
power detectors is demonstrated via distance measurements to a

single target and multiple targets. The RF power detector is

designed with a dummy structure and a differential common

emitter amplifier to cancel DC offset voltage. The maximum

distance errors are 2% in a single target and 6.7% in multitarget

environment using traveling wave antennas. The radar sensor

has high-range accuracy with narrow bandwidth. The sensor for

short-range detection has the advantages of easy designs to the

all components in the sensor and high-range accuracy from zero

to the maximum detectable range. The whole size of the radar

sensor module included the six-port network made by HBT

MMIC process, a signal conditioning block, and a patch antenna

is 4 3 4 3 2 cm3.
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ABSTRACT: The alternating direction implicit-finite-difference time-
domain (ADI-FDTD) method can be seen as a second-order perturbation
of the Crank–Nicolson FDTD (CN-FDTD) scheme. When the PML is

introduced for the ADI-FDTD method, the perturbation term will affect

the stability of the ADI-FDTD method. In this work, the stability analy-

sis of the PML schemes for the ADI-FDTD and CN-FDTD are demon-
strated. It is found that the PML equations for ADI-FDTD method will
be unstable due to the perturbation term. VC 2014 Wiley Periodicals, Inc.

Microwave Opt Technol Lett 56:2637–2642, 2014; View this article

online at wileyonlinelibrary.com. DOI 10.1002/mop.28658

Key words: Crank–Nicolson FDTD; alternating direction implicit-finite-

difference time-domain; PML; stability; perturbation term

1. INTRODUCTION

Finite-difference time-domain (FDTD) method has been widely

used to analyze the electromagnetic problems [1]. Due to the

explicit nature of this method, the time step size is restricted by

the Courant, Friedrichs, and Lewy (CFL) stability condition. A

stable alternating direction implicit (ADI) scheme was intro-

duced for the FDTD method. The ADI-FDTD method is an

attractive method due to its unconditional stability with large

CFL number (CFLN) [2, 3]. When the ADI-FDTD method is

used to simulate unbounded region problems, efficient absorbing

boundary conditions must be used. The PML schemes were

used for the ADI-FDTD method [4–6]. In [7, 8], the ADI-FDTD

with CFS PML was also proposed to reduce the reflection error.

However, the implementation of the PML in the ADI-FDTD

method can affect the stability of this scheme. In [9], it is found

that the ADI-FDTD method with split-field PML will lead to

late-time instability. The Crank–Nicolson FDTD (CN-FDTD) is

found to be another alternative unconditionally stable FDTD

method. The ADI-FDTD can be seen as an approximation of the

CN-FDTD scheme [10]. In [11, 12], the CN-FDTD with nearly

PML and split-field PML were proposed. It is shown that the

CN-FDTD can remain unconditionally stable with PML

implementation.

In this article, the stability analysis of the PML schemes for

the CN-FDTD and ADI-FDTD will be studied. The von Neu-

mann analysis is used to determine the stability of these

schemes. The difference between the CN-FDTD and ADI-FDTD

is the Dt2 perturbation term. From this study, it is found that the

perturbation term will affect the stability of PML schemes for

ADI-FDTD method.

2. PML FOR CN-FDTD AND ADI-FDTD

The ADI-FDTD can be seen as a second-order perturbation of

CN-FDTD. Their formulations are described briefly. The Max-

well’s curl equations are given by

@t E
!

5
1

e
~<H
!

@t H
!

52
1

l
~< E
!

(1)

where E and l are the permittivity and permeability, respec-

tively. E
!

and H
!

are the electric and magnetic fields, and ~< is

the curl operator. One can replace all the derivatives by centered

difference operator and average in time the field affected by the

curl operator to derive the CN-FDTD scheme,

ðW!
n11

2W
!n
Þ5~<T

Dt

2
ðW!

n11
1W
!n
Þ (2)

where W
!

5ðEx Ey Ez Hx Hy Hz ÞT is the numerical vec-

tor field and the operator ~<T is the numerical counterpart of ~<.

Equation (2) is the CN-FDTD scheme. It will require large

computational resources to solve this scheme. Nevertheless, the

TABLE 1 Measured Distances for Multiple Targets

Real Distance (cm)

Measured Distance

to the Target B (cm)

Measurement

Error (%)

50.0 47.51 4.98

60.0 58.79 2.02

70.0 65.3 6.7

69.19 (Removing

the target A)

1.16

90. 94.1 4.56
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CN-FDTD can be reformulated to ADI-FDTD scheme that can

be solved efficiently. Based on [10], the CN-FDTD method can

be split into two-step procedure for ADI-FDTD.

