

Detailed mechanism of the CH2I + O2 reaction: Yield and self-reaction of the simplest Criegee intermediate CH2OO

Wei-Lun Ting, Chun-Hung Chang, Yu-Fang Lee, Hiroyuki Matsui, Yuan-Pern Lee, and Jim Jr-Min Lin

Citation: The Journal of Chemical Physics **141**, 104308 (2014); doi: 10.1063/1.4894405 View online: http://dx.doi.org/10.1063/1.4894405 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/141/10?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in

Ab initio chemical kinetics for the CIOO + NO reaction: Effects of temperature and pressure on product branching formation

J. Chem. Phys. 137, 014315 (2012); 10.1063/1.4731883

Reaction of C 2 (a Π 3 u) with methanol: Temperature dependence and deuterium isotope effect J. Chem. Phys. **133**, 114306 (2010); 10.1063/1.3480395

Efficient dehalogenation of polyhalomethanes and production of strong acids in aqueous environments: Watercatalyzed O–H-insertion and HI-elimination reactions of isodiiodomethane (CH 2 I–I) with water J. Chem. Phys. **120**, 9017 (2004); 10.1063/1.1701699

The reaction of C 2 H with H 2 : Absolute rate coefficient measurements and ab initio study J. Chem. Phys. **116**, 3700 (2002); 10.1063/1.1436481

Kinetics over a wide range of temperature (13-744 K): Rate constants for the reactions of CH(v=0) with H 2 and D 2 and for the removal of CH(v=1) by H 2 and D 2 J. Chem. Phys. **106**, 7662 (1997); 10.1063/1.473750

Detailed mechanism of the $CH_2I + O_2$ reaction: Yield and self-reaction of the simplest Criegee intermediate CH_2OO

Wei-Lun Ting,¹ Chun-Hung Chang,¹ Yu-Fang Lee,² Hiroyuki Matsui,² Yuan-Pern Lee,^{1,2,a)} and Jim Jr-Min Lin^{1,2,3,a)}

¹Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan

²Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001,

³Department of Chemistry, National Taiwan University, Taipei, Taiwan

(Received 29 May 2014; accepted 20 August 2014; published online 9 September 2014)

The application of a new reaction scheme using $CH_2I + O_2$ to generate the simplest Criegee intermediate, CH₂OO, has stimulated lively research; the Criegee intermediates are extremely important in atmospheric chemistry. The detailed mechanism of $CH_2I + O_2$ is hence important in understanding kinetics involving CH_2OO . We employed ultraviolet absorption to probe simultaneously CH_2I_2 , CH_2OO , CH_2I , and IO in the reaction system of $CH_2I + O_2$ upon photolysis at 248 nm of a flowing mixture of CH₂I₂, O₂, and N₂ (or SF₆) in the pressure range 7.6–779 Torr to investigate the reaction kinetics. With a detailed mechanism to model the observed temporal profiles of CH_2I , CH_2OO , and IO, we found that various channels of the reaction $CH_2I + O_2$ and CH_2OO + I play important roles; an additional decomposition channel of $CH_2I + O_2$ to form products other than CH₂OO or ICH₂OO becomes important at pressure less than 60 Torr. The pressure dependence of the derived rate coefficients of various channels of reactions of $CH_2I + O_2$ and CH_2OO + I has been determined. We derived a rate coefficient also for the self-reaction of CH_2OO as k $= (8 \pm 4) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ at 295 K. The yield of CH₂OO from CH₂I + O₂ was found to have a pressure dependence on N₂ and O₂ smaller than in previous reports; for air under 1 atm, the yield of \sim 30% is about twice of previous estimates. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4894405]

I. INTRODUCTION

The reactions of O_3 with alkenes are extremely important because they are responsible for the removal of both O_3 and unsaturated hydrocarbons, and for the production of OH and organic aerosols in the troposphere.^{1–3} The current model indicates that cycloaddition of O_3 to the C=C double bond of unsaturated hydrocarbons forms a primary cyclic ozonide, which rapidly cleaves its C–C and O–O bonds to form a carbonyl molecule and a carbonyl oxide that is commonly referred to as the Criegee intermediate.^{4–9} Previous understanding of the mechanism of these reactions was based on indirect laboratory observations of stable end products because the Criegee intermediates have eluded direct detection until recently.^{10,11}

The recent applications of a new reaction scheme using $CH_2I + O_2$ to generate the simplest Criegee intermediate, CH_2OO , have stimulated lively research. Using this reaction scheme, CH_2OO has been detected with photoionization mass spectrometry,¹² ultraviolet (UV) depletion,¹³ UV absorption,^{14, 15} infrared (IR) absorption,¹⁶ and microwave spectroscopy.^{17, 18} With the use of some of these detection methods, the kinetics of reactions of CH_2OO with various compounds have been investigated experimentally.^{12, 19–22} Even though the reaction of $CH_2I + O_2$ has been investigated extensively,^{23–31} a detailed mechanism of this reaction still needs to be established. The total rate coefficient for the reaction of $CH_2I + O_2$ was reported to be (1.28–1.82) $\times 10^{-12}$ cm³ molecule⁻¹ s⁻¹,^{14,24,26,29,31} but the branching of various formation channels was not clearly characterized. The proposed mechanisms in the earlier studies were incomplete because only product channels for the formation of ICH₂OO and H₂CO + IO, not CH₂OO, were considered. The mechanisms employed in more recent reports include the formation of CH₂OO but not the rapid self-reaction of CH₂OO and various channels of the reaction of CH₂OO + I; these reactions become important in some laboratory experiments involving large concentrations of CH₂OO and I. A more detailed understanding of the CH₂I + O₂ system covering experimental conditions over a wide range is thus desirable.

