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We give a complete characterization of nonnegative integers 
j and k and a positive integer n for which there is an n-by-n
matrix with its power partial isometry index equal to j and 
its ascent equal to k. Recall that the power partial isometry 
index p(A) of a matrix A is the supremum, possibly infinity, of 
nonnegative integers j such that I, A, A2, . . . , Aj are all partial 
isometries while the ascent a(A) of A is the smallest integer 
k ≥ 0 for which kerAk equals kerAk+1. It was known before 
that, for any matrix A, either p(A) ≤ min{a(A), n − 1} or 
p(A) = ∞. In this paper, we prove more precisely that there 
is an n-by-n matrix A such that p(A) = j and a(A) = k if and 
only if one of the following conditions holds: (a) j = k ≤ n −1, 
(b) j ≤ k−1 and j+k ≤ n −1, or (c) j ≤ k−2 and j+k = n. 
This answers a question we asked in a previous paper.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let A be an n-by-n complex matrix. The power partial isometry index p(A) of A is, by 
definition, the supremum of the nonnegative integers j for which I, A, A2, . . . , Aj are all 
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partial isometries. (A0 is understood to be I, even for A = 0.) Recall that A is a partial 
isometry if ‖Ax‖ = ‖x‖ for all vectors x of Cn which are in the orthogonal complement 
(kerA)⊥ of kerA. The ascent a(A) of A is the smallest nonnegative integer k for which 
kerAk = kerAk+1. The relation between these two parameters of A was first explored 
in [1]. In particular, it was shown in [1, Corollary 2.5] that 0 ≤ p(A) ≤ min{a(A), n −1} or 
p(A) = ∞. We asked in [1, p. 339] whether such conditions on p(A) and a(A) guarantee 
their attainment by some n-by-n matrix A. In this paper, we show that this is not always 
the case. It turns out that the situation is more delicate than what we have expected. 
More precisely, we prove that, for nonnegative integers j and k and a positive integer n, 
there is an n-by-n matrix A with p(A) = j and a(A) = k if and only if one of the 
following three conditions holds: (a) j = k ≤ n − 1, (b) j ≤ k − 1 and j + k ≤ n − 1, or 
(c) j ≤ k−2 and j+k = n. This settles the question completely. The proof of it depends 
on the special matrix representation, under unitary similarity, of a matrix A for which 
A, A2, . . . , Aj are all partial isometries for a certain j, 1 ≤ j ≤ ∞ (cf. [1, Theorems 2.2 
and 2.4]). We will review the necessary ingredients from [1] in Section 2 below. Section 3
then gives the proof of our main result.

Partial isometries were first studied in [3] and their properties have since been sum-
marized in [2, Chapter 15]. Power partial isometries were considered first in [4].

2. Preliminaries

We start with the following result from [1, Theorem 2.2].

Theorem 2.1. Let A be an n-by-n nonzero matrix and 1 ≤ j ≤ a(A). Then A, A2, . . . , Aj

are partial isometries if and only if A is unitarily similar to a matrix of the form

A′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 A1

0
. . .
. . . Aj−1

0 B

C

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

on C
n = C

n1 ⊕ · · · ⊕ C
nj ⊕ C

m, (1)

where the A�’s satisfy A∗
�A� = In�+1 for 1 ≤ � ≤ j−1, and B and C satisfy B∗B+C∗C =

Im. In this case, n� = nullityA if � = 1, and nullityA� − nullityA�−1 if 2 ≤ � ≤ j, and 
m = rankAj.

Here, for any p ≥ 1, Ip denotes the p-by-p identity matrix, and, for any matrix B, 
nullityB means dim kerB.

A consequence of Theorem 2.1 is the next result from [1, Theorem 2.4].

Theorem 2.2. Let A be an n-by-n matrix and j > a(A). Then the following conditions 
are equivalent:
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(a) A, A2, . . . , Aj are partial isometries,
(b) A is unitarily similar to a matrix of the form U⊕Jk1 ⊕· · ·⊕Jkm

, where U is unitary 
and a(A) = k1 ≥ · · · ≥ km ≥ 1, or

(c) A� is a partial isometry for all � ≥ 1.

