel detector: a Workload distribution. b Task scheduling

allocation results are shown in Fig. 8b. Although a scheduler tries to balance workload
among cores, a considerable overhead is created when waiting for the critical process
to complete.

From Algorithm 1, we conclude that the re-partition should be revisited for work-
load balancing by decreasing the granularity of the data segments. An efficient object
detection process using a row-and-slice search window is proposed in [4]. The process
splits a task into numerous subtasks (or slices). As shown in Fig. 8a, each task is
evenly partitioned into several slices depending on the threshold. Because of DLP,
this partition technique does not introduce any IPC overhead. Although the partition
slightly raises the computation complexity, it is negligible, and all tasks spend more

123

892 Int J Parallel Prog (2014) 42:875–899

(a)

21,246

1

18,238

2

17,486

3

15,115

4

15,857

5

22,399

6

17,178

7

16,957

8

11,616

9

16,439

10

17,627

11

14,780

12

16,295

13

15,581

14

28,637

16

27,494

17

25,337

18

23,242

19

21,586

20

20,254

21

18,414

22

20,265

23

20,781

24

13,073

25

8,652

26

6,352

27

3,972

28

1,145

29

402

30

23,819

15

(b)

SPU0

SPU1

SPU2

SPU3

SPU4

SPU5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

85,454

83,239

82,084

82,857

82,130

84,475

100%

97%

96%

96%

96%

98%

(c)

Comp. Time of Small Window Task (µs)

Comm. Time of Small Window Task (µs)

Comp. Time of Large Window Task (µs)

Comm. Time of Large Window Task (µs)

Multicore Execution Time (µs) Utilization

Fig. 9 An efficient implementation of a real-time object detector: a Task partition. b Workload distribution.
c Task scheduling

time transferring memory data. Figure 9b, c show the resulting tasks and allocation
results, respectively. The utilization is very close to 100 %, and the minimal wasted
communication time implies very little potential for performance improvement.

123

Int J Parallel Prog (2014) 42:875–899 893

Fig. 10 Performance comparison of parallel object detectors

Performances of parallel object detectors are summarized in Fig. 10, where a
256-byte transfer is deployed while the buffer is set at 7,392 bytes. The simulation
results show that the performance of the slice-search-window-based object detector
on PS3 improves by about 16 %, compared to the original CellCV detector. Sugano and
Miyamoto [27] proposed a real-time object-recognition system on the Cell for QVGA
video. Using 3 SPEs, a rate of 22 fps was achieved. However, the frame rate perfor-
mance of their implementation degrades when using 4–6 SPEs on the PS3. Using sim-
ilar scaling factors as in [27], the slice-search-window-based object detector achieves
better performance on PS3. Further evaluations on numerous test images of different
sizes were also made. With 6 SPEs, the proposed object detector can perform object
detection at 2.84 fps at 1,280×960 resolution, 11.75 fps at 640 × 480 resolution, or
62.52 fps at 320 × 240 resolution, which outperforms the algorithm presented in [27].

5 Multi-Stage Pipeline H.264/AVC Decoder

We also implement a full-HD H.264/AVC decoder on the PS3. The decoder displays
1080p I and P frames, using all inter- and intra-prediction modes. The motion com-
pensation makes use of a single reference frame applying all block sizes, with a search
range of ±16 pixels at 1/4-pixel accuracy.

H.264 [6] adopts various aggressive coding techniques to accommodate high-
quality video content with low bit rate. To attain a high compression rate, redundancies
within the data are removed as much as possible. It establishes solid data dependencies
between pixels, blocks, macroblocks, and even frames. As suggested by the proposed
design flow, we should adopt a group of pictures (GOPs) as a basic data segment
to avoid all IPC overhead. GOP is a series of successive frames that starts with an
I-frame. Each frame in the GOP can be reconstructed without referencing any other
frames outside the GOP. However, the storage limitation of the 256 KB LS memory
of the SPE leads to heavy data movements from the PPE to the SPE, and vice versa.
Thus, enormous CostIPC overhead arises, which degrades the performance dramat-
ically. Based on our proposed design flow, the function partition scheme should be
considered.

