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A Novel Method to Predict
Traffic Features Based on Rolling
Self-Structured Traffic Patterns

YU-CHIUN CHIOU, LAWRENCEW. LAN, and CHUN-MING TSENG

Department of Transportation and Logistics Management, National Chiao Tung University, Taipei, Taiwan,

Republic of China

In this study, a novel method is proposed to predict the traffic features in a long freeway corridor with a number of time

steps ahead. The proposed method, on the basis of rolling self-structured traffic patterns, utilizes the growing hierarchical

self-organizing map model to partition the unlabeled traffic patterns into an appropriate number of clusters and then

develops the genetic programming model for each cluster to predict its corresponding traffic features. For demonstration,

the proposed method is tested against a 110-km freeway stretch, on which 48 time steps of 5-min traffic flows are predicted

(i.e., a 4-h prediction). The prediction accuracy of the proposed method is compared with other models (ARIMA, SARIMA,

and naive models) and the results support the superiority of the proposed method. Further analyses indicate that

applications of the proposed method to larger scale freeway networks require sufficient lengths of observation to acquire

enough traffic patterns for training and validation in order to achieve higher prediction accuracy.

Keywords Genetic Programming; Growing Hierarchical Self-Organizing Map; Rolling Self-Structured Traffic Patterns;

Traffic Prediction

INTRODUCTION

The advanced traveler information system (ATIS) is one of

the most widely deployed intelligent transportation systems

(ITS) applications nowadays. ATIS provides advisory informa-

tion to the road users about traffic regulation, route and location

guidance, hazardous situations, safety advisory, and warning

messages (Kumar et al., 2005). It requires fast processing, ana-

lyzing and storing a large amount of traffic data, and quickly

disseminating both pretrip and en route information to users.

The pretrip information can enhance drivers’ self-belief while

using the freeways or allow commuters to make better informed

transit choices (Campbell et al., 2003). The en route informa-

tion, on the other hand, can save users’ travel time, help travel-

ers avoid congestion, and thus improve traffic network

performance (Maccubbin et al., 2003). The implementation of

ATIS is heavily dependent on the accurate estimates of prevail-

ing and emerging traffic conditions. In the literature, a variety

of predictive techniques/algorithms have been developed; how-

ever, no matter how advanced the predictive techniques/algo-

rithms are, time lags seem inevitable while converting the

detected data into the real applications. The lags typically come

from the times required in cumulating, analyzing, and transmit-

ting the data. To cope with the time lags, pragmatic ITS applica-

tions must be based on predicted traffic conditions, in lieu of

detected traffic conditions, making the prediction of traffic fea-

tures a prerequisite (Lam et al., 2005; Lan et al., 2010).

Traffic features such as flow, speed, occupancy, and travel

time can vary over space and over time. In the past, a consider-

able number of methods or models have been developed to pre-

dict traffic features. Travelers are most interested in the travel

time along their paths. Unless the roadway systems have suffi-

cient number of probe vehicles, stationary vehicle detectors

(VD) are still the most prevalent and reliable devices to collect

traffic information nowadays. However, the traffic information

collected by VD makes it hard to accurately predict travel time

over a long stretch because VD can only measure the temporally

distributed traffic information. Nonetheless, with predicted link
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traffic flows or on-ramp traffic flows over a sufficient time

period ahead, a dynamic origin–destination (O��D) estimating

coupled with an efficient traffic flowmodeling (e.g. Chiou et al.,

2010) can predict traffic flows and travel time for each O��D

pair accordingly. In other words, the predicted traffic flows can

further predict the travel time information through properly

processing the dynamic traffic assignment and flowmodeling.

In the past, numerous studies attempted to predict traffic

flows based on VD data or to predict travel time based on

probe vehicle data for ATIS development or traffic manage-

ment. These studies broadly employed parametric and non-

parametric models. The parametric models include the linear

statistical model (Chang & Miaou, 1999), nonlinear statistical

model (Lan et al., 2007, 2010; Vlahogianni, 2009; Vlaho-

gianni et al., 2006, 2008), support vector regression (Hong,

2011), and time-series model (Ghosh et al., 2005; Kamariana-

kis & Prastakos, 2003; Szeto et al., 2009; Van Der Voort

et al., 1996; Williams & Hoel, 2003). The nonparametric mod-

els include the sequential learning model (Chen & Grant-

Muller, 2001; Sheu et al., 2009a, 2009b), nearest neighbor

approach (Smith & Demetsky, 1997; You & Kim, 2000), neu-

ral network model (Chang et al., 2002; Chen et al., 2001; Dia,

2001; Dochy et al., 1996; Dougherty and Cobbett, 1997; Kirby

et al., 1997; Lan & Huang, 2006; Ledoux, 1997; Smith &

Demetsky, 1997; Smith et al., 2002; Van Der Voort et al.,

1996; Vlahogianni et al., 2005), spinning network (Huang &

Sadek, 2009), Kalman filtering model (Okutani & Stepha-

nedes, 1984), gray prediction model (Chiou et al., 2007), and

adaptive fuzzy rule-based model (Dimitriou et al., 2008;

Zhang & Ye, 2008). Most of these methods or models, how-

ever, focused on short-period prediction—only one or two

time intervals ahead—with an inherent assumption of nearly

the same traffic pattern throughout the prediction horizon.