Here Jq denotes the q-by-q Jordan block

⎡
⎢⎢⎢⎢⎣

0 1

0
. . .
. . . 1

0

⎤
⎥⎥⎥⎥⎦ .

An easy corollary of the preceding theorem is the following estimate for p(A) from 
[1, Corollary 2.5].

Corollary 2.3. If A is an n-by-n matrix, then 0 ≤ p(A) ≤ min{a(A), n −1} or p(A) = ∞.

In constructing the examples for our main result, we need the class of Sn-matrices. 
Recall that an n-by-n matrix A is said to be of class Sn if A is a contraction 
(‖A‖ ≡ max{‖Ax‖ : x ∈ C

n, ‖x‖ = 1} ≤ 1), its eigenvalues all have moduli strictly 
less than 1, and rank(In−A∗A) = 1. Such matrices are finite-dimensional versions of the 
compressions of the shift S(φ) studied first by Sarason [5], which later featured promi-
nently in the Sz.-Nagy–Foiaş contraction theory [6]. A special example of Sn-matrices 
is the Jordan block Jn. In fact, many properties of Jn can be extended to those for the 
more general Sn-matrices. Part (a) of the following theorem from [1, Proposition 3.1] is 
one such instance.

Theorem 2.4. Let A be a noninvertible Sn-matrix. Then

(a) a(A) equals the algebraic multiplicity of the eigenvalue 0 of A,
(b) p(A) equals a(A) or ∞, and
(c) p(A) = ∞ if and only if A is unitarily similar to Jn.

3. Main result

The following is the main theorem of this paper.

Theorem 3.1. Let j and k be nonnegative integers and n be a positive integer. Then there 
is an n-by-n matrix A such that p(A) = j and a(A) = k if and only if one of the following 
conditions holds:
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(a) j = k ≤ n − 1,
(b) j ≤ k − 1 and j + k ≤ n − 1, or
(c) j ≤ k − 2 and j + k = n.

Note that if we allow j to be infinity, then, for any k, 1 ≤ k ≤ n, there is an n-by-n
matrix A, namely, A = Jk ⊕ 0n−k with p(A) = ∞ and a(A) = k.

To prove Theorem 3.1, we need the next two lemmas.

Lemma 3.2. If A is an n-by-n matrix, which is unitarily similar to a matrix A′ as in (1)
with 1 ≤ j ≤ a(A), then (a) p(A) = j + p(C), and (b) a(A) = j + a(C).

Proof. For any � ≥ 0, multiplying A′ with itself j + � times results in

A′ j+� =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 (
∏j−1

p=1 Ap)BC�

0 · · · 0 (
∏j−1

p=2 Ap)BC�+1

...
...

...
0 · · · 0 BCj+�−1

0 · · · 0 Cj+�

⎤
⎥⎥⎥⎥⎥⎥⎦ . (2)

(a) Note that A′ j+� is a partial isometry if and only if A′ j+�∗A′ j+� is an (orthogonal) 
projection (cf. [2, Problem 127]), and the latter is equivalent to

(
j+�−1∑
q=�

Cq∗B∗

(
j−1∏

p=q−�+1

Ap

)∗( j−1∏
p=q−�+1

Ap

)
BCq

)
+ Cj+�∗Cj+� (3)

being a projection. Making use of A∗
pAp = Inp+1 , 1 ≤ p ≤ j − 1, and B∗B + C∗C = Im, 

we can simplify (3) to

(
j+�−1∑
q=�

Cq∗B∗BCq

)
+ Cj+�∗Cj+�

=
(

j+�−2∑
q=�

Cq∗B∗BCq

)
+ Cj+�−1∗(B∗B + C∗C

)
Cj+�−1

=
(

j+�−2∑
q=�

Cq∗B∗BCq

)
+ Cj+�−1∗Cj+�−1

=
(

j+�−3∑
q=�

Cq∗B∗BCq

)
+ Cj+�−2∗(B∗B + C∗C

)
Cj+�−2

= · · ·
= C�∗C�.
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Thus C�∗C� is a projection, which is equivalent to C� being a partial isometry. From 
these, we conclude that p(A) = p(A′) = j + p(C).