The space operator is ~<T is decomposed as

~A1 ~B5~<T (3)

and (2) can be rewritten as

~I2
Dt

2
ð ~A1 ~BÞ

� �
~W

n11
5 ~I1

Dt

2
ð ~A1 ~BÞ

� �
~W

n
(4)

The CN-FDTD scheme (4) can be rewritten as

~I2
Dt

2
~A

� �
~I2

Dt

2
~B

� �
W
!n11

5 ~I1
Dt

2
~A

� �
~I1

Dt

2
~B

� �
W
!n

1
Dt2

4
~A ~BðW!

n11
2W
!n
Þ

(5)

If we neglect the Dt2 perturbation term, we can get the approxi-

mation of CN-FDTD as ADI-FDTD

~I2
Dt

2
~A

� �
~I2

Dt

2
~B

� �
W
!n11

5 ~I1
Dt

2
~A

� �
~I1

Dt

2
~B

� �
W
!n

(6)

Therefore, the ADI-FDTD scheme (6) can be seen as a second-

order perturbation of the CN-FDTD (2)

Equation (6) can be further split into two updating steps

~I2
Dt

2
~A

� �
W
!n�

5 ~I1
Dt

2
~B

� �
W
!n

;

~I2
Dt

2
~B

� �
W
!n11

5 ~I1
Dt

2
~A

� �
W
!n�

(7)

where W
!n�

is an auxiliary intermediate vector field. The ADI-

FDTD Eq. (7) can be solved efficiently.

To simulate unbounded region problems, the PML formula-

tions should be implemented for CN-FDTD and ADI-FDTD.

We can use the same procedure to reformulate the PML equa-

tions. For the PML equations, the PML conductivity is incorpo-

rated into matrix ~<T. Once we derive the operator ~<T and split

into two operators ~A and ~B, we can reformulate the PML equa-

tions for CN-FDTD and ADI-FDTD. In this study, the unsplit-

field PML, split-field PML, and CFS PML formulations are

investigated.

2.1. Unsplit-Field PML Scheme
The unsplit-field PML scheme is based on the formulations

derived in [6]. The unsplit form PML equations are
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where @u represents the partial derivative with respective to u
direction, E

!
e and H

!
o are two auxiliary fields, and

~<5
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(8) can be written in a compact form as

@tW
!ðtÞ5~<TW

!ðtÞ (10)

where W(t) is the compound Cartesian vector

W
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where ~I and ~0 are 3 3 3 identity and null matrix, respectively.

The operators ~A and ~B are chosen, so that

~A1 ~B5~<T (13)

A possible choice of ~A and ~B is given by
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The field components E
!
; H
!
; E
!

e; and H
!

o can be solved by

CN-FDTD (4) or by two updating steps ADI-FDTD method (7).

The system Eq. (7) can be further triangularized to solve it.

When we set the PML conductivity rx 5 ry 5 rz 5 0, E
!

and

H
!

formulations will be identical to the ADI-FDTD method.

2.2. Split-Field PML Scheme
The split-field PML formulations can also be expressed in the

partial differential form (1) and solved by the CN-FDTD

scheme. Based on [4], the field vector is defined as

W
!

5ðExy Eyz Ezx Exz Eyx Ezy

Hxy Hyz Hzx Hxz Hyx HzyÞT
(16)

and ~<T is a 12 3 12 dimensional space operator

~<T5

2
1

e
~re

~0
1

e
~Re

1

e
~Re

~0 2
1

e
~ro

1

e
~Ro

1

e
~Ro

2
1

l
~Re 2

1

l
~Re 2

1

e
R~re

~0

2
1

l
~Ro 2

1

l
~Ro

~0 2
1

e
~ro

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

(17)

~<T is split into two operators to derive ADI-FDTD scheme

and the operators ~A and ~B are given by
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and
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Compared to the unsplit-field PML scheme, the split-field

PML equation is less complicate and more straightforward.

However, this formulation suffers from large reflection error,

when attempting to absorb the low-frequency evanescent wave.

The CFS PML scheme can accurately absorb the low-frequency

wave and is discussed below.