Should the prediction period becomes longer over which traf-

fic patterns change manifestly, the preceding methods or mod-

els will no longer be applicable. For instance, if one wishes to

develop an ATIS by providing the freeway users with reliable

predicted en route travel time information over few hundred

kilometers, one requires predicting the relevant traffic features

for the entire stretch several hours ahead—this refers to a

“long prediction horizon” in this study. In the literature, rela-

tively few models are designed for predicting traffic features

over such a long prediction horizon. The genetically optimized

neural network model (Vlahogianni et al., 2005) that can pre-

dict over five time-steps ahead and the multivariate structural

time-series model (Ghosh et al., 2009) that can predict even

longer ahead (1 day ahead for daily model, 1 week ahead for

weekly model) are perhaps two exceptions.

Although traffic dynamics may change drastically, similar

traffic patterns do repeat over the spatiotemporal domains

(Lan et al., 2008; Lan et al., 2010; Sheu et al., 2009a, 2009b).

Therefore, if the historical baseline data can be clustered into

an appropriate number of traffic patterns, it becomes possible

to accurately predict the traffic features for each cluster in a

rolling-horizon manner. The objective of this study is to

propose a novel method, based on the rolling self-structured

traffic patterns, to predict traffic features over a “long predic-

tion horizon” along a freeway stretch. The core logics of the

proposed method contain a growing hierarchical self-organiz-

ing map (GHSOM) model and a genetic programming (GP)

model. The GHSOM model is to group the similar traffic pat-

terns into the same cluster without the need of predetermina-

tion of the number of clusters, whereas the GP model is to

perform the traffic prediction in each cluster without the need

of prior assumption of data distribution or model specification.

To test the proposed method, a case study is demonstrated on

a 110-km freeway stretch on which 48 time intervals of 5-min

traffic flows are predicted.

The rest of the article is organized as follows. The second

section describes the core logics and solution algorithms of the

proposed method. The third section presents the case study

with training and validation results. The fourth section further

evaluates the predictive performance of the proposed method.

Finally, concluding remarks and suggestions for future studies

are addressed.

THE PROPOSED METHOD

A Rolling Concept

Let Xk(t C 1) D [xk(t C 1), xk(t C 2), . . ., xk(t C r)] denote a

sequence of r-period historical traffic features (e.g., 5-min

flow rates in the case study) observed at location k starting

from time t C 1. The proposed method aims to predict the flow

features h time steps ahead, denoted as

x^ k.tC rC 1/; x^ k.tC rC 2/; . . .;x^ k.tC rC h/: For a shorter

period prediction (i.e., hD 1 or 2 in most of the previous litera-

ture), the predicted results have provided useful information

for some ITS applications like traffic-responsive control. How-

ever, if the purpose is for ATIS applications, we may need a

longer period prediction (i.e., h >> 1) of the preceding flow

features. To this end, this study aims to make a longer-period

prediction of x^ k.tC rC 1/; x^ k.tC rC 2/;. . .;x^ k.tC rC h/: (e.g.,
h D 48 time steps of 5-min flow rates in the case study).

A rolling-horizon concept is incorporated into the proposed

method. First, we employ the GHSOM model to classify the

given traffic patterns into appropriate clusters. Then we use

the GP model to predict traffic sequence in each cluster such

that a portion of the most updated (r – s C 1) time steps of traf-

fic sequence, say xk(t C s), xk(t C s C 1), . . . , xk(t C r), is used

to predict the traffic sequence at the very next time step,

x^ k.tC rC 1/; where s is the specific time point. In the GP

model, only the time steps after s are selected to predict the

consecutive traffic sequences. This predicted traffic sequence

together with the previous traffic sequences is further used to

predict the consecutive traffic sequences in a rolling manner.

Specifically, the traffic feature x^ k.tC rC 1/ is predicted based

on traffic sequences xk(t C s), xk(t C s C 1), . . . , xk(t C r); the

traffic feature x^ k.tC rC 2/ is predicted based on traffic
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sequences xk(t C s C 1), xk(t C s C 2), . . . , xk(t C r),

x^ k.tC rC 1/; and so on.
Taking r D 100, s D 81, and h D 25 as an example, in total

100 traffic sequences are used to cluster the traffic pattern by

the GHSOM model and in total the 20 most updated traffic

sequences from 81st to 100th are used to predict the 101st traf-

fic sequence by the GP model. Following the same vein, the

102nd traffic sequence is predicted by newly updated 20 traffic

sequences—the 19 historical traffic sequences (from 82nd to

100th) plus the predicted traffic sequence (101st). A similar

process continues until 25 subsequent traffic sequences have

been completely predicted. The details of traffic pattern clus-

tering and traffic prediction are further elaborated in the

following.