123

894 Int J Parallel Prog (2014) 42:875–899

H.264
Bitstream

Variable-length
Coding

Residual
Coding

Intra Prediction

Deblocking
Filter

Motion
Compensation

Decoded
Frame

Recovering

Fig. 11 Functional block diagram of H.264 decoder

Figure 11 illustrates the generic block diagram of the H.264 decoder. It includes six
function blocks, namely: variable-length coding (VLC), residual coding (RC), motion
compensation (MC), intra-prediction (InP), recovering, and deblocking filter (DF).
VLC transforms a compressed context-based adaptive variable-length code (CAVLC)
bitstream into a fixed-length macroblock-based stream, where prediction information
and residuals are encoded. If the current macroblock is being intra-predicted, InP
will be performed to rebuild the macroblock, according to pixel information from
neighboring macroblocks. Otherwise, it is reconstructed by MC. Motion compen-
sation, which is the most complicated function, locates prediction values from pre-
viously decoded frames. Motion-vector predictors and motion shifts are calculated
in advance to direct the compensation procedure. At the same time, RC performs
de-quantization and inverse transformation to resolve residual values. Then, recov-
ering sums up the predicted and residual values, while ensuring that the decoded
values remain within a feasible range. Finally, DF removes edge effects across block
boundaries. Before allocating processes, we first check and implement the program
behavior of each block. Because the PPE and SPEs share similar SIMD and intrinsic
functions, the optimized program is evaluated separately on both types of cores, as
shown in Fig. 12. The VLC is a controlling task with many flow control statements
and bit manipulations. Because the SPE deals with these operations inefficiently, a
table look-up and predications are applied to reduce the overhead. However, utilizing
SIMD on the VLC is difficult, because all variable-length inputs come from a single
bitstream. As a result, the VLC runs faster on the PPE, even if the communication
time is ignored. Therefore, we prefer to leave the VLC on the PPE. If the MC looks
for predictive values from other frames, it could consume considerable bandwidth
from the interconnection network EIB. To attain 1/4-pixel accuracy, we might have
to grab 9 × 9 pixels in order to recover a 4 × 4 block. Moreover, the transfer of
reference data suffers from memory alignment issues. The MC is the most difficult
function block to parallelize in the H.264 decoder, due to its large communication
resource requirements. The remaining function blocks are computation tasks, and,
among them, the DF has the heaviest workload. InP and recovering are mutually depen-
dent; therefore, they are they are agglomerated, because both blocks do not require
long computation times.

The basic process network of the H.264 decoder is shown in Fig. 13a. Workload
distribution without considering IPC overhead is illustrated in Fig. 13b. MC could

123

Int J Parallel Prog (2014) 42:875–899 895

5

10

15

20

25

30

0

50

Variable Length
Coding

Residual
Coding

Motion
Compensation

Deblocking Filter

Optimized on PPE
Computation on SPE

Communication on SPE

40

RecoveryIntra Prediction

E
xe

cu
tio

n
T

im
e

(s
ec

)

Fig. 12 Workload analysis of H.264 function blocks on PPE and SPE

Residual
Coding

Motion
Compensation

Intra-
Prediction

and
Recovering

Deblocking
Filter

Motion
Compensation

Deblocking FilterResidual Coding
Intra Prediction &

Recovering

(a) (b)

42,992

6,170
3,806

12,178

Comp. Time (µs)

Comm. Time (µs)

Fig. 13 a Basic process network of H.264 decoder. b Workload distribution of each process

Deblocking FilterResidual Coding
Intra Prediction &

Recovering
Luma Motion

Compensation
Luma Intepolation

Chroma Motion
Compensation

Chroma
Intepolation

Residual
Coding

Luma
Intepolation

Intra-
Prediction

and
Recovering

Deblocking
Filter

Chroma
Intepolation

Luma Motion
Compensation

Chroma
Motion

Compensation

(a) (b)

6,172

15,660

13,715

11,793

5,068
3,806

12,178
Comp. Time (µs)

Comm. Time (µs)

Fig. 14 a Advance process network of H.264 decoder. b Workload distribution of each process

easily become the critical process that blocks the parallelization. The H.264 decoder
on the PS3 can only decode about 15.58 fps in the 1080p format.