Using transient IR absorption to probe directly the decay of CH₂OO, we found that the self-reaction CH₂OO + CH₂OO was extremely rapid,²¹ and estimated the rate coefficient of this self-reaction to be $(4 \pm 2) \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹ at 343 K. According to quantum-chemical calculations, this reaction is rapid because a cyclic dimeric intermediate is formed with large exothermicity (~375 kJ mol⁻¹) before further decomposition to 2 H₂CO + O₂ (¹ Σ_g). The formation of this dimer, with the terminal O atom of one CH₂OO bound to the C atom of the other CH₂OO, reflects a unique property of the zwitterionic character of CH₂OO in which the

Ta-Hsueh Road, Hsinchu 30010, Taiwan

a)Authors to whom correspondence should be addressed. Electronic addresses: yplee@mail.nctu.edu.tw and jimlin@gate.sinica.edu.tw

terminal oxygen atom is partially negatively charged whereas the other oxygen atom and the C atom are partially positively charged. While we were preparing this manuscript, a recent report by Buras *et al.* indicated that the rate coefficient of this self-reaction of CH₂OO, $(6.0 \pm 2.1) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ at 297 K, is much smaller than our previous estimate at 343 K;³² the kinetics were investigated with probes of CH₂OO at 375 nm and I atom at 1315 nm.

We have performed new experiments to probe simultaneously the UV absorption of CH_2I_2 , CH_2OO , IO, and CH_2I upon photolysis at 248 nm of a flowing mixture of CH_2I_2 , O_2 , and N_2 in the pressure range 7.6–779 Torr. The temporal profiles of CH_2OO and IO were analyzed simultaneously with a detailed reaction mechanism and the pressure dependence of the yield of CH_2OO and rate coefficients of various channels of $CH_2I + O_2$ and $CH_2OO + I$ has been characterized. The rate coefficient of $CH_2OO + CH_2OO$ at 295 K was determined to be $(8 \pm 4) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹.

II. EXPERIMENTS

The photolysis cell with transient UV absorption detection has been described previously;^{33,34} only relevant details are given here. The Criegee intermediate CH₂OO was produced from the reaction of CH₂I with O₂; CH₂I was prepared by photodissociation of CH₂I₂ at 248 nm.

The photolysis laser beam and the probe light (both diameter 1.8 cm) overlapped collinearly in the reaction cell (length 75 cm, inner diameter 2.0 cm), as shown in Fig. 1. The photolysis laser beam at 248 nm from an excimer laser (Coherent, CompExPro 205F, KrF, ~50 mJ, 1 Hz) was introduced into the cell by reflection from an ultra-steep long-pass edge filter (Semrock LP02-257RU-25), which also limited the probe wavelength to be greater than 260 nm. The output of a high-brightness broadband light source (Energetiq, EQ-99) was collimated with a parabolic mirror (f = 50.8 mm) before entering the reaction cell. Another parabolic mirror (f = 101.6 mm) served to focus the light onto the slit of a spectrometer (Andor SR303i) equipped with an intensified chargecoupled detector (iCCD, Andor iStar, DH320T-18F-E3). The resolution of the spectrometer was ~ 1.5 nm. The wavelength was calibrated with the emission spectrum of a low-pressure mercury lamp, with typical errors smaller than 0.5 nm.

The transient absorption spectra were recorded with the array detector at varied delays after photolysis. The delay (duration of reaction) was defined as the interval from the pho-

FIG. 1. Schematic experimental setup (not to scale). PM: parabolic mirror; HR248: highly reflective mirror at 248 nm; LP257: long-pass filter at 257 nm; PD: photodiode; and iCCD: image-intensified CCD camera.

tolysis laser pulse to the center of the detector gate (width $= 1 \ \mu$ s). The reference spectrum was taken at 1 or 5 μ s before the photolysis laser pulse. The integration interval at each delay was 1 μ s; the delay was scanned automatically after each photolysis pulse with a computer program written in Andor Basic. The spectrum at a specific delay was typically averaged 60–200 times to achieve an adequate ratio of signal to noise.

A small fraction of CH₂ might be produced through the photolysis of CH₂I. We have tested the transient absorption spectra with laser pulse energies varied from 30 to 100 mJ pulse⁻¹. A small decrease (2%–4%) in the yield of CH₂I was observed at laser energy greater than 100 mJ pulse⁻¹, but an insignificant difference in the deduced spectrum of CH₂OO was found.

Liquid CH_2I_2 was slightly heated to 305 K to ensure saturation of its vapor pressure and the CH_2I_2 vapor was carried with a flow of N_2 or O_2 . The mixing ratios of the reagent gases (CH_2I_2 , N_2 , O_2 , SF_6) were controlled with mass flow controllers (Brooks Instruments, 5850E). These gases were mixed in a Teflon tube before entering the reaction cell. A small stream (1%–2% of the total mass flow) of the N_2/O_2 mixture gas (with the same ratio as the reagent gas) was introduced to purge both windows of the cell to prevent undesired photochemistry at the window surfaces. This purging also decreased the effective length of the sample from 75 to 72 cm, which was calibrated with the absorbance of CH_2I_2/N_2 gas of a known mixing ratio.

The linear flow velocity in the reaction cell was adjusted to be greater than 0.8 m s^{-1} to allow refreshment of the sample gas between the photolysis laser pulses at a repetition rate of 1 Hz. The temperature of the reaction cell was $295 \pm 1.5 \text{ K}$. The number density of CH_2I_2 was determined from its absorption spectrum. The number densities of O_2 and N_2 were deduced with the ideal gas law from the measured cell pressure and their mass flow rates.