Traffic Pattern Clustering

Pattern clustering is also known by different terms (e.g.,

cluster analysis, set partitioning, Q-analysis, typology, group-

ing, clumping, classification, numerical taxonomy, or unsuper-

vised pattern recognition) in different literature. In traffic

literature, traffic pattern at a specific location represents a

sequence of traffic features such as flow, speed, occupancy,

and so on; thus, traffic pattern clustering can be regarded as a

classification process by which a group of unlabeled traffic

patterns are partitioned into a number of sets—similar patterns

in the same cluster and dissimilar patterns in different clusters.

Brucker (1978) and Welch (1983) proved that, for specific

objective functions, clustering becomes an NP-hard problem

when the number of clusters exceeds three, if one aims to find

the optimal clusters. Numerous heuristic algorithms for clus-

tering have been developed, which can generally be divided

into five categories: statistics clustering, mathematical pro-

gramming, network programming, neural network (Chen

et al., 2008; Tangsripairoj & Samadzadeh, 2006; Yang et al.,

2004, 2010), and metaheuristics (Chiou & Chou, 2010; Chiou

& Lan, 2001). Rauber et al. (2002) proposed the growing hier-

archical self-organized map (GHSOM) model and proved that

it possesses excellent performance in pattern clustering; thus,

this study employs GHSOM to conduct the traffic patterns

clustering.

In fact, GHSOM is an extension of the self-organizing map

(SOM), an artificial neural network that performs clustering

by means of unsupervised competitive learning algorithm pro-

posed by Kohonen (1982). During the learning process, the

network performs clustering and the model vectors change to

reflect the similarity of the neighboring clusters. The goal of

the SOM is to represent the points in the source space by corre-

sponding points in a lower dimensional target space (often in a

two-dimensional lattice). However, the SOM cannot determine

the size of a preset map by ignoring the characteristics of data

distribution. In other words, when using the SOM to group

traffic patterns into clusters, the number of clusters must be

predetermined. Without an in-depth investigation of the

historical traffic patterns, it is difficult to know the appropriate

number of clusters in advance. In contrast, GHSOM (Rauber

et al., 2002) has a hierarchical structure of multiple layers,

where each layer consists of several independent growing

SOMs. GHSOM can automatically determine the optimal

number of clusters through the growth of layers and maps, and

thus it can enhance the applicability of our proposed model.

The GHSOM architecture starts from a top-level map,

which grows in size to represent a collection of data at dif-

ferent specific levels. For instance, Layer 1 contains 2 £ 2

units and provides a rather rough organization of the main

clusters in the input data. The four independent maps in

Layer 2 give more detailed information. The three identi-

fied units in Layer 2, which have diversified input data

mapping onto them, are further expanded to form a new

independent SOM in the subsequent layer (Layer 3), and

so on, depicted in Figure 1.

To elucidate the training algorithm of GHSOM, the training

algorithm of conventional SOM is given next. A typical SOM

network consists of an input layer and an output or competitive

layer. The input layer is composed of a set of r-dimensional

input vectors xk D [xk(t C 1), xk(t C 2), . . . , xk(t C r)], where r

indicates the number of traffic features (i.e., the flow sequen-

ces at consecutive time steps in this study) contained in each

input vector. The output layer is an m-dimensional (often m D
2) grid, which consists of a set of neurons, each associated

with an r-dimensional weight vector wi D [wi1, wi2, . . . , wir]

with the same dimension as the input vector. The arrangement

of the neurons can be rectangular or hexagonal. Conceptually,

SOM takes a set of inputs mapping them onto the neurons of

two-dimensional grid. Randomly initializing the weight vec-

tors, the SOM network then performs learning as the following

steps.

Figure 1 An illustration of the GHSOM architecture.
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Step 1: Randomly initialize the weight vector of each neuron.

Step 2: Determine the winning neuron. The SOM network

determines the winning neuron for a given input vector,

selected randomly from the set of all input vectors. For

every neuron on the grid, its weight vector is compared

with the input vector by using some similarity meas-

ures, for example, the Euclidean distance. The neuron

for which the weight vector is closest to the input vec-

tor is selected as the winning neuron b, expressed as

follows:

b :
��xkt ¡wb.l/

��D min
i

��xkt ¡wi.l/
��� �

; (1)

where l denotes the number of current learning iteration.

