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A multi-channel post-filtering algorithm using the proposed spatial coherence measure is
derived. The spatial coherence measure evaluates the similarity between the measured
signal fields using power spectral density matrices. In the proposed post-filter, the
assumption of homogeneous sound fields is relaxed. Besides, multi-rank signal models
can be easily adopted. Under this measure, the bias term due to the similarity of the
desired signal field and the noise field is further investigated and a solution based on bias
compensation is proposed. It can be shown that the compensated solution is equivalent to
the optimal Wiener filter if the bias or the noise power spectral density matrix is perfectly
measured. Simulations with incoherent, diffuse, and coherent noise fields and a local
scattered desired source were conducted to evaluate the algorithms. The results demon-
strate the superiority of the proposed bias compensated post-filter across different types

of noise fields with a more accurate signal model.
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1. Introduction

Multi-channel speech enhancement has attracted much
attention in recent years. In the real world, desired speech
signals are often corrupted by background noises, speech
interferences, and reverberation. For more than two
microphones, there are two main categories of speech
enhancement approach: beamforming and multi-channel
post-filtering. Beamforming has been applied to several
narrow- or wide-band signals processes, which can be
defined by a filter-and-sum process [1] in the conventional
sense. A well-known designing strategy is to preserve the
signal from the direction of interest while attenuating
others, which can be achieved by the minimum variance
distortionless response (MVDR) algorithm [2,3]. The MVDR
beamforming is optimal in the mean square error (MSE)
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sense when the interference-plus-noise power spectral
density (PSD) matrix can be obtained and there is no
mismatch on the presumed steering vector. Typically,
adaptive filtering techniques are applied to estimate the
PSD matrix and additional training processes or a priori
information of signal presence is needed for offline or
online implementation [1-4]. On the other hand, the
multi-channel post-filtering, which considers both the
spatial information and the signal-to-noise ratio (SNR),
can be designed in a more general way. Simmer et al. [5]
show that the optimal minimum mean square error
(MMSE) solution can be decomposed into an MVDR
beamformer followed by a single-channel Wiener filter.
This solution is also called a multi-channel Wiener filter.
Most post-filtering algorithms aim to enhance the
single-channel Wiener filter by a more accurate estimation
of SNR. The SNR estimation for speech enhancement can be
implemented based on the minimum statistics for the
stationary noise [6-8], or the spatially pre-processed
power [9]. Most of them are energy-based. Alternatively,
the phase information of a microphone pair has already
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been used in blind source separation (BSS) [10] as well as
the computational auditory scene analysis (CASA) [11].
Aarabi et al. [12-14] provide a different view of the SNR
from the phase error perspective for the dual-channel case.
In their work, the relationship between the phase error and
the SNR was derived [12]. However, the idea of phase error
can only be applied to the case of two-microphone. In
addition to the SNR estimation, some post-filtering algo-
rithms directly estimate the spectral densities [15-17]. Like
the case of phase error, the cross-spectral density is usually
defined between two microphones. For more than two
microphones, the common practice is to perform average
among all distinct microphone pairs [15,16]. Although this
might enhance the robustness of the estimation, there is
still no formal proof regarding its effectiveness. In parti-
cular, it does not consider the spatial arrangement of
microphones, i.e., the advantages of using more than two
microphones is not fully explored. In this paper, a new
spatial measure is defined on a microphone array which
leads to a novel post-filtering algorithm (named spatial
coherence based post-filter, SCPF). The post-filter belongs to
the class of spectral densities estimators (which is inherent
in the estimation of the input PSD matrix), while it is
guaranteed to lie in the range of [0, 1]. Further, the
proposed spatial coherence measure can be easily
extended to multi-rank signal models encompassing inco-
herently scattered source, etc. Multi-rank signal models or
rank relaxation has been widely used in sensor array
localization [18-21], beamforming [22-25], or quadratic
optimization problems [25,26]. It is more convenient to
consider various design requirements than previous meth-
ods using microphone array.

However, a bias term due to the similarity of the desired
signal field and the noise field deteriorates the noise
reduction performance. As a result, a bias compensated
method is proposed (called bias compensated spatial coher-
ence based post-filter, BC-SCPF). It can be shown that the
BC-SCPF is equivalent to the optimal Wiener filter if the bias
or the noise PSD matrix is perfectly measured. Three kinds
of noise fields were used with a local scattered source for
analysis: incoherent, diffuse, and coherent. Three ITU-T
standards were computed to evaluate the perceptual quality
and the noise reduction performance. The simulation results
show the superiority of the proposed BC-SCPF with a more
accurate signal model in all noise fields comparing with
various methods proposed before.

The paper is organized as follows. Section 2 states the
objective and reviews some related works. In Section 3, a trace
inequality is introduced and a coherence measure is defined
based on it. The SCPF and BC-SCPF are proposed in Section 4.
The simulation setup and results with three noise fields are
presented in Section 5, and Section 6 gives the conclusion.

2. Problem formulation and prior works
2.1. Problem formulation

Consider a linear array with M omni-directional micro-
phones. The observation vector is given by

X(t) = s(t)+n(t) (1)

where s(t) and n(t) are the desired signal and noise. Both
of them can be multi-dimensional. By assuming locally
time-invariant transfer functions and applying the short-
time Fourier transform (STFT), the observations are divided
in time into overlapping frames by the application of a
window function and analyzed in the time-frequency
domain as,

X(w, k) = S(w, k) +n(w, k) )

where w and k are discrete frequency and frame indices
respectively.