III. RESULTS

A. Determination of Δ [CH₂I₂], [CH₂I], [CH₂OO], and [IO]

A representative transient difference UV absorption spectrum recorded 9 μ s after photolysis of a flowing mixture of CH₂I₂/O₂/N₂ (0.044/10.4/90.7) at 101.1 Torr is shown in Fig. 2. The spectrum was deconvoluted to spectra of CH_2I_2 (negative due to depletion), IO, CH₂OO, and CH₂I, as is discernible from the small residual after subtracting corresponding spectra of these four species. The absorption spectra of CH₂OO and IO have characteristic progressions, whereas those of CH₂I₂ and CH₂I are broad but different in shape. On minimizing the residual between the simulated and experimental spectra in the region 265-480 nm with a least-squares fitting, the number densities of CH₂OO, IO, and CH₂I, and the decrease of that of CH₂I₂ after photolysis, were deduced according to the cross sections of these species (CH₂I₂ and IO,³⁵ CH₂I,²³ and CH₂OO).¹⁵ The uncertainties in concentration measurements of CH2OO, IO, CH2I, and CH2I2 from deconvolution were estimated to be $\sim 5\%$, 5%, 10%, and 5%,

FIG. 2. Comparison of experimental and simulated transient absorption spectra. The total simulation consists of absorbance of CH_2I_2 (depletion), IO, CH_2OO , and CH_2I . In this example (experiment no. 50), $-\Delta[CH_2I_2] = 1.82 \times 10^{14}$, $[IO] = 6.56 \times 10^{12}$, $[CH_2OO] = 9.01 \times 10^{13}$, $[CH_2I] = 4.98 \times 10^{12}$ molecule cm⁻³. Other experimental conditions are P = 101 Torr, $P_{O_2} = 10.4$ Torr, $P_{N_2} = 90.7$ Torr, $P_{CH_2I_2} = 43.7$ mTorr, and delay time = 9 μ s.

respectively; errors throughout this report are 1σ in fitting unless stated otherwise. In this case the uncertainties in cross sections are not included in the error estimates.

At higher pressure and at a later period of reaction, the product ICH₂OO becomes important. The reported UV cross section of ICH₂OO, with a maximum value $\geq 1.7 \times 10^{-18}$ cm² molecule⁻¹ (Ref. 27) or 2.5 × 10⁻¹⁸ cm² molecule⁻¹ near 330 nm,²³ is much smaller than that of CH_2OO that has a maximal value 1.2×10^{-17} cm² molecule⁻¹ at 340 nm.¹⁵ At 760 Torr, the concentration of ICH2OO might become twice that of CH₂OO; consequently, using the reported cross section of ICH₂OO, ICH₂OO might contribute up to \sim 30% of observed UV absorption near 340 nm. However, according to theoretical calculations, ICH₂OO is not the main carrier of the previously observed spectrum in the region 275–450 nm;³⁶ absorption of CH₂OO might have some contribution. To clarify this issue, we utilized the characteristic oscillatory pattern in the region 352-404 nm, likely due to a vibronic progression of CH₂OO, to show that the presence of ICH₂OO at high pressure affects little our determination of CH2OO concentrations from observed UV spectra, as discussed in Sec. I and demonstrated in Fig. S1 of the supplementary material.³⁷

Because the rate coefficient of the self-reaction of CH_2OO requires accurate measurements of $[CH_2OO]$, the accuracy of the UV cross section of CH_2OO is important. As compared in our previous paper,¹⁵ for CH_2OO near 295 K, the UV absorption spectrum reported by Sheps¹⁴ agrees with our spectrum showing similar vibronic structures on the long-wavelength side, but decreases in absorbance much more rapidly than ours on the structureless short-wavelength side. More importantly, the cross sections reported by Sheps¹⁴ were approximately 3.3 times ours. We think that our measurements are more reliable for the following reasons: (1) Our technique has mass selectivity and employs a depletion method to compare with a known reference molecule. This method was proved reliable in the measurements of cross sec-

tions of ClOOCl.³⁸ (2) We utilized both the SO₂ scavenging reaction and the self-reaction of CH2OO to extract the CH₂OO spectrum and obtained consistent results with signalto-noise ratios superior to other reports. (3) If we used the cross section of Sheps, not only the transient absorption spectra could not be deconvoluted satisfactorily, but also the yield of CH_2OO from $CH_2I + O_2$ at low pressure would become \sim 0.25, much smaller than the values 0.87–1.0 reported by Huang et al.³⁰ and 0.67–1.0 reported by Stone et al.³¹ With the cross section determined by us, the yield 0.72-0.78 agrees with those in previous reports. (4) Buras et al. recently reported cross sections of CH₂OO at 375 nm to be $(7\pm_{3,5}^7)$ $\times 10^{-18}$ cm² molecule⁻¹ (Ref. 39) and (6.2 ± 2.2) × 10^{-18} cm² molecule⁻¹,³² in satisfactory agreement with our value of $(7.6 \pm 1.1) \times 10^{-18} \text{ cm}^2 \text{ molecule}^{-1}$ with the uncertainty limits overlapping with each other.

B. Temporal profiles of CH_2OO and IO in experiments with N_2 and O_2

A summary of experimental conditions and fitted rate coefficients of some representative experiments is presented in Table I; a complete list of a total of 64 experiments is available in Table SI of the supplementary material.³⁷

Representative temporal profiles of CH₂I, CH₂OO, and IO recorded upon photolysis of a flowing mixture of CH₂I₂ (24.3 or 24.5 mTorr), O₂ (both 10.5 Torr), and N₂ (92.7 or 90.4 Torr) in two experiments (nos. 60 and 63 in Table I) near 100 Torr and 295 K with small [CH₂OO]₀ are shown in Fig. 3. The decrease in concentration of CH₂I₂ upon laser irradiation, hence [CH₂I]₀, was $-\Delta$ [CH₂I₂] = [CH₂I]₀ \cong 1.17 mTorr (3.8 \times 10¹³ molecule cm⁻³). The rapid increase of CH₂OO and decay of CH₂I were due to the reaction of CH₂I + O₂. After approximately 8 μ s, CH₂OO began to decay and the concentration of IO gradually increased. In this figure (and all others showing experimental temporal profiles) we also show the simulated temporal profiles of CH₂I, CH₂OO, IO, ICH₂OO, H₂CO, and I according to the proposed mechanism, as discussed in Sec. IV A.