Step 3: Update the weights. After a winning neuron is deter-

mined, the weight vectors of winning neuron along with

its neighboring neurons are updated so as to “move”

toward the input vectors according to the following equa-

tion:

wi.lC 1/Dwi.l/C hbi.l/.xkt ¡wi.l//; (2)

where hbi(l) is the neighborhood function. A widely used

neighborhood function is based on the Gaussian function

expressed as follows:

hbi.l/Da.l/ exp ¡
��ri ¡ rb

��2
2s.l/2

 !
; (3)

where a(l) is the learning rate function, which controls the

amount of weight vector adjustment and decreases with

the iterations; ri and rb are the locations of the neuron i

and winning neuron b in the lattice; and s(l) defines the

width of the neighborhood function and it also decreases

monotonically.

Step 4: Test the stop condition. Steps 2 and 3 are repeated until

all the patterns in the training set have been processed. In

addition, to achieve a better convergence toward the

desired mapping, it is usually required to repeat the previ-

ous loop until some convergence criteria are met.

Based on the concept of the preceding SOM learning pro-

cess, the training algorithm of GHSOM basically grows hori-

zontally (by increasing the size of each SOM) and

hierarchically (by increasing the number of layers). In horizon-

tal growth, each SOM modifies itself in a systematic way simi-

lar to the growing grid so that each neuron does not represent

too large an input space. In the hierarchical growth, on the

other hand, the principle is to periodically check whether the

lowest layer of SOMs have achieved sufficient coverage for

the underlying input data. The basic steps of horizontal growth

and hierarchical growth of GHSOM are delineated next

(Tangsripairoj & Samadzadeh, 2006):

Horizontal growth:

Step 1: Randomly initialize the weight vector of each neuron.

Step 2: Perform the conventional SOM learning algorithm for

a preset number of iterations.

Step 3: Find the error unit e and its most dissimilar neighbor

unit d. The error unit e is the neuron with the largest devi-

ation between its weight vector and the input vectors it

represents.

Step 4: Insert a new row or a new column between e and d.

The weight vectors of these new neurons are initialized as

the average of their neighbors.

Step 5: Repeat Steps 2–4 until the mean quantization error of

the map (MQEm) is less than (t1 .mqeu). Here, t1 is a

threshold specifying the desired level of detail to be

shown in a particular SOM; mqeu is the mean quantization

error of the neuron u in the preceding layer of the hierar-

chy. Equation 4 calculates mqeu, which is the average dis-

tance between the weight vector of neuron u and the input

vector mapping onto this neuron:

mqeu D 1

nCu

X
xj 2Cu

��xj ¡wu

��; nCu
D jCuj; (4)

where Cu denotes the set of input vectors mapping onto

unit u; wi denotes the weight vector of unit i; k xj ¡wu k
denotes the distance between input vector xj and weight

vector wu; and jCu j denotes the cardinality of the set Cu.

Furthermore, MQEm, the mean of all neurons’ quantiza-

tion errors in the map, is calculated as follows:

MQEm D 1

nU

X
i2U

mqei; nU D jU j; (5)

where U denotes the subset of map units.

Hierarchical growth:

Step 1: Check each neuron to find out whether itsmqeu is greater

than (t2 .mqe0). Here, t2 is a threshold specifying the

desired quality of input data representation at the end of

learning process; mqe0 is the mean quantization error of the

single neuron of Layer 0. Then, assign a new SOM at a sub-

sequent layer of the hierarchy.mqe0 is computed as follows:

mqe0 D 1

nI

X
xj 2 I

��xj ¡m0

��; nI D jI j; (6)

where m0 is the mean of the input vectors and I is the set of

the input vectors. mqe0 is regarded as a measurement of

the overall dissimilarity of input data.

Step 2: Train the SOM with input vectors mapping onto this

neuron.
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Traffic Prediction

After dividing the traffic patterns into appropriate number

of clusters, a traffic prediction model is then developed for

each cluster, which predicts h time steps ahead based on his-

torical r time steps. It is well known that the artificial neural

network (ANN), especially the back propagation network, is a

powerful tool for traffic prediction. The performance of ANN

for predicting traffic flows has been proven by many studies.

However, if an ANN model is introduced in the case study, the

network will consist of 240 input neurons and one output neu-

ron, requiring a lot of effort in network pruning and searching

for the optimal number of hidden layers and hidden neurons.

Additionally, 240 traffic sequences must be inputted into the

tuned network for predicting each traffic sequence, making the

network training and prediction troublesome. In contrast to

ANN model, the GP model is a global optimization algorithm

based on the mechanism of natural selection and offspring

generation (Koza, 1992). It starts with a population of ran-

domly generated individual trees, each corresponding to a lin-

ear combination of traffic flows in the previous periods. Every

generated tree is evaluated for its fitness value, which is further

utilized for the selection of generated offspring trees. The

tuned GP model requires only a few historical traffic sequen-

ces for traffic prediction, which is apparently much easier than

the ANN model.