A beamforming method aims to find a spatial filter w to
estimate the desired source by

Y(w, k) =w(w, x(w, k) 3)

A post-filtering method aims to find a gain function (or
mask) to suppress the undesired noise, which can be
multiplied on the beamformer output as

S(w, k) = G(w, k) - y(w, k) 4)

2.2. Multi-channel post-filtering based on noise field
coherence

McCowan et al. [16] proposed a multi-channel post-filter
as a modification of the Zelinski post-filter [15]. In their
systems, the microphones have to pass a time alignment
module to adjust the propagation of the desired source
between microphones before the post-filter estimation,
which is equivalent to the information in the presumed
steering vector ay(w). That is, the pre-processed input vector
X(w, k) after the time alignment module can be written as

X(w, k) =X(w, k)-ag(w) (5)

where - denotes the Schur-Hadamard (elementwise) matrix
product. If the desired signal is a point source, the presumed
steering vector asw) can be equivalent to the truncated
impulse response h(w) if the magnitudes and time delays of
the source to the microphones are exactly measured. How-
ever, the steering vector is not sufficient to describe general
cases, which will be discussed in detail in Section 4.1.

Compared to the Zelinski post-filter, the work in [16]
considered a generalized coherence function to describe
the characteristics of the noise field on the aligned inputs.
Noises between sensors can be coherent (or correlated).
The noise coherence function of the time aligned inputs is
defined as

fninj ()= &ninj(w)/ %n,‘ni (@)~ anjnj (@) (6)

where qf&nmi(a)) is the cross-spectral density between the
noises at the i-th and j-th microphones. Note that the
diagonal terms of I'y(w) are 1 and its trace equals to M. In
their works, the homogeneous sound fields are assumed.
That is, the sources have the same power spectrum at each
sensor. Based on this assumption, the spectral densities of
the aligned inputs are expressed as [16]

by (@) = Ps(@)+ P (o) 7

Prgry (@) = Bs(@) + P (@) ®)
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B (@) = Ps(@) + Ty (@) () 9

where ¢ (w), pn(w) are the aligned power spectral densi-
ties of the desired signal and noise. For each microphone
pair, according to (7)-(9), the signal power spectral density
can be estimated as
$37 (@) = Rl (@) = 1/ 2IRAT 0, (0)) B, (@) + Py (@)

a _m{fn,-nj((“)})

(10)

where J’xixi("’) is the cross-spectral density between the
i-th and j-th aligned inputs and R{-} is the real operator.
The spectral densities can be estimated using a first-order
recursive filter. Eq. (10) can be explained as removing the
highly coherent part of the cross-spectral density and then
compensating the residual.
The estimation can be improved by averaging the solutions
over all sensor combinations, resulting in the post-filter
mM—1 M @D
m izlj ;+]¢ (w)
i@ (11
M l;] ¢X(X,‘

GMccowan(@) =

This technique significantly improves the noise reduction in
the diffuse noise field, and can be applied to any noise field by
modeling the complex coherence function. When the noise
field is incoherent, it reduces to the Zelinski post-filter as

M-1 M .
m Z ) E m{qsxixj(w)}

i=1j=i+1

1 Mo
M Z (/’x,vx,
i=1

(w) (12)

Gzelinski(@) =

3. A trace inequality and its induced coherence measure
3.1. Spatial coherence measure

It is known that the trace of the power spectral density
(PSD) matrix, obtained from a sensor array, is the summa-
tion of the signal powers. This motivates us to use the trace
operation to design a coherence measure between two
PSD matrices. Let matrices A, Be ¢M*M be positive semi-
definite (which also ensures Hermitian), the trace inequality
is established as [27]

tr(AB)? < {tr(A)*"tr(B)*"}!/? (13)

where tr(A) denotes the trace of matrix A, and p is an
integer. Considering the special case when p=1, we have

tr(AB) < tr(A)tr(B) (14)

Based on (14), the spatial coherence measure between PSD
matrices A and B is defined as

tr(AB)

F(A.B)= tr(A)tr(B)

(15
According to the Frobenius inner product and Kronecker
product, (15) can be written as

(A.B)

FAB = A®B)

(16)

where (A,B) denotes the Frobenius inner product of PSD
matrices A and B, and ® denotes the Kronecker product.
The inner product measures the similarity among the bases
in the matrices, and the trace of the Kronecker product
gives the normalization. From the positive semi-definite
property of the matrices and the inequality given by (14),
the spatial coherence measure #(A,B) is guaranteed to be
mapped in the interval [0, 1]. Since the PSD matrix
represents the signal field measured by the sensor array
(in the second-order statistics), the proposed spatial coher-
ence measure in (15) gives the “closeness” between two
measured signal fields (named MSF hereafter).

3.2. Properties of proposed spatial coherence measure

The PSD matrices can be decomposed as,

A= 3 ZAmAA) and B= Y 2BuBul'®B)
i=1 ich
a7)

where o—,-z(A) and u;(A) denote the i-th eigenvalue and
eigenvector of the PSD matrix A, respectively. By (17), the
spatial coherence measure can be rewritten as

i=1j=

M M
X o (A)c?(B)|ul!(A)u;(B)?

F(A,B) = (18)

M
3 @) S B)

i=1

It can be seen that the coherence measure is the weighted
similarity of the bases, and the eigenvalues give the weight-
ing on each basis. When two MSFs belong to the same
1-dimensional subspace, the spatial coherence measure gives
a measure of unity. As one of the MSF's dimension increases,
the spatial coherence measure decreases according to the
normalization of eigenvalues. Therefore, given PSD matrices
A and B, several properties of the proposed spatial coherence
measure can be listed below:

Property 1. If A belongs to the null-space of B, then
F(A,B)=0.

Property 2. If A is 1-dimensional subspace, the self-
coherence measure F(A,A)=1. As the eigenvalue spread of
A increases, the #(A,A) decreases to 1/M until the eigenvalue
spread is uniform (i.e., incoherent field, A=l where ¢ is
the signal power).