2.3. CFS PML Scheme
The PML equations can be expressed in the stretched coordinate

space [7]. For example, considering the x-projection of

Ampere’s law

TABLE 1 Eigenvalues of K and G for Unsplit PML Scheme

CFLN51 CFLN55 CFLN515

Split-field PML for

ADI-FDTD r50.1066jkK

9.9422334 e 2001 9.9590080 e 2001 1.0066924 e 1000

9.9422334 e 2001 9.9590080 e 2001 1.0066924 e 1000

9.9422334 e 2001 9.9590080 e 2001 1.0066924 e 1000

9.9422334 e 2001 9.9590080 e 2001 1.0066924 e 1000

9.8563297 e 2001 9.4176082 e 2001 8.3275850 e 2001

9.8563297 e 2001 9.4176082 e 2001 8.3275850 e 2001

9.8563297 e 2001 9.4176082 e 2001 8.3275850 e 2001

9.8563297 e 2001 9.4176082 e 2001 8.3275850 e 2001

1.0000000 e 1000 1.0000000 e 1000 9.9999972 e 2001

9.9999999 e 2001 1.0000000 e 1000 1.0000000 e 1000

1.0000000 e 1000 9.9999996 e 2001 1.000000 e 1000

1.0000000 e 1000 9.9999999 e 2001 9.9999999 e 2001

Split-field PML for

CN-FDTD r50.1066jkG

9.9614053 e 2001 9.9851056 e 2001 9.9948561 e 2001

9.9614053 e 2001 9.9851056 e 2001 9.9948561 e 2001

9.9614053 e 2001 9.9851056 e 2001 9.9948561 e 2001

9.9614053 e 2001 9.9851056 e 2001 9.9948561 e 2001

9.8468627 e 2001 9.2575790 e 2001 7.9378279 e 2001

9.8468627 e 2001 9.2575790 e 2001 7.9378279 e 2001

9.8468627 e 2001 9.2575790 e 2001 7.9378279 e 2001

9.8468627 e 2001 9.2575790 e 2001 7.9378279 e 2001

1.0000000 e 1000 1.0000000 e 1000 9.9999986 e 2001

1.0000000 e 1000 1.0000000 e 1000 9.9999996 e 2001

9.9999999 e 2001 9.9999996 e 2001 1.000000 e 1000

1.0000000 e 1000 9.9999998 e 2001 1.0000000 e 1000

DOI 10.1002/mop MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 56, No. 11, November 2014 2639



jxeEx5
1

sy

@

@y
Hz2

1

sz

@

@z
Hy (19)

and the z-projection of Faraday’s law
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where si is the stretched coordinate metric and is chosen to be

si5ji1
ri

ai1jxe
(21)

When (19) and (20) are transformed into time-domain, the

right-hand side terms will become convolution. The convolu-

tional CFS PML scheme is not suitable to formulate CN-FDTD

method. In [10], the authors use the auxiliary differential equa-

tions to express the Eqs. (16) and (17) and formulate CFS PML

scheme to be suitable for CN-FDTD scheme. The field vector is

defined as

W
!

5 ðEx Ey Ez fxy fxz fyz fyx fzx fzy

Hx Hy Hz gxy gxz gyz gyx gzx gzyÞ
(22)

where f and g are auxiliary variables and~<T is a 18 3 18

dimensional space operator
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After splitting ~<T, we can derive the ADI-FDTD scheme.

The operators ~A and ~B are given by
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and
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where ~Rss5 ~Rsse1 ~Rsso; C
!

ss5C
!

sse1 C
!

sso; and R
!

k5 R
!

ke1 R
!

ko.

The matrices ~Rss; C
!

ss; and R
!

k are related to PML parameters j,

r, and a. Details of these matrices are shown in [10]. The ADI-

FDTD with CFS PML is a simple extension of the ADI-FDTD

method. This scheme can provide wideband absorption of the

incident wave.

3. THEORETICAL STABILITY ANALYSIS

To study the stability of the PML schemes for the CN-FDTD

and ADI-FDTD method, the von Neumann method is used. Fol-

lowing the similar procedures presented in [3], we assume that

for each time step the field components are Fourier-transformed

into the spatial spectral domain. From the system equations of

(4), the CN-FDTD scheme can be written in the spatial spectral

domain in a matrix form as

Xn115GXn (25)

where the vector Xn represents the field components and the

auxiliary variables at the nth time step. From the system equa-

tions of (7), the ADI-FDTD scheme can also be written in the

spatial spectral domain in matrix form as

M1Xnj5P1Xn (26)

M2Xn115P2Xnj (27)

for the n* and n 1 1 time steps, respectively. The entries for

the matrices M and P are derived from updating equations. The

two half time steps can be combined to one time step

Xn115M21
2 P2M21

1 P1Xn5KXn (28)

The stability criterion requires that the eigenvalues of ampli-

fication matrices G and K lie within or on the unit circle. An

attempt to determine the eigenvalues of G and K symbolically

was made. However, due to the complexity of the amplification

matrix, it is difficult to get a simplified analytical expression for

the eigenvalues. The maximum eigenvalues are numerically cal-

culated by MatlabVR . In this study, we set the cell size to be Dx
5 Dy 5 Dz 5 1.0 mm and FDTD time step limit Dtmax 5

1.92 ps is used. The ratio of Dt/Dtmax is defined as the CFLN.