Due to the existence of the critical process MC, the performance is limited and
cannot be linearly scaled up as the number of SPEs increases. We considered slicing
MC by its functionality, and we extracted the interpolation part from the MC as a
new process to reduce IPC overhead. The two processes can be decomposed into a
luminance part and a chrominance part, as shown in Fig. 14. As a result, the improved
process network of the H.264 decoder consists of more processes with similar granu-
larity. The performance factors are listed in Table 1. Utilization indicates the time ratio
that the cores are calculating or transferring data. The communication and computing
ratios imply the potential for further partition. While communication and computa-
tion can be overlapped, the quantity of communication is not equal to the actual IPC

123

896 Int J Parallel Prog (2014) 42:875–899

Table 1 Performance
evaluation of improved H.264
decoder

No. of
SPE

Utilization
(%)

Comm./comp.
ratio (%)

IPC over
head (%)

Performance
(FPS)

2 89.80 53.64 0.00 20.42

3 77.50 66.14 5.75 24.59

4 89.12 68.28 10.12 35.09

5 84.91 76.31 17.38 37.11

6 70.89 81.39 18.29 37.27

Even Residual
Coding

Odd Luma
Intepolation

Intra-
Prediction

and
Recovering

Luma
Deblocking

Filter

Odd Luma
Motion

Compensation

Odd Residual
Coding

Even Luma
Intepolation

Chroma
Deblocking

Filter

Even Luma
Motion

Compensation

Odd Chroma
Intepolation

Odd Chroma
Motion

Compensation

Even Chroma
Intepolation

Even Chroma
Motion

Compensation

Chroma
Deblocking Filter

Even Residual
Coding

Intra Prediction &
Recovering

Even Luma
Motion

Compensation

Odd Luma
Intepolation

Even Chroma Motion
Compensation

Even Chroma
Intepolation

Odd Residual
Coding

Odd Luma Motion
Compensation

Even Luma
Intepolation

Odd Chroma
Motion

Compensation

Odd Chroma
Intepolation

Luma Deblocking
Filter

(a) (b)

3,086 3,092

7,802 7,850
6,862 6,851

5,887

5,902

2,423 2,671

3,806 7,307
4,871

Comp. Time (µs)

Comm. Time (µs)

Fig. 15 a 2-parallel process network of H.264 decoder. b Workload distribution of each process

overhead observed. The IPC overhead field stores the cumulative time that the cores
spend to perform communications only. The performance field summarizes the frame
rate.

After the allocation process, the improved H.264 decoder on the PS3 can decode
about 35.06 fps in the 1080p format using 4 SPEs. A small increase in performance can
be achieved if 5–6 SPEs are used. The performance of the improved H.264 decoder
on PS3 is comparable to others presented in [2,20].

As the design flow suggests, further partitioning for 5–6 SPEs may help raise
utilization without introducing much IPC overhead. However, further partitioning with
the improved H.264 decoder is difficult. Instead, we considered the DLP-enhanced
function partition scheme, which was implemented as the 2-parallel process network
of the H.264 decoder, as shown in Fig. 15. More processes of even granularity are
available. The 2-parallel H.264 decoding operations are accomplished in a pipeline
manner.

As shown in Fig. 16, the PPE is in charge of variable-length decoding. Two mac-
roblocks are decoded in a single iteration. SPE0 and SPE1 receive the macro-block
and locate the required luminance pixels. Then the interpolation process is performed
in the next iteration. Another motion compensation workload is inserted to hide the
long data transfer latency. SPE2 and SPE3 are responsible for simultaneously compen-
sating and interpolating the chrominance motion. Residual coding takes place after
compensating for the chrominance motion to hide the data transfer latency. After the
previous SPEs complete their tasks, SPE4 performs intra-prediction and recovering.
A chrominance deblocking filter is allocated right after the recovering. Finally, a lumi-
nance deblocking filter residing in SPE5 completes the decoding. The performance of

123

Int J Parallel Prog (2014) 42:875–899 897

VLDnPPE

SPE0

SPE1

SPE2

VLD: Variable Length Coding
ERC: Even Residual Coding
ORC: Odd Residual Coding
ELMC: Even Luma Motion Compensation
OLMC: Odd Luma Motion Compensation

SPE3

SPE4

SPE5

VLDn+1 VLDn+2 VLDn+3

ELMC ELINT

OLMC OLENT

ECMC ERC ECINT

OCMC ORC OCINT

IPR CDB

ELMC

OLMC

ECMC ERC

OCMC ORC

IPR

LDB

VLDn+4

ELINT

OLENT

ECINT

OCINT

ELMC

OLMC

ECMC ERC

OCMC ORC

ELINT

OLENT

ECINT

OCINT

ELMC

OLMC

ECMC ERC

OCMC ORC

CDB

ELINT: Even Luma Interpolation
OLINT: Odd Luma Interpolation
ECMC: Even Chroma Motion Compensation
OCMC: Odd Chroma Motion Compensation
ECINT: Even Chroma Interpolation

OCINT: Odd Chroma Interpolation
IPR: Intra Prediction and Recovering
LDB: Luma Deblocking Filter
CDB: Chroma Deblocking Filter