Property 3. If A or B is an incoherent field, then the spatial
coherence measure equals to a constant value of #(A,B)=1/M
(It can be easily observed from (15)).

From Property 1, consider A as the PSD matrix of the
desired MSF and B as the PSD matrix measured by the
microphone array. Then %(A,B)=0 could be interpreted as
the signals of the microphones do not contain the target
source information. Thus, if a multiplicative gain of a post-
filter is designed, the gain should be zero. For Property 2,
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the self-coherence measure #(A,A) is derived from (18) as

3 oHA)
FAA)=—=1 (19)

" 2
(Z Giz(A)>
i=1

where #(A,A) is purely determined by the eigenvalues of
A. According to the natural of coherent speech sources, the
eigenvalue spread of the desired MSF typically condenses
on some low-dimensional subspace. Therefore, if #(A,B)
is used as a multiplicative post-filtering gain, the gain
approaches to unity when there is only a desired signal.
In the next section, the general-rank signal models used
in array signal processing are introduced, and a novel post-
filter is proposed based on the spatial coherence measure.

4. Multi-channel post-filtering based on spatial
coherence measure

4.1. General-rank signal models in array signal processing

For multi-channel speech enhancement, the spatial
coherence measure defined in Section 3 can be used to
evaluate the similarity between the desired MSF and the
input MSF. One commonly used desired MSF is a point
source in a homogeneous sound field [9]. Assuming that
there is no mismatch between microphones, the desired
MSF using the PSD matrix is

Dy(w) = ds() * Ts(w) (20)

where ®y(w)=E[s(w,k) SH(m,k)], I'S(w):as(w)a?(w), ay(w),
and ¢4 @) are the PSD matrix, coherence matrix, steering
vector, and power spectral density of the desired signal
respectively. A single point source is usually referred as the
rank-1 signal model.

However, in practice, the rank of signal model is usually
greater than 1. Typical examples are incoherently scattered
signal source or signals with random fluctuating wave-
fronts in wireless communication, sonar, and microphone
array [18-20]. Further, environmental reverberation also
increases the rank. For example, in the case of incoherently
scattered source, the desired MSF using the PSD matrix can
be expressed by [18-20]

/2
D) = (@) [ p(0, w)a@, w)a (0, w)do @D
—7/2
where p(0,0) is the normalized angular power density
function (_['ff/2 p(0,w)d0=1), and a(d,w) is the steering
vector at direction 4. In the case of randomly fluctuating
wavefronts, the PSD matrix can be expressed by [22]

D(0) = ¢5(w)B-{as(w)all (@)} (22)

where B is the M-by-M coherence loss matrix, and - is the
Schur-Hadamard (elementwise) matrix product. Two
commonly used models for the coherence loss matrix are

[B;; = exp{— (i—j)*¢) (23)

[B];; = exp{—li—jI¢} (24)

where ¢ is the coherence loss parameter. Note that both
the signal models in (21) and (22) are multi-rank.

In practice, the desired MSF ® () can be estimated
empirically from the clean signal recordings of the micro-
phone array. It is worth to note that the usage of ¢i(w) in
(20) is not crucial since it is canceled during the normal-
ization of the spatial coherence measure.

4.2. The proposed spatial coherence based post-filter

The proposed post-filter is designed by comparing the
input PSD matrix ®,(w) with a desired one ®4 ) as,

_ (@s(0)Px(w))
CsrH(®) = G (w)) - tr(@y (@) @3)
where
Dy(w) = Ex[X(, X (@, k)]
¢x0x0 (o) ¢x0x1 () ¢x0xM 1 (o)
¢x1 Xo (@) ¢x1 X1 (@) ¢x1xM 1 (®)
= : : : (26)

¢xM _1Xg (w) ¢xM C1X (@)

(/)xM,lxM,l(w)

and bz, (@) is the cross-spectral density between the
inputs at the i-th and j-th microphones. The post-filter
uses the measure directly as the gain function and is called
spatial coherence based post-filter (SCPF).

In order to compare with the previous algorithms, we
consider the special case as follows:

(1) The desired MSF is assumed to be a point source.
(2) The sound fields are assumed to be homogeneous [9].

According to the these conditions, the theoretical PSD
matrix can be expressed as

Dy (w) = ¢s(w)as ((u)a? (@) + pp(@0)'n(w) 227)

where ¢s(w), ¢pn(w) are the power spectral densities of the
desired signal and noise; and I';,(w) denotes the coherence
matrix of the noise field. The manifold vector is usually
selected such that ||as(w)||> =M. Note that tr(I'y(w)) = M.
With the desired MSF and the theoretical PSD matrix, the
SCPF can be expressed by

Ps(w)all () Px(w)as(w)
Ps()]|ag(@)]]? - tr(Dx(w))
_ PH@)a(@)|* + ps(@)pp(@)al! (@)n(w)as(o)
 ps(@)as(@)]? - (ds(@)][as(@)]|? + py(@)tr(Tn()))

C(w)
—_— 2
M?(Ew)+1) @8

where Gwiener(@) is the optimal Wiener filter as,
{(w)
Sw)+1

and &(w)=¢sw)/pn(w) denotes the SNR. The term c(w)
denotes the Frobenius inner product of the coherence
matrices of the desired signal field and the noise field.

Gscpr(w) =

= Gwiener(®) +

(29)

Gwiener(®) =

(@) = af (o)Tn(@)as(@) = tr(T(@)s(@)) = (Ts(@), Ta(w))
(30)



342 J.-S. Hu, M.-T. Lee / Signal Processing 105 (2014) 338-349

This can be treated as a bias term to the optimal Wiener
filter as shown in (28). Note that c(w) lies in the following
range for all kinds of noise fields when the desired MSF is
chosen as (20)

0 < c(w) < M? 31

The lower bound happens when the noise subspace lies in
the null-space of the desired MSF, while the supremum
happens when the noise MSF is identical to the desired
MSF under the rank-1 signal model. Obviously, the SCPF is
a function of the SNR and it reduces to the Wiener filter
when ¢(w)=0.