3.1. Unsplit-Field PML Scheme
The eigenvalues of G and K are computed when rx 5 rz 50,

and ry 5 10.66 S/m. The time step sizes are chosen to be Dtmax,

2Dtmax, and 5Dtmax, respectively. Both the unsplit-field PML

schemes for the CN-FDTD scheme and ADI-FDTD are investi-

gated and the theoretical results are shown in Table 1. When

CFLN 5 1, both the ADI-FDTD and CN-FDTD PML formula-

tions can be stable as the maximum eigenvalues for the two

schemes are smaller than unity. However, it is found that the

eigenvalues of the unsplit-field PML scheme for ADI-FDTD

scheme are larger than unity when CFLN 5 2 is used. Con-

versely, we use different CFLN and r values and no instability

was observed for CN-FDTD PML scheme. As shown in (5), the

difference between CN-FDTD and ADI-FDTD is the Dt2 pertur-

bation term. The results indicate that perturbation term will

affect the stability of PML scheme for ADI-FDTD when large

CFLN is used.

3.2. Split-Field PML Scheme
The split-field PML schemes for CN-FDTD and ADI-FDTD are

studied. In [9], it indicated that the split-field PML for the ADI-

FDTD method will be unstable when the PML conductivity
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profile is polynomial scaled and this scheme can be stable with

constant PML conductivity. In this study, the smaller PML con-

ductivity rx 5 rz 5 0 and ry 5 0.1066 S/m is used. From

Table 2, it is found that the split-field PML scheme for ADI-

FDTD can be stable when CFLN 5 5 and will become unstable

when large CFLN 5 15 is used. No instability is observed when

split-field PML for CN-FDTD scheme is used.

3.3. CFS PML Scheme
The convolutional CFS PML scheme is not suitable to formulate

CN-FDTD method. It has also been proved in [7] that convolu-

tional CFS PML for ADI-FDTD can be unconditionally stable.

In [10], the CFS PML formulations can also be expressed for

CN-FDTD and ADI-FDTD schemes, as discussed in Section 2.

We find that the CFS PML for CN-FDTD can still be uncondi-

tionally stable. Table 3 shows the calculated eigenvalues of K
with rs 5 10 S/m, js5 5, and as 5 0.1 S/m. When CFS PML

is formulated for ADI-FDTD (7), this scheme will also lead to

unstable condition when large CFLN 5 15 is used.