Fig. 16 Scheduling of 2-parallel H.264 decoder on PS3

Table 2 Performance
evaluation of 2-parallel H.264
decoder

No. of
SPE

Utilization
(%)

Comm./comp.
ratio (%)

IPC over
head (%)

Performance
(FPS)

2 92.12 53.96 0.00 22.09

3 91.85 67.48 7.61 30.53

4 89.23 68.94 10.74 35.06

5 87.75 81.30 18.38 43.06

6 86.23 96.33 19.77 49.29

Fig. 17 Performance
comparison of different H.264
decoder on the PS3

0.0

10.0

20.0

30.0

40.0

50.0

60.0

1SPE 2SPE 3SPE 4SPE 5SPE 6SPE

F
ra

m
es

 P
er

 S
ec

o
n

d

Basic Partition

Advanced Partition

2-Parallel Partition

the decoding is shown in Table 2. The increase in the number of processes effectively
raises utilization in all cases, especially for 5 and 6 SPEs. The burden of communi-
cation also becomes heavier. Fortunately, most of the communication is still hidden
behind computation, and only a small increase in IPC penalty is observed. Based
on these results, the 6-SPE decoder has little chance to exceed the 90 % utilization

123

898 Int J Parallel Prog (2014) 42:875–899

obtained by function partitioning. Furthermore, the high communication and compu-
tation ratio implies that the concealment of the IPC overhead from DMA is already
saturated. More processes will certainly introduce IPC overhead.

Figure 17 summarizes the performance evaluations of different parallelized H.264
decoders on the PS3 in different partitions. The decoding speed of the proposed DLP-
enhanced multi-stage pipeline H.264 decoder on the PS3 comes close to 50 fps by
using 6 SPEs.

6 Conclusion

Multicore programming is considered time-consuming and error-prone. The partition
and allocation procedure remains unclear, and it cannot be handled by automation
tools, especially when function partitioning is involved. In this study, we explored
the efficient parallelization of streaming applications based on the streaming pro-
gramming model to achieve the best design trade-off between conflicting demands on
the distributed scratchpad memory multicore architecture. Three streaming applica-
tions (full-HD motion JPEG, object detector, and 1080p H.264/AVC decoder) were
implemented on the SONY PlayStation�3. On the PS3, the motion JPEG decoder
based on the proposed algorithm can decode about 109fps in the 1080p format. For
object detection, the performance of the proposed algorithm improved by about 16 %
compared to the conventional parallel CellCV detector. The simulation results show
that the proposed object detector on PS3 can detect objects in real-time at 2.84 fps at
1,280×960 resolution, 11.75 fps at 640×480 resolution, or 62.52 fps at 320×240 res-
olution. Parallel computing on the Cell using the parallel full-HD H.264/AVC decoder
is much more complicated; however, our efficient design flow enables the proposed
H.264/AVC decoder to achieve almost 50 fps at full-HD on the PS3.

Acknowledgments This work was supported in part by the Nation Science Council, Taiwan, under Grant
NSC-102-2220-E-009-013- and Ministry of Economic Affairs, Taiwan, under Grant MOEA-101-EC-17-
A-02-S1-202.

References

1. Bai, K., Shrivastava, A.: Heap data management for limited local memory (LLM) multi-core processors.
In: Proceedings of the CODES+ISSS, pp. 317–325 (2010)

2. Baik, H., Sihn, K., Kim, Y., Bae, S., Han, N., Song, H.J.: Analysis and parallelization of H.264 decoder
on cell broadband engine architecture. In: Proceedings of the IEEE Symposium Signal Processing and
Information Technology, pp. 791–795 (2007)

3. Bai, K., Shrivastava, A., Kudchadker, S.: Stack data management for limited local memory (LLM)
multi-core processors. In: Proceedings of the ASAP, pp. 231–234 (2011)

4. Chen, S.-K., Lin, T.-J., Liu, C.-W.: Parallel object detection on multicore platforms. In: IEEE Workshop
on Signal Processing Systems, pp. 75–80 (2007)

5. Che, W., Panda, A., Chatha, K.S.: Compilation of stream programs for multicore processors that
incorporate scratchpad memories. In: Proceedings of the DATE, pp. 1118–1123 (2011)

6. Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification,
ITU-T Rec. H.264 and ISO/IEC 14496–10 AVC (2003)

7. Gschwind, M.: The cell broadband engine: exploiting multiple levels of parallelism in a chip multi-
processor. Int. J. Parallel Program. 35(3), 233–262 (2007)