4.3. Mean square error analysis of proposed SCPF

The mean square error (MSE) corresponding to the

desired signal in the reference channel can be defined as
MSE(w) = E[|3(e, k) — s(w, k)|?] (32)

where $(w, k) is the enhanced signal given by a beamfor-
mer or a post-filter. Applying the SCPF on the reference
microphone (microphone 1) results in the following MSE:
MSEscpr() = Ex[|Gscpr(@)X1 (@, k) — S(w, K)I?]

= E[|(Gscpr() — D)s(@, k) + Gscor(@)ni (@, k)]

= |Gscpr(@) — 112 ¢h5() + Gécpp(@)pn(@) (33)
By substituting (28) into (33), we have
2
MSEscpr(@) = Gwiener(@)dhn() +%¢n(m (34)

It can be shown that the Zelinski post-filter [15] is related
to SCPF as (see Appendix A)

Gscpr(w)—1/M

Gzelinski(®) = 1-1/M (35)
By substituting the SCPF in (28) into (35), we have
Gy — MM — D)~ 11+-c(0)
Zelinski = MM —1)(Ew)+ 1)
= Gwiener(®) — M- (@) (36)

MM —1)(&(w)+1)

In (36), it reveals that the Zelinski post-filter gives a negative
gain —1/(M—1) when c(w)=0 and &w)=0. The negative

a
1
——-DS
SCPF
08 1 o Zelinski
[\ o
2 C Wiener
8
&
=
i)
©
o
[
=
w
W
=

gain will introduce unwanted phase flips and leaves some
noisy time-frequency blocks in the post-filter output. Simi-
larly, the MSE of the Zelinski post-filter can be derived by
following the derivation in (33) as

MSEzejinski (@) = |Gzelinski(@) — 1 |2¢s(m)+G%elinski(w)¢n(w)
(M —c(@))®
M2(M—1)*(E@)+1)
The bias terms in (34) and (37) reveals interesting

differences between the proposed SCPF and the Zelinski
post-filter for different noise fields:

$n(w) (37

= Gwiener(@)p (@) +

(1) c(w)=M: the noise field is incoherent, i.e., I';(w)=L In
this case, the Zelinski post-filter reduces to the optimal
Wiener filter and the proposed SCPF has additional
term as ¢n(w)/[M?(&(w)+1)].

(2) c(w)=0: the noise field belongs to the null-space of
as(w). In this case, on the contrary, the proposed SCPF
reduces to the optimal Wiener filter and the Zelinski
post-filter has additional term as ¢n(w)/[(M—1)?

(@) +1)].

It is worth to note that when the rank-1 desired MSF is
chosen, the proposed SCPF is a special case of the post-
filter algorithm [5]. In this case, the proposed SCPF can be
explained as the ratio of the output power of the delay-
and-sum (DS) beamformer to the sum of the input power.
Note that the Zelinski and McCowan post-filters also
belong to the same family.

It is also interesting to analyze the MSE of the delay-
and-sum (DS) beamformer. Given the DS beamformer as
Wps(w)=ay(w)/|las(w)||, which introduces no distortion on
the desired signal and the MSE thereof is derived as

MSEps(w) = Exp [|Whs(@)X(w, k) — s(w, k)|?]
:E,{ 2}:(/} ()

M
It can be seen that the MSE of the DS beamformer is
independent of the desired signal.
Before ending this section, we give an illustration to
show the difference between the DS beamformer, the
Zelinski post-filter, and the SCPF in the MSE sense.

b

all(w)n(w, k)

= (38)

——-DS
SCPF
0B« Zelinski
@ .
e O Wiener
&
s 06 p
b4
[\
@
2
-~ 04F R
w
7]
=
02 E
—.——.—rnvﬁ*—'—"—' ———————————————
0 O

Fig. 1. Comparison among the delay-and-sum (DS) beamformer, the Zelinski post-filter, and the proposed SCPF in the MSE sense: (a) incoherent noise field

and (b) a coherent noise impinged from §=45°.
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Consider a uniformly distributed linear array (ULA) with
M=4 sensors spaced at half-wavelength distance. The
I's(w) described in (20) was steered at #=0°. Two different
noise fields were analyzed: a coherent interference
impinged into the array at 6=45° and the incoherent
white sensor noise. In Fig. 1, compared to the DS beam-
former, it can be seen that both the post-filters attenuate
more noise component at low SNRs and preserves more
noise at high SNRs. Since speeches are highly nonstation-
ary signal, the post-filters are able to give aggressive noise
reduction at low SNRs, especially in the case of incoherent
noise fields.

4.4. The bias compensated SCPF

Recall from (28), the noise reduction ability of the
proposed SCPF is limited due to the additional term c(w)/
[M*(&w)+1)]. Since c(w) is the inner product of the
coherence matrices of the desired signal field and the noise
field, its effect becomes significant at low frequencies where
the similarity between coherence matrices is high due to
the insufficient spatial sampling. This can happen both in
beamforming and multi-channel post-filtering techniques.
When the desired signal is absent in the data, the optimal
Wiener filter gives a zero gain, which completely removes
the noise. However, the SCPF gives a gain of

tr(@s(0)®p(w))
CscPP(@)] ) 0 = tr{@y(@)) - tr@(@) ~ 69
where @,(w) is the noise PSD matrix. Under the assump-

tions of homogeneous sound fields and point source model,
the bias ,, can be expressed as

_al(wN(wag@)  c(w)
Po=—""75 =3

M M
Since ®4w) is designed a priori, the bias term g, only
depends on the noise PSD matrix ®,(w).