(b) For any � ≥ 0, let s� (resp., t�) denote the geometric (resp., algebraic) multiplicity 
of the eigenvalue 0 of Aj+�, and let u� (resp., v�) be the corresponding multiplicities of 0 
of C�. Obviously, we have t� = t0 for all � ≥ 0 and v� = v1 for � ≥ 1. We claim that 
s� = (

∑j
i=1 ni) + u� for � ≥ 0. Indeed, let x1 ⊕ · · · ⊕ xj ⊕ y in Cn1 ⊕ · · · ⊕ C

nj ⊕ C
m be 

any vector in kerA′ j+�. From (2), we have (
∏j−1

p=q−�+1 Ap)BCqy = 0, � ≤ q ≤ j + � − 1, 
and Cj+�y = 0. Since A∗

pAp = Inp+1 for 1 ≤ p ≤ j − 1, we obtain BCqy = 0 for 
� ≤ q ≤ j + � − 1. Applying B∗B + C∗C = Im to the vector Cj+�−1y yields that

Cj+�−1y = B∗(BCj+�−1y
)

+ C∗(CCj+�−1y
)

= 0 + 0 = 0.

We may then apply B∗B+C∗C = Im again to Cj+�−2y as above to obtain Cj+�−2y = 0. 
Repeating this process inductively, we finally reach C�y = 0, that is, y is in kerC�. This 
shows that kerA′ j+� is contained in the subspace Cn1 ⊕ · · · ⊕ C

nj ⊕ kerC�. Since the 
reversed containment is easily seen to be true, it follows that

s� = nullityAj+� = nullityA′ j+� =
(

j∑
i=1

ni

)
+ u�

for any � ≥ 0 as claimed. Note that, for any matrix T , its ascent is equal to the small-
est nonnegative integer k for which the geometric and algebraic multiplicities of the 
eigenvalue 0 of T k coincide. Thus

ua(C) = va(C) =
{
v1 if a(C) ≥ 1,
0 if a(C) = 0, and ua(C)−1 < ua(C) = v1 if a(C) ≥ 1.

Therefore,

sa(C) =
(

j∑
i=1

ni

)
+ ua(C) =

{
(
∑j

i=1 ni) + v1 = t0 = ta(C) if a(C) ≥ 1,∑j
i=1 ni if a(C) = 0,

where the third equality follows from the upper-triangular block structure of A′, and

sa(C)−1 =
(

j∑
i=1

ni

)
+ ua(C)−1 <

(
j∑

i=1
ni

)
+ v1 = t0 = ta(C)−1 if a(C) ≥ 1.

This shows that j + a(C) is the smallest integer k for which the geometric and algebraic 
multiplicities of the eigenvalue 0 of Ak are equal to each other. Thus a(A) = j + a(C)
follows. �
Lemma 3.3. Let A be an n-by-n matrix with p(A) < ∞.
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(a) If p(A) + a(A) > n, then p(A) = a(A).
(b) If p(A) + a(A) = n, then p(A) = a(A) or p(A) ≤ a(A) − 2.

Proof. By Theorem 2.1, A is unitarily similar to a matrix A′ in (1) with j = p(A). 
In particular, this implies that n1 ≥ n2 ≥ · · · ≥ nj ≥ 1 for if nj = nullityAj −
nullityAj−1 = 0, then we would have kerAj = kerAj−1, which yields the contradictory 
p(A) ≤ a(A) ≤ j − 1 by Corollary 2.3.