For comparison, Fig. 4 shows results of two experiments (nos. 49 and 52 in Table I) under similar conditions except for increased $[CH_2OO]_0$. The decrease in concentration of CH_2I_2 upon laser irradiation, hence $[CH_2I]_0$, was $-\Delta[CH_2I_2] = [CH_2I]_0 \cong 3.54$ mTorr (1.16 $\times 10^{14}$ molecule cm⁻³). In this example, $[CH_2OO]$ decreased more rapidly than in Fig. 3, indicating the second-order nature of the decay of CH₂OO. Similarly, [IO] increased more rapidly than in Fig. 3, indicating that some IO was produced from subsequent reactions of CH₂OO.

The temporal profile of CH_2I , CH_2OO , and IO recorded upon photolysis of a flowing mixture of CH_2I_2 (42.9 mTorr), O_2 (51.1 Torr), and N_2 (354.4 Torr) in an experiment (no. 2 in Table I) at high pressure (405.5 Torr) and 295 K is shown in Fig. S2 of the supplementary material.³⁷ In this example, CH_2OO increased rapidly because of larger $[O_2]$ employed and the yield of IO (and ICH₂OO by simulation) relative to CH_2OO was enhanced, indicating that some IO was produced from secondary reactions of ICH₂OO of which the concentration was expected to be enhanced at high pressure.

TABLE I. Representative experimental conditions, fitted rate coefficients, yield y and fraction of survival β of CH₂OO in the CH₂I + O₂ system at 295 K.

Expt.	P _{Total}	P_{Ω}	P _N	P _{CH I}	$-\Delta[CH_2I_2]$	k_{1a}'	k _{1b}	k _{1c}	<i>k</i> ₃		
no.	(Torr)	(Torr)	(Torr)	(mTorr)	$(10^{13})^{a}$	$(10^{-12})^{b}$	$(10^{-12})^{b}$	$(10^{-12})^{b}$	$(10^{-12})^{b}$	y ^c	β^{c}
3	779.2	5.3	773.9	42.3	8.3	0.44	1.06	0.00	104	0.30	1.00
4	777.0	53.1	723.9	42.1	8.5	0.42	1.08	0.00	93	0.28	1.00
36	758.0	163.0	595.0	41.6	9.8	0.56	0.94	0.00	65	0.37	1.00
18	606.6	10.3	596.3	41.3	8.8	0.49	1.01	0.00	109	0.33	1.00
14	602.1	10.4	591.7	26.5	5.8	0.49	1.01	0.00	67	0.33	1.00
13	515.4	10.5	504.9	26.3	6.0	0.51	0.99	0.00	72	0.34	1.00
17	497.8	10.0	487.8	40.5	8.8	0.55	0.95	0.00	97	0.37	1.00
2	405.5	51.1	354.4	42.9	9.1	0.60	0.90	0.00	65	0.40	1.00
35	399.3	85.4	313.9	41.0	10.2	0.69	0.81	0.00	71	0.46	1.00
16	305.3	10.3	295.0	41.2	9.0	0.68	0.82	0.00	91	0.46	1.00
12	304.0	10.3	293.7	26.1	6.0	0.69	0.81	0.00	60	0.46	1.00
15	205.5	10.3	195.2	40.8	9.3	0.79	0.71	0.00	83	0.53	1.00
11	200.1	10.2	189.9	26.9	6.4	0.78	0.72	0.00	74	0.52	1.00
49	104.3	10.8	93.5	43.8	11.4	0.96	0.54	0.00	85	0.64	1.00
60	103.2	10.5	92.7	24.3	3.8	0.94	0.56	0.00	72	0.63	1.00
52	101.0	10.4	90.6	44.5	11.8	0.98	0.52	0.00	84	0.65	1.00
63	100.9	10.5	90.4	24.5	3.8	0.96	0.54	0.00	74	0.64	1.00
53	100.9	10.4	90.5	44.6	18.4	0.96	0.54	0.00	85	0.64	1.00
42	100.5	10.7	89.8	14.3	2.1	1.00	0.50	0.00	82	0.67	1.00
66	62.5	10.3	52.2	49.8	7.6	1.07	0.43	0.00	80	0.71	1.00
65	61.6	10.2	51.4	49.3	7.6	1.08	0.42	0.00	85	0.72	1.00
9	41.0	2.3	38.7	32.2	9.8	1.12	0.18	0.21	104	0.74	0.85
6	40.7	2.3	38.4	37.1	9.2	1.13	0.19	0.18	101	0.75	0.86
25	31.2	5.0	26.2	27.6	7.5	1.12	0.15	0.23	107	0.75	0.83
21	30.9	5.4	25.5	26.4	7.1	1.11	0.14	0.25	97	0.74	0.81
64	21.9	11.0	10.9	40.2	6.7	1.17	0.14	0.19	87	0.78	0.86
8	20.3	2.2	18.1	34.7	9.6	1.15	0.08	0.27	91	0.77	0.81
23	11.1	5.8	5.3	26.1	7.8	1.09	0.07	0.33	79	0.73	0.77
19	10.7	5.5	5.2	27.1	7.3	1.16	0.09	0.24	81	0.78	0.83
33	7.9	7.9	0.0	42.1	15.2	1.08	0.03	0.39	59	0.72	0.73
29	7.6	7.6	0.0	41.0	14.4	1.13	0.04	0.33	62	0.76	0.78

^aIn unit of molecule cm⁻³.

^bIn unit of cm³ molecule⁻¹ s⁻¹.