Assume that in total I traffic patterns are to be assigned to

cluster l; each traffic pattern is denoted as Xli(t)D [xli(1), xli(2),

. . . , xli(r)], i D 1, 2, . . . , I. The learning process of GP model is

as follows:

Figure 2 Crossover and mutation operations of GP: (a) crossover of GP; (b) mutation of GP.

Figure 3 The study corridor.
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Figure 5 Traffic patterns at different time periods (Taichung Interchange).

Figure 4 Traffic patterns at different interchanges (Wednesday 00:00 to Thursday 00:00).

TRAFFIC PREDICTION BASED ON TRAFFIC PATTERNS 357

intelligent transportation systems vol. 18 no. 4 2014

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

7:
21

 2
4 

D
ec

em
be

r 
20

14
 



Step 0: Define function set and terminal set. The function set

consists of the arithmetic functions of addition, subtrac-

tion, multiplication, and division, as well as a conditional

branching operator. The terminal set is set as the latest r

time steps of traffic flow data.

Step 1: Initialize random population size.

Step 2: Evaluate fitness values of the trees. Randomly select

trees from the population, evaluate them with training pat-

terns belonging to this cluster, and then rank them accord-

ing to their fitness values. A fitness measure is defined as

follows:

Elq D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI
iD 1

Ph
tD 1

xli.tC rC 1/¡ fq.Xli.t//
� �2

h

vuuut
; (7)

where fq.:/ denotes the mathematical expression of tree q,

which predicts the traffic flow at next time step based on

the inputted historical data at previous time steps, that is,

fq.Xli.1//D x^ liq.tC rC 1/.

Step 3: If the fitness value approaches to zero, then stop the

procedure. Otherwise, proceed to the next step.

Step 4: Create a new traffic pattern by applying genetic opera-

tions: reproduction, crossover, and mutation.

Step 4-1: Reproduction. Replace the two traffic pat-

terns with least fit, by the two with best fit.

Step 4-2: Crossover. Create a new offspring by ran-

domly combining the chosen parts of two selected

trees in each parent tree and swapping the subtree

rooted at crossover points, illustrated in Figure 2a.

Step 4-3: Mutation. Randomly select a mutation point

in a tree and substitute the subtree rooted there with

a randomly generated sub-tree, illustrated in

Figure 2b.

Step 5: Generate new population by using genetic operations,

and return to Step 2.

Once a new traffic pattern with r time steps is collected, it

automatically assigns to the closest cluster, into which all traf-

fic patterns are classified by GHSOM. The traffic pattern is

then fed into the tuned GP model in this cluster to predict the

next h time steps in a rolling manner.

CASE STUDY

The Data

The southbound 5-min on-ramp traffic flow data at 15 inter-

changes from Toufen Interchange to Beidou Interchange, a

110-km stretch of Taiwan No. 1 Freeway (Figure 3), over a

week from May 25 to May 31 (Monday through Sunday),

2009, were used in this case study. At each interchange, traffic

flows are first aggregated from different ramps. The on-ramp

traffic pattern is composed of 288 consecutive 5-min traffic

flow data in 1 day (24 h). In total, 2016 time intervals in 1

week can form 1729 ( D 2016 – 287) traffic patterns at each

interchange. The remaining 287 time steps cannot form a com-

plete traffic pattern and thus are discarded. As a result, in total

25,935 ( D 1729£ 15) traffic patterns have been generated for

the entire study corridor.

With a 5-min time-step interval, the proposed method

aims to predict the next 48 time steps (a 4-h horizon) based

on the previous 240 time steps (i.e., 20 h). In other words,

the previous 240 traffic flow data are used to determine the

closest cluster and then fed into the corresponding tuned GP

model to predict the next 48 time-step traffic flows in a roll-

ing manner. Figure 4 demonstrates an example of traffic pat-

terns during the same periods (Wednesday 00:00 to Thursday

00:00) at different interchanges, which shows that the traffic

patterns differ remarkably from each other. For instance, Tai-

chung Interchange and Taichung System Interchange do

Table 1 Parameter settings for the GP model.

Parameter Setting

Fitness Mean square error

Terminal set x(t), x(t – 1), . . ., x(t – 240) and random number b

Function set C, –, £
Population size 50

Reproduction rate 0.08

Crossover rate 0.60

Mutation rate 0.01

Initial minimum depth 2

Number of generations 300

Initialization method Direct method

Table 2 Self-structured traffic patterns in each of the 36 clusters.