123

Int J Parallel Prog (2014) 42:875–899 899

8. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach, 4th edn. Morgan
Kaufmann Publishers, California (2007)

9. IBM Corp.: C/C++ Language Extensions for Cell Broadband Engine Architecture. User Guide (2008)
10. IBM Corp.: Cell Programming Guide. User Guide, (2008)
11. IBM Corp.: Cell Programming Tutorial. User Guide, (2008)
12. IBM Corp.: SPE Runtime Management Library. User Guide, (2008)
13. Ismail, L., Guerchi, D.: Performance evaluation of convolution of the cell broadband engine processor.

IEEE Trans. Parallel Distrib. Syst. 22(2), 337–351 (2011)
14. Jung, S.C., Shrivastava, S., Bai, K.: Dynamic code mapping for limited local memory systems. In:

Proceedings of the ASAP, pp. 13–20 (2010)
15. Kahn, G.: The semantics of a simple language for parallel programming. In: Proceedings of the IFIP

Congress, pp. 471–475 (1974)
16. Kudlur, M., Mahlke, S.: Orchestrating the execution of stream programs on multicore platforms. In:

Proceedings of the PLDI, pp. 114–124 (2008)
17. Kapasi, U., Rixner, S., Dally, W., Khailany, B., Ahn, J., Mattson, P., Owens, J.: Programmable stream

processors. IEEE Comput. 36(8), 54–62 (2003)
18. Kahle, J.A., Day, M.N., Hofstee, H.P., Johns, C.R., Maeurer, T.R., Shippy, D.: Introduction to the cell

multiprocessor. IBM J. Res. Dev. 49(4/5), 589–604 (2005)
19. Kistler, M., Perrone, M., Petrini, F.: Cell multiprocessor communication network: built for speed. IEEE

Micro. 26(3), 10–23 (2006)
20. Kim, Y., Kim, J., Bae, S., Baik, H., Song, H. J.: H.264/AVC decoder parallelization and optimization

on asymmetric multicore platform using dynamic load balancing. In: IEEE International Conference
on Multimedia and Expo., pp. 1001–1004 (2008)

21. McCool, M.: Data-parallel programming on the cell BE and the GPU using the RapidMind development
platform. In: GSPx Multicore Applications Conference (2006)

22. Ohara, M., Inoue, H., Sohda, Y., Komatsu, H., Nakatani, T.: MPI microtask for programming the cell
broadband engineTM processor. IBM Syst. J. 45(1), 85–102 (2006)

23. OpenCV on the cell. http://cell.fixstars.com/opencv/index.php/OpenCV_on_the_Cell (2010)
24. Pennebarker, W.B., Mitchell, J.L.: JPEG: Still Image Data Compression Standard. Kluwer, Massa-

chusetts (1993)
25. Perez, J.M., Bellens, P., Badia, R.M., Labarta, J.: CellSs: making it easier to program the cell broadband

engine processor. IBM J. Res. Dev. 51(5), 593–604 (2007)
26. Sarje, A., Zola, J., Aluru, S.: Accelerating pairwise computations on cell processors. IEEE Trans.

Parallel Distrib. Syst. 22(1), 69–77 (2011)
27. Sugano, H., Miyamoto, R.: A real-time object recognition system on cell broadband engine. In: Mery,

D., Rueda, L. (eds.) Advances in Image and Video Technology, LNCS Series 4872, pp. 932–943.
Springer, Berlin (2007)

28. Tol, E. van der, Jaspers, E., Gelderblom, R.: Mapping of H.264 decoding on multiprocessor architecture.
In: Proceedings of the SPIE Conference on Image and Video Communications and Processing, pp.
707–718 (2003)

29. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings
of the IEEE Symposium Computer Vision and Pattern Recognition, pp. 511–518 (2001)

123

http://cell.fixstars.com/opencv/index.php/OpenCV_on_the_Cell

	Parallelizing Complex Streaming Applications on Distributed Scratchpad Memory Multicore Architecture
	Abstract
	1 Introduction
	2 Parallelizing Streaming Applications on Distributed Scratchpad Memory Multicore Architecture
	3 Cell Broadband Engine Architecture
	4 DLP Streaming Applications
	4.1 Frame-Based Motion JPEG Decoder
	4.2 Slice-Search-Window-Based Object Detection

	5 Multi-Stage Pipeline H.264/AVC Decoder
	6 Conclusion
	Acknowledgments
	References