 ${}^{c}y = k_{1a}{}^{\prime}/(k_{1a}{}^{\prime} + k_{1b} + k_{1c}); \beta = k_{1a}{}^{\prime}/(k_{1a}{}^{\prime} + k_{1c}).$

FIG. 3. Temporal profiles of concentrations of IO, CH₂OO, and CH₂I recorded upon photolysis of a flowing mixture of CH₂I₂ (24.3 or 24.5 mTorr), O₂ (both 10.5 Torr), and N₂ (92.7 or 90.4 Torr) at 295 K in two experiments (nos. 60 and 63, symbols Δ and ∇). The decrease of concentration of CH₂I₂ was 1.17 mTorr (3.8 × 10¹³ molecule cm⁻³). Concentrations of IO (red), CH₂OO (black), CH₂I (blue), ICH₂OO (gray), I (magenta, scaled by 0.5), and H₂CO (green, scaled by 0.5) simulated with a model described in Sec. IV A are shown as lines. The inset shows a more detailed view in the 0–40 μ s region.

FIG. 4. Temporal profiles of concentrations of IO, CH₂OO, and CH₂I recorded upon photolysis of a flowing mixture of CH₂I₂ (43.8 or 44.5 mTorr), O₂ (10.8 or 10.4 Torr), and N₂ (93.5 or 90.6 Torr) at 295 K in two experiments (nos. 49 and 52, symbols Δ and ∇). The decrease of concentration of CH₂I₂ was 3.53 mTorr (~1.16 × 10¹⁴ molecule cm⁻³). Concentrations of IO (red), CH₂OO (black), CH₂I (blue), ICH₂OO (gray), I (magenta, scaled by 0.5), and H₂CO (green, scaled by 0.5) simulated with a model described in Sec. IV A are shown as lines. The inset shows a more detailed view in the 0–40 μ s region.

FIG. 5. Temporal profiles of concentrations of IO, CH₂OO, and CH₂I recorded upon photolysis of a flowing mixture of CH₂I₂ (41.0 or 42.1 mTorr) and O₂ (7.6 or 7.9 Torr) at 295 K in two experiments (nos. 29 and 33, symbols Δ and ∇). The decrease of concentration of CH₂I₂ was 4.51 mTorr (~1.48 × 10¹⁴ molecule cm⁻³). The concentration of IO simulated with the model described in Sec. IV A is shown as dashed-dotted red line. Concentrations of IO (red), CH₂OO (black), CH₂I (blue), ICH₂OO (gray), I (magenta, scaled by 0.5), and H₂CO (green, scaled by 0.5) simulated with a model described in Sec. IV B are shown as lines. The inset shows a more detailed view in the 0–40 µs region.

For experiments at low pressure, representative temporal profiles of CH₂I, CH₂OO, and IO recorded upon photolysis of a flowing mixture of CH₂I₂ (41.0 or 42.1 mTorr) and O₂ (7.6 and 7.9 Torr) in two experiments (nos. 29 and 33 in Table I) at 295 K are shown in Fig. 5. The decrease in concentration of CH_2I_2 upon laser irradiation, hence $[CH_2I]_0$, was $-\Delta[CH_2I_2]$ $= [CH_2I]_0 \cong 4.52 \text{ mTorr} (1.48 \times 10^{14} \text{ molecule cm}^{-3}).$ The yield of IO (and ICH2OO by simulation) relative to CH2OO was diminished as compared with experiments at high pressure. Similar to all experiments with $P \le 20$ Torr, the rise of [CH₂OO] was slightly slower than simulated, to be discussed in Sec. IV B. Furthermore, the simulated profile of IO using the same model (Sec. IV A) as that for high pressures (P \geq 100 Torr) is shown in a dashed-dotted line in Fig. 5; it is significantly greater than experimental observation, to be discussed in Sec. IV B.

C. Experiments using SF₆ as a quencher

Five experiments using SF₆ as an efficient quencher in the pressure range 20.0–62.7 Torr at 295 K were performed; the experimental conditions and fitted rate coefficients are presented in Table SII of the supplementary material.³⁷ A representative temporal profile of CH₂I, CH₂OO, and IO recorded upon photolysis of a flowing mixture of CH₂I₂ (38.3 mTorr), O₂ (5.2 Torr), and SF₆ (15.4 Torr) in an experiment (no. 75 in Table SII) at 20.6 Torr and 295 K is shown in Fig. S3 of the supplementary material.³⁷ The decrease in concentration of CH₂I₂ upon laser irradiation, hence [CH₂I]₀, was $-\Delta$ [CH₂I₂] = [CH₂I]₀ \cong 3.02 mTorr (9.9 × 10¹³ molecule cm⁻³). Unlike in experiments with N₂ and O₂ below 20 Torr (Fig. 5), the rise of CH₂OO has no delay and can be simulated satisfactorily. Compared with experiments with O₂ and N₂, smaller

yields of CH₂OO and IO due to efficient quenching of internally excited ICH₂OO were observed.

IV. DISCUSSION

A. Reaction mechanism and simulation of temporal profiles at P > 60 Torr

To describe the $CH_2I + O_2$ system in detail, we employed the following scheme:

in which ICH₂OO* represents an energized adduct ICH₂OO initially formed upon reaction of CH₂I with O₂. ICH₂OO* might decompose to form the original reactants, proceed to form $CH_2OO + I$ (reaction (1a)), or become stabilized to ICH₂OO (reaction (1b)), with branching ratios α_1 , α_2 , and (1 $-\alpha_1 - \alpha_2$), respectively. From the steady-state approximation of [ICH2OO*], described in detail in the supplementary material,³⁷ α_1 and α_2 were derived as functions of pressure and detailed rate coefficients indicated in grey in the scheme. The grey part in this scheme was not used explicitly in the kinetic fitting; only the effective reactions (solid parts) were used. Because of the large concentration of I atoms and the great reactivity of CH₂OO, once produced, CH₂OO reacts readily either with I atom (reaction (2)) or with itself (reaction (3)). According to theoretical calculations,²¹ the major reactions of CH₂OO with I atom proceed via three channels: attack of the terminal O atom of CH2OO by the I atom to form $H_2CO + IO$ (reaction (2c)) and attack of the C atom by the I atom to form ICH₂OO*, followed by formation of CH₂I $+ O_2$ (reaction (2a)) or stabilization to ICH₂OO (reaction (2b)). ICH₂OO further reacts with itself (reaction (4)) or I atoms (reaction (5)) to form ICH₂O which subsequently decomposes to $H_2CO + I$ (reaction (6)).