(a) Assuming p(A) +a(A) > n, we first check that nj = 1. Indeed, if otherwise nj ≥ 2, 
then ni ≥ 2 for all i, 1 ≤ i ≤ j. Making use of Lemma 3.2, we have

n =
(

j∑
i=1

ni

)
+ m ≥ 2j +

(
a(C) − p(C)

)
= 2p(A) +

(
a(A) − p(A)

)
= p(A) + a(A) > n,

which is a contradiction. Thus nj = 1. This means that B is a 1-by-m matrix. If p(A) <
a(A), then p(C) < a(C) by Lemma 3.2 again. In particular, this says that a(C) > 0
or 0 is an eigenvalue of C. After a unitary similarity, we may assume that C is upper 
triangular with a zero first column. Let C be partitioned as[

0 C1
0 C2

]
,

where C1 (resp., C2) is a 1-by-(m − 1) (resp., (m − 1)-by-(m − 1)) matrix. We deduce 
from B∗B+C∗C = Im that B = [eiθ 0 . . . 0] for some real θ and C∗

1C1 +C∗
2C2 = Im−1. 

Thus A′ is of the form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 A1

0
. . .
. . . Aj−1

0 eiθ 0 . . . 0
0 C1

C2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

on C
n = C

n1 ⊕ · · · ⊕ C
nj ⊕ C⊕ C

m−1.

Theorem 2.1 then leads to the contradictory p(A) = p(A′) > j = p(A). We conclude 
from Corollary 2.3 that p(A) = a(A).

(b) Assume that p(A) + a(A) = n and p(A) = a(A) − 1. We consider two separate 
cases, both of which will lead to contradictions:

(i) a(C) − p(C) ≤ m − 1. In this case, we proceed as in (a) to first prove that nj = 1. 
Indeed, if nj ≥ 2, then

n− 1 =
(

j∑
ni

)
+ m− 1 ≥ 2j +

(
a(C) − p(C)

)

i=1
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= 2p(A) +
(
a(A) − p(A)

)
= a(A) + p(A) = n,

which is a contradiction. Hence nj = 1 and B is a 1-by-m matrix. Then, since p(A) <
a(A), the second-half arguments in proving (a) yield that p(A) = a(A), which contradicts 
our assumption of p(A) = a(A) − 1.

(ii) a(C) − p(C) = m. Note that this can happen only when a(C) = m and p(C) = 0. 
Thus m = a(C) − p(C) = a(A) − p(A) = 1 by Lemma 3.2 and our assumption. This 
shows that C is a 1-by-1 matrix, say, C = [c] with a(C) = 1 and p(C) = 0. The former 
condition a(C) = 1 yields that c = 0, which results in p(C) = ∞, contradicting the latter 
p(C) = 0.

We conclude that p(A) + a(A) = n implies p(A) 	= a(A) − 1. �
Finally, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. The existence of an n-by-n matrix A with p(A) = j and a(A) = k

implies, by Corollary 2.3, that j ≤ min{k, n −1}. Lemma 3.3 then yields that one of (a), 
(b) and (c) must hold.

For the converse, assume that (a) holds. If j = k = 0, then A = (1/2)In will do. 
Otherwise, we have 1 ≤ j = k ≤ n − 1. Let A be a noninvertible Sn-matrix whose 
eigenvalue 0 has algebraic multiplicity k. Then Theorem 2.4 gives p(A) = j = k = a(A).