To decrease the effect of the bias f,, an intuitive way is
to remove the bias and compensate the gain to map the
value in the range of [0,1]. The result is called biased-
compensated SCPF (BC-SCPF) as follows:

Gscpr(@)—p,,
1 - ﬂm

Note that the bias j,, lies in the following range for all kinds
of noise fields according to the range of c(w) given in (31)

1/M<p,<1 (42)
By substituting (28) and (40) into (41), we have

G (w) = wi C(w) / <1 - C(u)))
BC—SCPF M2E@)+1) M VP
_ [&@)(M? — c(w))

_ (M? — (@)
M? (&) +1) M?

= Gwiener(®) (43)

This gives the optimal Wiener filter if the noise field
coherence is perfectly measured. In essence, the BC-SCPF
amplifies the small spatial deviation at low frequencies. It is
also worth to note that the Zelinski post-filter is a special case
of the proposed BC-SCPF with f,=1/M according to (35).

(40)

Gpc—scrr(w) = 41

For the bias estimation, (39) can be used if the PSD
matrices of the desired signal and the noise, ®y(w) and
®,(w), can be obtained in the training process. For the special
case of the homogeneous sound fields, the information given
by the noise PSD matrix ®,(w) equals to that of the noise
coherence matrix I',(w). Furthermore, on-line implementation
of the bias estimation can be achieved since the bias is the
smallest gain of proposed SCPF at each discrete frequency if
the noise field does not change. Thus, the minimum tracking
skills [6-8] can be conducted and implemented on-line.

4.5. Comparison between BC-SCPF and McCowan post-filter

Under the assumption of homogeneous sound field and
rank-1 signal model, the McCowan post-filter has been
derived as [16]

GMccowan (@) = Gwiener(@)
M-1 M _ A
I'nn -r
+ hs(w) 2 i; j:zi:+1 (@) ity @)
(@) + (@) MM ~1)" 1—F (@)

€

(44)

where f,,inj(w) and fn,-n,-(w) are the actual and estimated
noise coherence matrices of the aligned inputs. From (44)
it can be easily seen that the McCowan post-filter reduces
to the Wiener filter when the noise coherence matrix is
perfectly measured.

Similarly, the proposed BC-SCPF can be expressed with
I on(w) and Iy () as (see Appendix B)

Ggc—scpr(@) = Gwiener(®)
b(@) i 1 2 (g () — fnm_(m))
+ - J
bs(@)+ () z:\/l: 1E]M: 1(1 *fnm,v(w))

€

(45)

By comparing (44) and (45), it can be observed that the
error term ey in the McCowan post-filter is the average of
the ratios (I'yn(@) — (@) /(1 =T pn (@) for each micro-
phone pair, while the error term e, in the proposed BC-
SCPF is the ratio of averaged I'nn(w)—Inn(w) and
l—i‘n,,.,j (w). It is known that the averaging before division
may be robust to the estimation errors. In other words, the
error term ey is sensitive to the cases such as one of the
estimated /", (w) approaches to unity or is significantly
different from the true noise coherence matrix. The effects
are alleviated after the averaging in the proposed BC-SCPF.
Listed below are potential advantages of the proposed BC-
SCPF comparing with Zelinski and McCowan post-filters.

(1) Multi-rank signal models can be directly adopted in
the proposed method.

(2) The assumption of homogeneous sound fields used in
Zelinski and McCowan post-filters can be relaxed in
the proposed method. It becomes crucial when the
near-field effect or the sound attenuation is taken into
account.

(3) Compared to the estimation of the noise field coher-
ence under each microphone pairs, the proposed
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method merged those as one bias term, which can be
designed in many ways.

(4) The proposed BC-SCPF is less sensitive to the indivi-
dual estimation error of the noise coherence function
(or the noise PSD function).

4.6. Estimation of the PSD matrices

In practice, ®4w) can be estimated empirically from the
clean signal recordings of the microphone array. Typically,
statistically white or sweep sinusoid signals can be chosen
as the training signals. The training signal is uttered from a
sound device and recorded by the microphone array to
model the desired sound propagation. The recorded train-
ing signals are analyzed using STFT, and then ®4(w) can be
computed using sample mean of the input vectors under
each discrete frequency o as

(i>5(w)=l % s(w, k)s" (0, k) (46)
Nk =1

where N is the sample size. It is worth to note that the
spectral density of the training signal ¢s(») in (20) is not
crucial since it is canceled during the normalization of the
spatial coherence measure.

Next, the PSD matrix ®,(w) can be estimated using a
first-order recursive update formula

Dy (w, k) = a®y(w, k— 1)+ (1 — a)X(w, KX (0, k) (47)

where « is the forgetting factor close to unity. Note that the
PSD matrices estimated by (46) and (47) are guaranteed to
be semi-positive definite.

5. Simulation results

In this section, the comparison between beamformers and
post-filter algorithms is shown first. Second, the sensitivity to
the array imperfection for the proposed BC-SCPF and the
McCowan post-filter is analyzed. Finally, the performances
with different number of microphones are investigated.