The mechanism is summarized below:

$$CH_2I + O_2 \rightarrow CH_2OO + I, \qquad k_{1a} = \alpha_2 k_1,$$
 (1a)

$$CH_2I + O_2 \xrightarrow{M} ICH_2OO, \qquad k_{1b} = (1 - \alpha_1 - \alpha_2)k_1,$$
(1b)

$$CH_2OO + I \rightarrow CH_2I + O_2, \qquad k_{2a} = \alpha_1 k_2,$$
 (2a)

$$CH_2OO + I \xrightarrow{M} ICH_2OO, \qquad k_{2b} = (1 - \alpha_1 - \alpha_2)k_2,$$
(2b)

$$CH_2OO + I \rightarrow H_2CO + IO, \qquad k_{2c}, \qquad (2c)$$

$$\mathrm{CH}_{2}\mathrm{OO} + \mathrm{CH}_{2}\mathrm{OO} \rightarrow 2\mathrm{H}_{2}\mathrm{CO} + \mathrm{O}_{2}(^{1}\Delta_{\mathrm{g}}), \qquad k_{3}, \qquad (3$$

$$ICH_2OO + ICH_2OO \rightarrow 2ICH_2O + O_2 \qquad k_4, \qquad (4)$$

$$ICH_2OO + I \rightarrow ICH_2O + IO, \qquad k_5,$$
 (5)

$$ICH_2O \rightarrow H_2CO + I, \qquad k_6,$$
 (6)

$$IO + IO \rightarrow products \qquad k_7 \tag{7}$$

in which $k_4 = 9.0 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹, ²⁷ $k_5 = 3.5 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹, $k_6 = 1.0 \times 10^5$ s⁻¹, ²⁷ and $k_7 = 9.9 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ were reported.⁴⁰

Even though five rate coefficients are listed for reactions (1) and (2), we had to determine only k_{1a} , k_{1b} , and k_{2c} because $K^{-1} = k_{2a}/k_{1a} = \alpha_1 k_2 / \alpha_2 k_1 = \alpha_1 k_{2b} / \alpha_2 k_{1b}$ in which K is the equilibrium constant of reaction (1a). According to calculations with the CCSD(T)//B3LYP/aug-cc-pVTZ-pp method, $\Delta G = 10.4 \text{ kJ mol}^{-1}$ for reaction (1a); hence K^{-1} = 71. Once k_{1a} and k_{1b} were determined, we calculated k_{2a} and k_{2b} from the relation $k_{2a}/k_{1a} = k_{2b}/k_{1b} = K^{-1}$ on assuming $\alpha_1 = \alpha_2$. As the total rate coefficient for reaction (1), $k_{1a} + k_{1b} = (1 - \alpha_1) k_1$, was reported to be (1.28– 1.82) × 10⁻¹² cm³ molecule⁻¹ s⁻¹ for pressure up to 250 Torr of Ar,^{14,24,26,29,31} we used the average value of k_{1a} + $k_{1b} = 1.5 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ in the fitting; this value fits satisfactorily with the experimental decay of CH₂I, when available, and the initial rise of CH₂OO in all experiments in SF₆ and those in N₂ and O₂ with $P \ge 60$ Torr. The yield of CH₂OO, $y = \alpha_2 / (1 - \alpha_1) = [CH_2OO]_0 / [CH_2I]_0$, implies that $k_{1a} = y (k_{1a} + k_{1b})$ and $k_{1b} = (1 - y) (k_{1a} + k_{1b})$ k_{1b} ; k_{1a} and k_{1b} could be determined from y and $k_{1a} + k_{1b}$. In the fit, the yield of CH₂OO was initially estimated with $y = [CH_2OO]_0/[CH_2I]_0$ in which $[CH_2OO]_0$ was estimated with a short extrapolation of the decay of $[CH_2OO]$ to t = 0and $[CH_2I]_0 = -\Delta[CH_2I_2]$ when we assumed that all photolyzed CH_2I_2 produced $CH_2I + I$. Subsequent fine adjustments of y were performed on fitting the observed $[CH_2OO]$ profile; k_{1a} and k_{1b} were thereby derived.

The production of IO resulted mainly from two channels: reaction (2c) from $CH_2OO + I$ and reaction (5) from $ICH_2OO + I$. At low pressure, $[CH_2OO]$ is much greater than [ICH₂OO], so that reaction (2c) is more important than reaction (5); in contrast, at high pressure, $[ICH_2OO]$ is much greater than $[CH_2OO]$, so that reaction (5) is more important than reaction (2c). Although the rate coefficient of k_{2c} was predicted to be 5.5×10^{-14} cm³ molecule⁻¹ s⁻¹,²¹ we found that we needed to set $k_{2c} = 9.0 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ to fit the rise of IO properly, especially at low pressures. This deviation of k_{2c} from a previous theoretical prediction is reasonable because this rate coefficient is sensitive to the barrier height and the calculated value of 7.9 kJ mol⁻¹ might have been overestimated. From the sensitivity analysis shown in the supplementary material,³⁷ this rate coefficient has a negligible effect on the rate coefficient k_3 in fitting the profiles of CH₂OO.

It should be noted that the reaction

$$CH_2OO + CH_2I \rightarrow C_2H_4I + O_2(^3\Sigma_g^-)$$
(8)

with k_8 predicted to be 6.3 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ (Ref. 21) is not included in the model because in our exper-

iments O_2 was in excess so that most CH_2I was readily converted to CH_2OO or ICH_2OO . In experiments with significant $[CH_2I]$, this reaction has to be included in the model.