Cluster Number of patterns Cluster Number of patterns

1 143 19 155

2 381 20 214

3 429 21 429

4 1238 22 607

5 440 23 1381

6 2488 24 429

7 155 25 155

8 155 26 238

9 179 27 429

10 405 28 464

11 1298 29 381

12 1238 30 345

13 155 31 155

14 167 32 167

15 464 33 214

16 417 34 179

17 1333 35 321

18 321 36 488
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exhibit significant peak and off-peak traffic patterns, but

Wangtian Interchange and Fengyuan Interchange do not.

More detailed traffic patterns at Taichung Interchange dur-

ing different time periods are further illustrated in Figure 5.

This reveals that the traffic patterns at a specific location can

be significantly different over time, but similar patterns do

repeat themselves over time.

To train and validate the proposed method, the traffic pat-

terns are randomly divided into two sets: a training set (18,155

traffic patterns) and a validation set (7780 traffic patterns), at a

ratio of 7:3. The parameter settings and the results of cluster-

ing and prediction are presented next.

Parameter Settings

Referring to Rauber et al. (2002), the parameters of the

GHSOM model are set as follows: t1 D 0.85, t2 D 0.0035, and

both learning rate function a(l) and neighborhood function

s(l) are set as linear monotonically decreasing with iterations.

Further referring to Yao and Lin (2009), the parameters of the

GP model are set as shown in Table 1. To avoid complicated

traffic prediction function, only three operators (C, –, and £)

are considered in this study. Terminal set contains the traffic

flow data in the previous 240 time-step intervals with a

randomly generated number b.

Clustering Results

In total, 4 layers with 36 different clusters have been identi-

fied by GHSOM. The number of traffic patterns in each of the

36 clusters ranges from 143 (Cluster 1) to 2488 (Cluster 6),

detailed in Table 2. Such self-structured traffic patterns will be

used for prediction in the GP model.

To display the similarity of traffic patterns in the same clus-

ter, the traffic patterns in Cluster 1 (urban area), Cluster 15

(suburban area), and Cluster 30 (rural area) are demonstrated

in Figures 6, 7, and 8, respectively. To avoid lengthy discus-

sion, we only present four randomly selected traffic patterns

from each of such three clusters. In Figure 6, Cluster 1 con-

tains traffic patterns starting from 00:00 to 20:00 on weekdays

in the urban area (e.g., Taichung Interchange and Taichung

Figure 6 Four randomly selected traffic patterns from Cluster 1 (urban area).

TRAFFIC PREDICTION BASED ON TRAFFIC PATTERNS 359

intelligent transportation systems vol. 18 no. 4 2014

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

7:
21

 2
4 

D
ec

em
be

r 
20

14
 



Figure 8 Four randomly selected traffic patterns from Cluster 30 (rural area).

Figure 7 Four randomly selected traffic patterns from Cluster 15 (suburban area).
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System Interchange) where maximum 5-min flow rates can

exceed 300 passenger car units (pcu).

In Figure 7, Cluster 15 contains traffic patterns starting

from 13:00 to 09:00 on weekdays in the suburban area (e.g.

Chunghua, Fengyuan, Daya, and Nantun Interchanges) where

most of the 5-min flow rates are below 150 pcu. It is obvious

that the peak and off-peak phenomena of traffic patterns in

Cluster 15 are not as sharp as those in Cluster 1.

In Figure 8, Cluster 30 contains traffic patterns starting from

00:00to20:00onweekdaysorweekendsintheruralarea(e.g.,Tou-

fen,Miaoli,Sanyi,andWangtianInterchanges)wheremostof the

5-min flow rates are lower than 50 pcu. No significant peak/off-

peakphenomenacanbeidentifiedinthiscluster.

Based on the clustering results, the traffic patterns in the

same cluster are similar and those in different clusters are sig-

nificantly dissimilar, suggesting the correctness of our cluster-

ing model.

Prediction Results

Based on the self-structured traffic patterns associated with

the 36 clusters, in total 36 GP traffic prediction models are

further developed, with each cluster having one prediction

model. Here, we only explain three clusters (1, 15, and 30). In

Cluster 1, 143 traffic patterns are contained and randomly

Figure 9 Real and predicted traffic of a randomly selected traffic pattern from Cluster 1.
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divided into a training set (100 patterns) and a validation set

(43 patterns). Based on the training traffic patterns, the GP

model for Cluster 1 is finally tuned as follows:

x tC 1ð ÞD 1:01x tð ÞC 5:41£ 10¡ 6x t¡ 1ð Þx t¡ 2ð Þx t¡ 7ð Þ
¡ 1:75£ 10¡ 6x t¡ 1ð Þx t¡ 4ð Þ2 ¡ 2:02£ 10¡ 8x tð Þ
£ 3x t¡ 6ð ÞC 4:05£ 10¡ 8x t¡ 1ð Þx t¡ 5ð Þ3:

(8)

According to Eq. 8, only the traffic flow data at the previous

seven time steps are required, without (t – 3), to predict the

traffic flow of next time step. For instance, to predict the traffic

flow rate in Figure 6a at time step (t C 1), say, 20:05, we need

to input 7 detected flow rates at x(t – 7) D 19:25, x(t – 6) D
19:30, x(t – 5) D 19:35, x(t – 4) D 19:40, x(t – 2) D 19:50,

x(t – 1) D 19:55, and x(t) D 20:00. The traffic flow rate at

20:05 can therefore be calculated as x(t C 1) according to Eq.