Next assume that (b) holds. Let A = A1⊕A2, where A1 (resp., A2) is an Sj+1-matrix 
(resp., Sn−j−1-matrix) whose eigenvalue 0 has algebraic multiplicity j (resp., k). Then 
a(A1) = j and a(A2) = k. Hence a(A) = max{a(A1), a(A2)} = k. On the other hand, 
we also have p(A1) = a(A1) = j and

p(A2) =
{
a(A2) = k if k < n− j − 1,
∞ if k = n− j − 1,

by Corollary 2.3 and Theorem 2.4. Thus p(A) = min{p(A1), p(A2)} = j.
Finally, if (c) holds, then there are two cases to be considered:
(i) j = k − 2. In this case, let

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 I2

0
. . .
. . . I2

0 B

C

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

on C
n = C

2 ⊕ · · · ⊕ C
2︸ ︷︷ ︸

j

⊕C
2,

where B =
[ 1 0

0 1/
√

2
]

and C =
[ 0 1/

√
2

0 0

]
. Since n = j + k = j + (j + 2) = 2j + 2, A is 

indeed an n-by-n matrix with B∗B + C∗C = I2. We infer from Lemma 3.2(a) (resp., 
(b)) that

p(A) = j + p(C) = j + 0 = j
(
resp., a(A) = j + a(C) = j + 2 = k

)
.
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(ii) j ≤ k − 3. Let m = k − j ≥ 3, and let

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 I2

0
. . .
. . . I2

0 B

C

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

on C
n = C

2 ⊕ · · · ⊕ C
2︸ ︷︷ ︸

j

⊕C
m,

where

m−3︷ ︸︸ ︷
B =

[
1 0 0 · · · 0 0
0 1/

√
2 0 · · · 0 1/2

]

and

m−3︷ ︸︸ ︷

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1/
√

2 0 0 · · · 0 1/2
0 1 0 · · · 0 0

0
. . . . . .

...
...

. . . . . . 0 0
. . . 1 0

0 1/
√

2
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since n = j + k = 2j + m, A is an n-by-n matrix with B∗B + C∗C = Im. Again, we 
infer from Lemma 3.2(a) that

p(A) = j + p(C) = j + 0 = j,

where the second equality follows from the fact that C∗C is not a projection and hence 
C is not a partial isometry. On the other hand, Lemma 3.2(b) implies that

a(A) = j + a(C) = j + m = j + (k − j) = k,

where the second equality holds because C is similar to Jm. �
Acknowledgements

The two authors acknowledge the supports from the National Science Council of 
the Republic of China under NSC-102-2115-M-008-007 and NSC-102-2115-M-009-007, 
respectively. The second author was also supported by the MOE-ATU project.



144 H.-L. Gau, P.Y. Wu / Linear Algebra and its Applications 459 (2014) 136–144
References

[1] H.-L. Gau, P.Y. Wu, Structures and numerical ranges of power partial isometries, Linear Algebra 
Appl. 440 (2014) 325–341.

[2] P.R. Halmos, A Hilbert Space Problem Book, 2nd ed., Springer, New York, 1982.
[3] P.R. Halmos, J.E. McLaughlin, Partial isometries, Pacific J. Math. 13 (1962) 585–596.
[4] P.R. Halmos, L.J. Wallen, Powers of partial isometries, J. Math. Mech. 19 (1970) 657–663.
[5] D. Sarason, Generalized interpolation in H∞, Trans. Amer. Math. Soc. 127 (1967) 179–203.
[6] B. Sz.-Nagy, C. Foiaş, H. Bercovici, L. Kérchy, Harmonic Analysis of Operators on Hilbert Space, 

2nd ed., Springer, New York, 2010.

http://refhub.elsevier.com/S0024-3795(14)00438-8/bib31s1
http://refhub.elsevier.com/S0024-3795(14)00438-8/bib31s1
http://refhub.elsevier.com/S0024-3795(14)00438-8/bib32s1
http://refhub.elsevier.com/S0024-3795(14)00438-8/bib33s1
http://refhub.elsevier.com/S0024-3795(14)00438-8/bib34s1
http://refhub.elsevier.com/S0024-3795(14)00438-8/bib35s1
http://refhub.elsevier.com/S0024-3795(14)00438-8/bib36s1
http://refhub.elsevier.com/S0024-3795(14)00438-8/bib36s1

	Power partial isometry index and ascent of a ﬁnite matrix
	1 Introduction
	2 Preliminaries
	3 Main result
	Acknowledgements
	References