The fitting procedures thus became systematic on performing the following steps using either the Chemkin II program⁴¹ or a fitting program written with MATLAB; the latter was more efficient and convenient to use; its validity was verified with the former. After the initial fitting of y with $k_{1a} + k_{1b}$ fixed to 1.5×10^{-12} cm³ molecule⁻¹ s⁻¹ to derive k_{1a} and k_{1b} , and subsequently k_{2a} and k_{2b} using an initial guess of $K^{-1} = 70$, the rate coefficient of self-reaction of CH₂OO, k_3 , was fitted with least squares to minimize the deviations of the simulated and observed temporal profiles of [CH2OO] and [IO]; k_{2c} and $k_4 - k_7$ were fixed in the fitting. Values of k_4 - k_6 were taken from the literature, as listed previously, but $k_7 = 1.5 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ had to be used to account for the decay of IO. The fit yielded $k_3 = (6.5 \pm 2.1)$ $\times 10^{-11}$ cm³ molecule⁻¹ s⁻¹, but k_3 decreased with pressure for data in the pressure range 60–779 Torr. When K^{-1} was decreased to 40, we obtained $k_3 = (10.9 \pm 2.2) \times 10^{-11}$ cm^3 molecule⁻¹ s⁻¹, with k_3 increasing with pressure for data in the pressure range 100-779 Torr.

We then varied the value of K systematically and repeated the fit, all data under varied experimental conditions were fitted satisfactorily to yield k_3 independent of pressure only when K^{-1} was in the range 50–60; the best fits were with $K^{-1} = 55$, which yields $k_3 = (8.2 \pm 1.4) \times 10^{-11} \text{ cm}^3$ molecule⁻¹ s⁻¹ for data in the pressure range 60–779 Torr. The value $K^{-1} = 55$ corresponds to $\Delta G = 9.8$ kJ mol⁻¹ for reaction (1a), within expected uncertainties of the value 10.4 kJ mol⁻¹ predicted with the CCSD(T)//B3LYP/aug-ccpVTZ-pp method. Using this model, the simulated temporal profiles of CH2I, CH2OO, IO, ICH2OO, I, and H2CO for the experiment are shown with thick lines in Figs. 3 and 4; these simulated profiles of CH₂I, CH₂OO, and IO agree satisfactorily with experiments. In contrast, the profile simulated for IO in the experiment, shown as a dashed-dotted line (noted as " $k_{1c} = 0$ ") in Fig. 5 using this model, is significantly greater than the experimental data, to be discussed in Sec. IV B.

B. Decomposition of ICH₂OO^{*} or CH₂OO^{*} at P < 60 Torr

As indicated in Fig. 5, after fitting the profile of CH_2OO , the experimental temporal profile of IO disagrees with simulations using the mechanism discussed in Sec. IV A. The observed concentration of IO was significantly smaller than that simulated with this model and that of CH_2OO showed a rise less rapid than simulation. These deviations were observed for all experiments performed below 60 Torr.

As discussed in Sec. IV A, IO could be produced from two channels: $CH_2OO + I$ (reaction (2c)) and $ICH_2OO + I$ (reaction (5)). At low pressure, as $[ICH_2OO]$ is much smaller than $[CH_2OO]$, most IO was produced from $CH_2OO + I$. To reconcile the smaller [IO], we propose that some internally excited ICH_2OO^* or CH_2OO^* might have decomposed to form products other than CH_2OO or ICH_2OO at low pressure because of less efficient quenching. A similar mechanism was also proposed by Eskola *et al.* for ICH_2OO^* .²⁹ Hence, for experiments below 60 Torr, we modified the original reaction (1a) to include two channels,

$$CH_2I + O_2 \rightarrow CH_2OO + I, \quad k_{1a}' = (1.5 \times 10^{-12} - k_{1b})\beta,$$

(1a')

CH₂I + O₂ → products other than CH₂OO or ICH₂OO,

$$k_{1c} = (1.5 \times 10^{-12} - k_{1b})(1 - \beta)$$
 (1c)

in which $k_{1c} = 0$ and the fraction of survival of CH₂OO $\beta = k_{1a}'/(k_{1a}' + k_{1c}) = 1$ for P > 60 Torr and β decreases with pressure for P < 60 Torr. The decomposition of some ICH₂OO* or CH₂OO* at low pressure consequently accounted for the smaller concentrations of CH₂OO and IO. The yield of CH₂OO is consequently revised to be $y = \beta k_{1a}/(k_{1a} + k_{1b})$ to include the data at low pressure; hence $k_{1a}' = (k_{1a} + k_{1b}) y$, $k_{1b} = (k_{1a} + k_{1b}) (1 - y/\beta)$, and $k_{1c} = (k_{1a} + k_{1b}) y (1 - \beta)/\beta$. This decomposition channel at low pressure is further supported by our observation of infrared absorption bands of CO and CO₂ in the photolytic reaction of CH₂I₂ + O₂ at 248 nm for pressures below 40 Torr.

With this revised model, we adjusted β and y to fit the observed temporal profiles of IO and CH₂OO, with all other parameters determined the same way as in the case at high pressure. Subsequently, rate coefficient k_3 was fitted with least squares. After considering this decomposition channel, the temporal profiles of CH₂OO and IO were simulated satisfactorily, as shown in thick lines in Fig. 5 with $\beta = 0.78$ and 0.73 for experiment nos. 29 and 33, respectively. Twenty three experiments performed with total pressure below 60 Torr were fitted satisfactorily using this revised model with $\beta = 0.73$ – 0.92 or k_{1c} up to 3.9×10^{-13} cm³ molecule⁻¹ s⁻¹, 26% of the total rate coefficient of reaction (1).