8. To predict in a rolling-horizon manner for the next time step

(t C 2) at 20:10, the 6 detected flow data from 19:30 to 20:00

together with the already-predicted traffic flow at 20:05 are

inputted into Eq. 8. This process continues until all traffic data

for the next 4 h (48 time steps) have been obtained.

Figure 10 Real and predicted traffic of a randomly selected traffic pattern from Cluster 15.
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Following the same vein, the GP models for Cluster 15 and

Cluster 30 are finally tuned as follows, respectively:

x tC 1ð ÞD 1:0483x tð Þ¡ 0:0942x t¡ 2ð ÞC 0:0031x t¡ 1ð Þ
£ x t¡ 2ð Þ¡ 4:897£ 10¡ 5x t¡ 5ð Þx t¡ 7ð Þ2

¡ 3:73310¡ 7x tð Þ2x t¡ 1ð Þx t¡ 2ð ÞC 3:165£ 10¡ 7

£ x t¡ 1ð Þx t¡ 2ð Þx t¡ 5ð Þx t¡ 7ð ÞC 1:255£ 10¡ 7

£ x t¡ 4ð Þx t¡ 7ð Þ3 C 4:97£ 10¡ 8x tð Þx t¡ 2ð Þx t¡ 7ð Þ2

C 1:038£ 10¡ 7x t¡ 1ð Þx t¡ 4ð Þx t¡ 5ð Þx t¡ 6ð Þ :
.9/

x tC 1ð ÞD 0:8301x tð ÞC 0:166x t¡ 2ð ÞC 0:0195x tð Þx t¡ 1ð Þ
¡ 0:0181x tð Þx t¡ 2ð Þ¡ 1:24£ 10¡ 6x t¡ 6ð Þ
£ x t¡ 7ð Þ2 ¡ 4:53£ 10¡ 6x tð Þx t¡ 1ð Þx t¡ 2ð Þ2
¡ 3:81£ 10¡ 6x t¡ 1ð Þ2x t¡ 5ð Þx t¡ 6ð Þ¡ 3:91

£ 10¡ 6x t¡ 1ð Þx t¡ 5ð Þx t¡ 6ð Þ2 ¡ 3:55£ 10¡ 6

£ x tð Þ2x t¡ 3ð Þx t¡ 6ð ÞC 7:51£ 10¡ 6x t¡ 2ð Þ2

£ x t¡ 5ð Þx t¡ 6ð ÞC 4:16£ 10¡ 6x tð Þ2x t¡ 1ð Þ
£ x t¡ 3ð ÞC 3:74£ 10¡ 6x t¡ 1ð Þ2x t¡ 6ð Þ2:

.10/

According to Eqs. 9 and 10, Clusters 15 and 30 require the

inputs of traffic flow data at the previous 6 and 7 time steps,

respectively. Among the 36 GP traffic prediction models, our

results require the inputs of traffic flow data at the previous 12

time steps at most.

Figures 9–11 respectively show the real and predicted traf-

fic flows for one randomly chosen traffic pattern from Cluster

1, one from Cluster 15, and one from Cluster 30. As shown in

Figures 9–11, the predicted traffic patterns are very close to

real traffic patterns, proving the performance of the proposed

method. Figures 9b, 10b, and 11b are the corresponding

zoom-in plots of the prediction horizons of Figures 9a, 10a,

and 11a. Note that the prediction accuracy deteriorates as the

prediction horizon increases, but the deteriorating rate is not

significant over time.

EVALUATION

Performance

The following mean absolute percentage error (MAPE)

equation is used to evaluate the performance of the proposed

method:

MAPED 1

T £ J

XJ
jD 1

XT
tD 1

����� xj tð Þ¡ x^ j tð Þ
xj tð Þ

�����; (11)

where xj.t/ and x^ j.t/ are the real and predicted traffic flow at

time step t at interchange j; T is the total prediction time steps;

and J is the total number of interchanges in the study corridor

(T D 48 and J D 15 in the case study).

Our results show that the MAPE values of Clusters 1, 15,

and 30 are 5.10%, 4.85%, and 5.03% in training and 10.15%,

7.18%, and 8.17% in validation, respectively. The highest

MAPE values reach 6.11% in training and 17.64% in valida-

tion in Cluster 18. The absolute percentage error for a single

time step prediction can reach as high as 28.75% in training

and 36.73% in validation. Of the 36 clusters, the average train-

ing and validation MAPE values are 4.58% and 10.07%,

respectively, suggesting a satisfactory prediction accuracy of

the proposed method.