5.1. Comparisons of algorithms

In this section, we use three different noise fields and
several SNR conditions to evaluate the proposed algo-
rithms. The simulations were generated by the room
impulse response generator [29] with reverberation cor-
responding to the reverberation time RTgo=503 ms using
Sabin-Franklin's formula. There are three noise field con-
ditions: (1) stochastically white noise where noises
between microphones are uncorrelated (i.e., incoherent
noise field); (2) babble noises which were uttered from
four corners of the room to simulate a diffuse noise field;
(3) speech interference which is a coherent source
impinged into the array at the direction of 45°. The desired
source impinged into the array at the direction 0° with
local scattering as described in Fig. 2. The angular power
density p(6,0) used in (21) is a Gaussian function with
standard deviation set as 10. A uniformly distributed linear
array (ULA) with eight omni-directional microphones with
5 cm spacing was used. The simulation environment is

Normalized Angular Power Density Function

U L
80 60 -40 -20 0 20 40 60 80

Angle (Degree)

Fig. 2. Normalized angular distribution function p(¢) of the scattered
source for all frequencies.
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Fig. 3. Simulation environment. A ULA with eight omni-directional
microphones, a desired speech source, an unwanted speech interference,
and four babble sources were set up.

illustrated in Fig. 3. The sampling rate and the fast Fourier
transform (FFT) size were 8 kHz and 256, respectively. A
female voice and a male voice were used as the desired
source and the interference respectively. The white and
babble noise signals were taken from the NOISEX-92
database [30]. All the recordings were 60 s in duration
and combined into different SNR conditions. The speech
quality was evaluated by ITU-T P.862 PESQ (Perceptual
Evaluation of Speech Quality) [31]. Higher PESQ score
indicates better speech quality. For noise reduction per-
formance, SNRI (Signal-to-Noise Ratio Improvement) from
ITU-T G.160 [32] was computed.

The detailed parameter settings and abbreviations of
the algorithms are listed below:

(1) DS: Delay-and-sum beamformer.

(2) SD: Super-directive beamformer [28]. The ratio of
(2,/¢n(@)) was chosen as —20 dB.

(3) Zelinski: Zelinski post-filter [15]. The post-filter was
implemented using (12), where the spectral densities
were estimated using a first-order recursive filter with
the forgetting factor «=0.875.

(4) McCowan: McCowan post-filter based on noise field
coherence [16]. The post-filter was implemented using
(10) and (11) with the noise coherence matrices
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estimated by (6). The coherence matrices were trained

with 1875 noise-only frames (30 s) for each case.
(5) SCPF: The proposed method was implemented using
(25) and (47). The forgetting factor «=0.875 for
estimating the PSD matrices was used for the proposed
methods, which is the same as the factor used in
Zelinski and McCowan post-filters.
BC-SCPF (Rank-1): The proposed method was imple-
mented using (41) with the same training noise data as
the McCowan et al. The biases were then computed
using (39). For comparison, ®4w) was implemented by
the point source model in (20) without training.
BC-SCPF(Multi-rank): The proposed method was
implemented using (39) and (41). ®4w) was trained
using (46).

—
=)
=

(7

~—

All the post-filters are processed on the output of the
DS beamformer.

In the following discussion, the evaluation of the
speech quality using PESQ score improvement is studied,
as shown in Table 1. Consider the DS and SD beamformers.
It is known that the delay-and-sum (DS) beamformer is
optimal for the MVDR design in the incoherent noise field.
Therefore, the DS beamformer is ensured to perform better
than the SD beamformer in this case. The SD beamformer
increases the directivity at low frequencies, or in other
words, it amplifies the small deviations between micro-
phones to obtain more noise reduction. As a result, the SD
beamformer has better performance than the DS

Table 1
PESQ score improvement under different noise fields.

Input SNR— PESQ score improvement
Algorithm | 5dB 10dB 15dB 20dB
White noise (incoherent)

Original noisy PESQ 1.77 2.05 2.39 2.72
DS 0.49 0.53 0.53 0.54
SD 0.03 0.05 0.05 0.04
DS+ Zelinski 1.03 0.95 0.84 0.75
DS-+SCPF 0.98 0.94 0.85 0.77
DS-+McCowan 1.03 0.95 0.84 0.75
DS+ BC-SCPF(Rank-1) 1.03 0.96 0.84 0.75

DS+ BC-SCPF(Multi-Rank) 1.08 1.01 0.89 0.79
Babble noise (diffuse)

Original noisy PESQ 2.05 235 2.65 2.95
DS 0.36 0.36 0.35 0.33
SD 0.57 0.57 0.57 0.58
DS+ Zelinski 0.36 0.38 0.37 0.35
DS+ SCPF 0.43 0.43 0.41 0.38
DS+ McCowan 0.55 0.52 0.46 0.43
DS-+BC-SCPF(Rank-1) 0.54 0.51 0.46 0.42

DS -+BC-SCPF(Multi-Rank) 0.57 0.54 0.49 0.45

Speech interference (coherent)

Original noisy PESQ 2.28 2.57 2.86 3.16
DS 0.28 030 0.30 0.29
SD 0.47 0.48 0.48 0.47
DS+ Zelinski 0.34 0.37 0.36 0.34
DS-+SCPF 0.37 039 0.38 0.36
DS+ McCowan 0.35 0.45 0.48 0.45
DS+ BC-SCPF(Rank-1) 0.66 0.62 0.55 0.47

DS -+ BC-SCPF(Multi-Rank) 0.69 0.64 0.57 0.49

beamformer in the diffuse and coherent noise fields,
where the insufficient spatial sampling has to be taken
into account in these cases. However, it has some artifacts
in the incoherent noise field due to the increased white
noise gain [1]. Compared to the DS beamformer, the usages
of post-filters give better performances. That means the
post-filters followed by a DS beamformer have contribu-
tions to both the speech quality and noise reduction.

The Zelinski post-filter is a special case of the McCowan
post-filter when the noise field is incoherent. Hence, it can
be seen that in the incoherent noise field, the perfor-
mances of the Zelinski and the McCowan post-filters are
almost the same. While in other noise fields, the consid-
eration of noise field coherence provides evident perfor-
mance improvements. Likewise, the proposed BC-SCPF
after the bias compensation has evident performance
improvements compared to the proposed SCPF. However,
unlike the relationship between the Zelinski and the
McCowan post-filters in the incoherent noise field, the
bias compensation still improves the performance in this
scenario.