4. NUMERICAL VERFICATION

Numerical simulations are performed by 3-D ADI-FDTD with

unsplit-field PML and split-field PML to validate the instability

of the two schemes. A uniform mesh with cell size Dx 5 Dy 5

Dz 5 1.0 mm and FDTD time step limit Dtmax51.92 ps are

used. The computation domain is 42 3 42 3 42. PML layers

that are 10 cells thick terminated all six sides of the computa-

tion domain. A differential Gaussian pulse applied to Hx field is

excited at the center position (21, 21, 21). The polynomial scal-

ing is used for the PML conductivity profile

TABLE 2 Eigenvalues of K and G for Split PML Scheme

CFLN51 CFLN52 CFLN55

Unsplit-field PML for

ADI-FDTD r510.66jkj
l.0000000 e 1000 l.0000000 e 1000 l.0000000 e 1000

8.7747147 e 2001 l.0000000 e 1000 l.0000000 e 1000

8.7747147 e 2001 1.1404158 e 1000 1.8425689 e 1000

8.7747147 e 2001 1.1404158 e 1000 1.8425689 e 1000

l.0000000 e 1000 l.0000000 e 1000 1.8425689 e 1000

l.0000000 e 1000 l.0000000 e 1000 1.8425689 e 1000

8.7747147 e 2001 1.1404158 e 1000 l.0000000 e 1000

3.0475086 e 2001 1.1404158 e 1000 l.0000000 e 1000

3.0475086 e 2001 4.3679841 e 2001 4.1123514 e 2001

3.0475086 e 2001 4.3679841 e 2001 4.1123514 e 2001

3.0475086 e 2001 4.3679841 e 2001 4.1123514 e 2001

l.0000000 e 1000 4.3679841 e 2001 4.1123514 e 2001

Unsplit-field PMLfor

CN-FDTD r510.66jkGj
l.0000000 e 1000 l.0000000 e 1000 l.0000000 e 1000

9.2402257 e 2001 9.2903235 e 2001 9.6195689 e 2001

9.2402257 e 2001 9.2903235 e 2001 9.6195689 e 2001

9.2402257 e 2001 9.2903235 e 2001 9.6195689 e 2001

9.2402257 e 2001 9.2903235 e 2001 9.6195689 e 2001

2.3259772 e 2001 4.6207853 e 2001 7.3695418 e 2001

2.3259772 e 2001 4.6207853 e 2001 7.3695418 e 2001

2.3259772 e 2001 4.6207853 e 2001 7.3695418 e 2001

2.3259772 e 2001 4.6207853 e 2001 7.3695418 e 2001

l.0000000 e 1000 l.0000000 e 1000 l.0000000 e 1000

l.0000000 e 1000 9 9999998 e 2001 9.9999997 e 2001

l.0000000 e 1000 l.0000000 e 1000 l.0000000 e 1000

TABLE 3 Eigenvalues of K for CFS PML ADI-FDTD with ADE Formulation

CFLN51 CFLN55 CFLN515

Unsplit-field PML

for ADI-FDTD jkKj
6.4610024 e 2001 9.5826739 e 2001 6.7860023 e 2001

6.4610024 e 2001 9.5826739 e 2001 6.7860023 e 2001

6.4610024 e 2001 9.5826739 e 2001 6.7860023 e 2001

6.4610024 e 2001 9.5826739 e 2001 6.7860023 e 2001

6.3629102 e 2001 1.0000000 e 1000 1.1340967 e 1000

9.9044985 e 2001 1.0000000 e 1000 1.1340967 e 1000

9.9044985 e 2001 2.4086514 e 2001 1.1340967 e 1000

9.9044985 e 2001 2.4086514 e 2001 1.1340967 e 1000

9.9044985 e 2001 2.4086514 e 2001 1.0000000 e 1000

1.0000000 e 1000 2.4086514 e 2001 1.0000000 e 1000

1.0000000 e 1000 1.6715028 e 2001 4.0697273 e 2001

6.3629102 e 2001 1.6715028 e 2001 4.0697273 e 2001

6.3629102 e 2001 1.2104686 e 2001 4.0697273 e 2001

6.3629102 e 2001 1.2104686 e 2001 4.0697273 e 2001

6.3267285 e 2001 1.6715028 e 2001 2.1521203 e 2001

6.3267285 e 2001 1.6715028 e 2001 2.1521203 e 2001

6.3267285 e 2001 1.2104686 e 2001 2.1521203 e 2001

6.3267285 e 2001 1.2104686 e 2001 2.1521203 e 2001
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where d is the thickness of PML absorber, Ds is the cell size,

and s0 represents the interface. In this simulation, we choose

scaling factor m 5 4 and rmax 5 10.61 S/m for optimum PML

performance [4].

First, numerical simulation of the ADI-FDTD with unsplit-

field PML is performed. The time step size in this study is cho-

sen to be 2Dtmax. Figure 1 shows the time-domain Hx fields

recorded at the position (21, 20, 21). As shown in Figure 1, this

scheme will become unstable after running 400 time steps.

Then, numerical simulation of the ADI-FDTD with split-

field PML is performed. The time step size in this study is

7Dtmax. As shown in Figure 2, this scheme will become unsta-

ble after running 1200 time steps.

5. CONCLUSION

In this work, the stability analysis of the PML schemes for the

ADI-FDTD and CN-FDTD are studied. The ADI-FDTD can be

seen as a second-order perturbation of the CN-FDTD method.

From the theoretical stability analysis, it is found that the ADI-

FDTD will be unstable while the CN-FDTD can remain stable

when the PML medium is used. We find that the Dt2 perturba-

tion term will affect the stability of the PML schemes for ADI-

FDTD.
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ABSTRACT: We reported a novel fiber sensor based on two cascaded
single mode fiber corners, which has a high sensitivity for refractive
index (RI) sensing and a low temperature crosstalk. RI sensing was

experimentally demonstrated with an average sensitivity of 235 nm/RI

Figure 1 The Hx component for ADI-FDTD with unsplit-field PML

(CFLN 5 2). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com]

Figure 2 The Hx component for ADI-FDTD with split-field PML

(CFLN 5 7). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com]
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