Comparison With Other Models

To demonstrate the superiority of the proposed method, a

conventional and a seasonal autoregressive integrated moving

average model, ARIMA(p,d,q) and SARIMA(p,d,q)(P,D,Q)S,
are developed for each cluster. Similar to the proposed

method, both ARIMA and SARIMA models have been cali-

brated and tested against the historical 240 time-step traffic

flows and then used to predict the subsequent 48 time-step traf-

fic flows. Taking Cluster 1 as an example, the best correspond-

ing estimated models are ARIMA(2,1,1) and SARIMA(1,0,1)

(0,1,1)288. For the ARIMA model, the MAPE values are

21.77% in training and 28.65% in validation, respectively,

while the MAPE values for SARIMA are 11.01% in training

and 18.56% in validation, respectively. Obviously, the MAPE

values for both ARIMA and SARIMA models are much higher

than the counterparts of the proposed method (5.10% and

10.15%, respectively), indicating that the proposed method is

superior to the ARIMA and SARIMA models.

Furthermore, with the self-structured traffic patterns, a

naive model is also developed by simply averaging the traffic

flow data of the latest 48 time steps. For example, if one traffic

pattern is of interest in Cluster 1 where 143 traffic patterns

have been identified, then the traffic flows at the next 48 time

steps can be predicted by averaging the traffic flows of 143

traffic patterns. Of the 36 clusters, the average MAPE values

in training and in validation for the naive model are 25.21%

and 32.73%, respectively, much higher than the counterparts

of the proposed method. In sum, a comparison with the

ARIMA, SARIMA, and naive model has confirmed the supe-

rior prediction accuracy of the proposed method.

Comparisons Among Various Lengths of Prediction

The preceding predictions utilized the 240-time-step (20-h)

interval historical traffic data to partition the traffic patterns

into appropriate number of clusters and then to predict the traf-

fic flows in each cluster at the next 48 time steps (4 h). In
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addition to predicting the 48 time steps ahead, this study fur-

ther compares the prediction accuracy among various lengths

of prediction with L D 72 (6 h), 96 (8 h), 120 (10 h), 144

(12 h), 192 (16 h), and 240 (20 h). The MAPE values in train-

ing and in validation are summarized in Table 3. The shorter

lengths (e.g., L D 48 and 72) have relatively lower prediction

accuracy than the longer ones, suggesting the necessity of

inputting a sufficient length of traffic data for both pattern rec-

ognition (training and validation) and prediction. However, no

significant changes in prediction accuracy are found once the

length of prediction exceeds 120 time steps in the case study.

CONCLUDING REMARKS

This study contributes to traffic literature by proposing a

novel method to predict the relevant traffic features (5-min

flow rates) for the entire 110-km freeway stretch with 48 time

steps (4 h) ahead. The proposed method employs the GHSOM

model to partition unlabeled traffic patterns into an appropriate

number of clusters and then develops a GP model to predict

Table 3 MAPE values associated with different lengths of prediction.

Lengths (time steps) MAPE values in Training MAPE values in Validation

48 7.29% 19.72%

72 7.78% 14.74%

96 5.32% 12.01%

120 5.72% 10.34%

144 5.91% 10.86%

192 5.63% 10.38%

240 4.58% 10.07%

Figure 11 Real and predicted traffic of a randomly selected traffic pattern from Cluster 30.
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the traffic features in each cluster, based on the concept of roll-

ing self-structured traffic patterns. The case study demon-

strates that the proposed method has achieved relatively high

prediction accuracy, superior to the ARIMA, SARIMA, and

naive models. Further analyses suggest that applications of the

proposed method require a sufficient length of observation to

acquire enough traffic patterns for training and validation to

achieve high prediction accuracy.

Further applications and modifications of the proposed

method can be considered in the future studies. First, although

this study has compared the proposed method with ARIMA,

SARIMA, and naive models and proved that the proposed

method is superior in prediction accuracy, it is interesting to

further compare with other methods, such as the genetic clus-

tering model (GCM), artificial neural network (ANN), and

support vector machine (SVM). Second, if a sufficient length

of traffic observation is acquired, the proposed method should

be readily applicable to predict the traffic features in a larger

freeway network with longer time steps ahead, which can be

pragmatically useful in ATIS applications. Third, this study

directly adopts the parameter settings of the GHSOM and GP

models suggested by previous researchers. In the future, justi-

fying the parameter/function settings can be attempted, which

may further improve the prediction accuracy. Last but not

least, incorporating the proposed method with dynamic traffic

assignment and flow modeling can further predict the travel

time information for different O-D pairs over a long freeway

corridor, which can be very useful in ATIS applications. This

calls for further exploration.
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