For comparison between the Zelinski post-filter and the
proposed SCPF, the SCPF has better performances in the
diffuse and coherent noise fields. While in the incoherent
noise field, according to the theoretical analysis in Section
4.3, the Zelinski post-filter should always have better
performance than the SCPF. However, at high input SNR
conditions, the assumption of homogeneous sound fields
leads to signal distortion and degrades the speech quality.

Next, the performance of the McCowan post-filter and
the proposed BC-SCPF is discussed. Here, the BC-SCPFs
were implemented using the rank-1 and multi-rank

Table 2
SNRI score obtained by different input SNRS.

Input SNR — SNRI (dB)

Algorithm | 5dB 10dB 15 dB 20 dB
White noise (incoherent)

DS 9.38 9.34 9.07 8.51
SD —0.02 —-0.07 -0.27 -0.49
DS+ Zelinski 26.12 23.46 20.44 17.16
DS+ SCPF 20.69 19.33 17.43 15.63
DS+ McCowan 26.15 23.48 20.46 1717
DS+ BC-SCPF(Rank-1) 26.14 22.73 19.63 16.28

DS + BC-SCPF(Multi-Rank) 26.70 22.73 19.63 16.28
Babble noise (diffuse)

DS 3.55 3.36 3.11 2.82
SD 6.83 6.81 6.62 6.23
DS+ Zelinski 5.10 5.03 4.55 3.95
DS+ SCPF 4.63 4.42 3.98 343
DS+ McCowan 12.64 11.96 10.30 8.26
DS+ BC-SCPF(Rank-1) 11.85 11.60 9.94 8.03
DS +BC-SCPF(Multi-Rank) 11.73 11.48 9.81 7.93
Speech interference (coherent)

DS 0.20 0.03 —0.13 —-0.32
SD 233 231 218 1.92
DS+ Zelinski 0.86 0.60 043 0.17
DS+ SCPF 0.73 0.59 0.29 0.06
DS+ McCowan 1.64 297 3.69 334
DS+ BC-SCPF(Rank-1) 10.96 9.80 7.59 5.17

DS+ BC-SCPE(Multi-Rank) ~ 10.94 9.77 7.60 5.24
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models for comparison. For the former, it uses the same
presumed point source model as the McCowan post-filter.
With the same information, it can be observed that there is
no big difference between BC-SCPF(Rank-1) and McCowan
post-filter under incoherent and diffuse noise fields. But
the superiority becomes obvious in the coherent noise
field. One of the possible reasons is the homogeneous
assumption used in McCowan post-filter that breaks down
its performance. For incoherent and diffuse noise fields,
the noise PSDs in each microphone are similar. However,
the coherent noise field is no more homogeneous due to the
sound attenuation during propagation. When the multi-
rank @y w) is used, it shows that better speech quality can
be achieved.

Second, consider the SNRI results given in Table 2.
Compared to Table 1, typically higher speech quality
corresponds to higher noise reduction performance. How-
ever, higher noise reduction performance does not
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guarantee a better speech quality since it may also cause
signal distortion. In the incoherent and diffuse noise fields,
the McCowan post-filter has slightly larger SNRIs than that
of the BC-SCPF within 1 dB, but it has smaller PESQ score
improvements. It indicates that the multi-rank signal
model reduces signal distortion and leads to a better
speech quality with comparable noise reduction. In addi-
tion, the coherence and bias estimation in McCowan post-
filter and the BC-SCPF may be over-estimated which gives
aggressive noise reduction for low SNR observations. It is
the reason why the SNRI of the SD beamformer is smaller
than the SNRIs of the above mentioned two post-filters,
even though it has the highest PESQ scores.

In the last, one example of the signal spectrograms is
given in Fig. 4 as reference. The noise condition is the
speech interference at 10 dB SNR. The noise suppression of
the DS beamformer is effective at high frequency bands
but is limited at low frequency bands due to the
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Fig. 4. Signal spectrograms (speech interference at 10 dB SNR). (a) Clean signal, (b) noisy input, (c) DS, (d) SD, (e) DS+ Zelinski, (f) DS+McCowan, (g)

DS+ SCPF, (h) DS+ BC-SCPF(Rank-1), and (i) DS+ BC-SCPF(Multi-Rank).
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Table 3
PESQ score improvement with microphone #8 gain mismatches (under
speech interference).

Input SNR— PESQ Score Improvement
Algorithm | 5dB 10dB 15dB 20dB
Original noisy PESQ 2.28 2.57 2.86 3.16
DS +McCowan
No mismatch 0.36 0.45 0.48 0.45
Mismatch=1 dB 0.34 0.40 0.38 0.28
Mismatch=2 dB -0.14 -0.22 -0.38 —0.61
Mismatch=3 dB —0.68 -0.83 -1.05 —-1.31
DS -+ BC-SCPF(Multi-Rank)
No mismatch 0.69 0.64 0.57 0.49
Mismatch=1 dB 0.69 0.64 0.57 0.49
Mismatch=2 dB 0.68 0.64 0.57 0.49
Mismatch=3 dB 0.64 0.60 0.52 0.42
Table 4

PESQ score improvement with different number of microphones (with
speech interference, input SNR=5 db).

Number of microphones — PESQ score improvement

Algorithm | 4 6 8 12
DS +McCowan 0.20 0.26 0.36 045
DS+ BC-SCPF(Multi-Rank) 0.51 0.60 0.69 0.76

insufficient spatial sampling. Compared to DS beamformer,
the SD beamformer forms a null at the speech interference
thus it provides better noise suppression and speech
quality. Next, consider the post-filters. The performances
of the Zelinski post-filter and SCPF are similar in this case.
Compared to the Zelinski post-filter, the McCowan post-
filter can be observed that it has a little bit better noise
suppression at low frequency bands with the information
of noise coherence matrix. Finally, both the BC-SCPF with
rank-1 and multi-rank ®4») models give evident noise
suppression compared to the McCowan post-filter.

5.2. Sensitivity to array imperfection

Typically, microphone mismatch can easily happen in
the implementation. Here, microphone #8 is assumed to
have 1-3 dB gain mismatches. In Tables 3 and 4, it is
shown that the McCowan post-filter is very sensitive to
array imperfections while the proposed BC-SCPF has little
performance degradation. The results coincide with the
inference mentioned in Section 4.5.

5.3. Number of microphones

The effect of number of microphones is investigated
with the speech interference at 5 dB input SNR. The PESQ
improvement increases with the number of microphones,
where the improvement of the BC-SCPF is larger than the
McCowan post-filter about 0.2-0.3. This shows the feasi-
bility and superiority of the BC-SCPF with different num-
ber of microphones in the non-homogeneous field. For

homogeneous noise fields, the performance difference
may be small, as shown in Table 1.

6. Conclusion

This paper has presented a multi-channel post-filter
based on the spatial coherence measure, and a bias
compensated solution. The bias compensated solution
gives the optimal Wiener filter theoretically, as the McCo-
wan post-filter did. In the coherent noise field, the pro-
posed BC-SCPF with the multi-rank signal model provides
better speech quality than the McCowan post-filter since
the sound field is not homogeneous due to air attenuation.
As for the homogeneous fields such as incoherent and
diffuse noise, the performance improvement is limited.
Besides, the proposed BC-SCPF is less sensitive to the array
uncertainties such as microphone mismatch.

Furthermore, the similarity between the coherence
matrices of the desired sound field and the noise field
can be merged into a single real-valued bias. Several noise
level estimation skills can be adopted to estimate the bias.
Compared to the estimation of the noise coherence func-
tion, the bias estimation has fewer variables to be esti-
mated. Besides, the noise level estimation can be carried
out in the presence of the desired signal, while the
estimation of noise coherence function is carried out
during noise-only period. Finally, it is relatively easy to
describe the similarity between the multi-rank signal
models and the noise field using the proposed post-
filters. This provides a more flexible design for the real-
world environments.

It is worth to note that the multi-rank signal model is
helpful when the directivity of the array [1] is large
enough and the impact of local scattering or wavefront
fluctuation is obvious. Otherwise, the performance of the
proposed BC-SCPF may be similar to the McCowan post-
filter.

Appendix A. Relationship between the proposed SCPF
and the Zelinski post-filter

To compare with the Zelinski post-filter, the special
case of the proposed SCPF in (28) is used. Let us denote the
PSD matrix of the pre-processed input vector as ®y(w).
Using (5), the SCPF can be rewritten as

ps(@)al ()P (v)as(w)
bs(@)las(w)]* - tr(@x(w))

~ 1Tdy(w)1
T M - tr(dy @)

M M Mo
=2 21 (px,x,(a’)/(M' _;] (ﬁx,x,(m))

Gscpr(w) =

i=1j=

1 M M _ 1 M 48
= Wigljgl ¢xixj (») M i§1 ¢x,-x,»(w) (48)
where 1 is the all-one vector and tr(®y(w)) = tr(®x(w)) if all
the magnitudes of the elements in ag are equal to unity.
a’x,xi(“’) is the cross-spectral density between the pre-
processed inputs at the i-th and j-th microphones as used
in (10). In this case, the SCPF can be interpreted as the ratio
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between the average of total spectral densities and the
average of auto-spectral densities. Since the Zelinski post-
filter is the ratio between the average of cross-spectral
densities and the average of auto-spectral densities (as in
(12)), the relationship between the SCPF and the Zelinski
post-filter can be easily derived by

Gscpr(w)

/M) | 251 S R (P, (@)} + 21 1P (@)
—_—,——— [

_ off —diagonal diagonal (w)
ﬁ : Zliw: 1‘Zx,x,
1
= GZelinsl<i(w)+M(1 — Gzelinski(@)) (49)
Or it can be written as
G w)—1/M
Gzelinski(®) = Cscpr() ~1/M (50)

1-1/M

Note that the covariance matrix ®y(w) is Hermitian, hence
¢x;xj (w) +¢x,»xi (w) = zm{¢xixj ()}

Appendix B. Analysis of the proposed BC-SCPF

To compare with the McCowan post-filter, the assump-
tions of homogeneous sound fields and point source
model are used. Assume the actual and estimated noise
coherence matrices from the microphones are I'y(w) and
I'n(w). Then according to (40) and (43), we have

M? &) +all (@)Tn(@)ag(@)
Gpc_scpr(w) = M)+ 1)

_af (w)fn(w)as(w)] / (1 B aé’(w)fn(w)as(w)>
M? M?

¢5()
Ps(@)+ dy(w)
A @Tn(@)as(@) - af (@) ln(@)as()
(M? —alf @)Fy

= Gwiener(®)+

(w)as(w)) (51)

Using the time alignment expression in Appendix A, (51)
can be rewritten as

Gpc-scrr(@) = Gwiener(®) +

p(@  [1TTE@1-1"T )1
$s(@) +dn(@) | M2 —1TF (o)1)
M

= Gw )+ d’s((ﬂ) Z{wz IZ;V': 1f“1”1(w) - 2{‘/12 14 lf":"J(w)
= Gwiener(®) + Ps(@)+ pn(w) <M2 —yM M r (w))
i=1&j=1 nn;
= Gwiener(@) + Ps(w) #2?4:1211\4: 1(F"‘"f(w)7i""f"j(w))
Wienerl @) (@) + dhu(@) M 1ZJM: Ne! 7fn,nj(w))
(52)

where fni,,j(w) and fn,-nj(w) are the actual and estimated
noise coherence matrices of the aligned inputs.
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