The less rapid rise of CH_2OO might be explained also by the decomposition mechanism. As at low pressure the quenching of ICH_2OO^* and CH_2OO^* is less facile, the proportion of the internally excited ICH_2OO^* or CH_2OO^* that decomposes increased, more at the earlier period of reaction. The proportion of the "loss" in CH_2OO was hence largest at the beginning and decreased at the later stage of reaction. When an efficient quencher SF_6 was employed, even at low pressure this delayed rise of CH_2OO disappeared, as indicated in Fig. S3 of the supplementary material.³⁷

C. Fitted rate coefficients and their dependence on pressure

This fitting procedure worked well for 69 sets of data in total in the pressure range 7.6–779 Torr in which the pressure of O₂ was varied from 2.0 to 163.0 Torr, N₂ from 0 to 773.9 Torr, SF₆ from 0 to 62.7 Torr, and $[CH_2I]_0$ in the range $(2.1–18.4) \times 10^{13}$ molecule cm⁻³. The experimental conditions, the fitted rate coefficients, and the values of y and β thus derived for some representative experiments are summarized in Table I; a complete list is available in Tables SI (N₂ and O₂) and SII (SF₆) of the supplementary material.³⁷

FIG. 6. Dependence on pressure of the rate coefficient for the formation of CH₂OO, k_{1a} . (a) k_{1a} as a function of total pressure *P*; the solid line is fitted according to Eq. (9); (b) $(k_{1a} + k_{1b})/k_{1a} = y'^{-1}$ as a function of *P*; $k_{1a} = k_{1a}' + k_{1c}$.

1. Pressure dependence of k_{1a} and k_{1b}

The pressure dependence of k_{1a} is shown in Fig. 6(a); k_{1a} represents the rate coefficient for the formation of CH₂OO from CH₂I + O₂. As expected, the rate coefficient decreases with pressure as the formation of ICH₂OO becomes more important. A plot of $(k_{1a} + k_{1b})/k_{1a}$ as a function of *P* is shown in Fig. 6(b); in this case k_{1a} takes into account the proportion that decomposes at low pressure. According to the rate expression shown in the supplementary material,³⁷

$$\frac{k_{1a} + k_{1b}}{k_{1a}} = 1 + \frac{k_q[\mathbf{M}]}{k_{-2}}.$$
(9)

The linear relation between $(k_{1a} + k_{1b})/k_{1a}$ and [M] (=*P*) and an intercept ~1 are satisfactorily demonstrated in Fig. 6(b), supporting the validity of our model. Using this equation, we were able to derive $k_q/k_{-2} = (1.1 \pm 0.1) \times 10^{-19}$ cm³ molecule⁻¹.

The dependence of k_{1b} on pressure is shown in Fig. 7(a); k_{1b} represents the rate coefficient for the formation of ICH₂OO from CH₂I + O₂. A linear rise with pressure is observed for k_{1b} at low pressure; k_{1b} levels off at high pressure, characteristic of quenching stabilization of ICH₂OO. A plot of $(k_{1a} + k_{1b})/k_{1b}$ as a function of P^{-1} is shown Fig. 7(b); because this channel is important only at high pressure, we plot data only with $P \ge 100$ Torr. According to the rate

FIG. 7. Dependence on pressure of the rate coefficient for the formation of ICH₂OO, k_{1b} . (a) k_{1b} as a function of total pressure *P*; the solid line is fitted according to $k_{1b} = 1.5 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} - k_{1a}$; (b) $(k_{1a} + k_{1b})/k_{1b}$ as a function of P^{-1} , P > 100 Torr.

expression shown in the supplementary material,³⁷

$$\frac{k_{1a} + k_{1b}}{k_{1b}} = 1 + \frac{k_{-2}}{k_q[\mathbf{M}]}.$$
(10)

The linear relation between $(k_{1a} + k_{1b})/k_{1b}$ and P^{-1} and an intercept ~1 are satisfactorily demonstrated in Fig. 7(b). The satisfactory dependence of both k_{1a} and k_{1b} over a broad pressure range indicates that our model is adequate to describe the variation of concentration of CH₂OO and IO. However, because we assumed that $k_{1a} + k_{1b} = 1.5 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹, the equation $k_{1b} = 1.5 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ - k_{1a} instead of Eq. (10) should be used for derivation of k_{1b} .

Because of the equilibrium relationship, $K^{-1} = k_{2a}/k_{1a}$ = $\alpha_1 k_{2b}/\alpha_2 k_{1b} = 55$, the pressure dependence of k_{2a} and k_{2b} follows that of k_{1a} and k_{1b} , respectively.

2. Pressure dependence of k_{1c}

The dependence of k_{1c} on pressure is shown in Fig. 8(a) and the dependence of β , the fraction of survived CH₂OO, on pressure is shown in Fig. 8(b); because of the smaller values, the errors in these measurements are greater than others. An initial increase in β with pressure before leveling off, similar to that of k_{1b} , was observed; this is characteristic of quenching stabilization. A decrease with pressure is observed for k_{1c} ; the value becomes negligible near 60 Torr. The observed pressure dependence is consistent with a mechanism of stabilization of ICH₂OO^{*} and CH₂OO^{*} by collisional quenching. The β

FIG. 8. Dependence on total pressure of k_{1c} (a) and the fraction of survival of CH₂OO, β , in the pressure range 7–100 Torr (b); the solid line is fitted according to Eq. (11).

values are fitted to an equation

$$\beta = 1 - (0.47 \pm 0.11) / [1 + (3.2 \pm 1.2) \times 10^{-18} \, [\text{M}]].$$
⁽¹¹⁾

Because of the large uncertainties in β , the fitting reproduce β values to only within 0.08.

3. Determination of k₃

The fitted rate coefficient for self-reaction of CH₂OO, k_3 , ranged from 5.6 to 12.0×10^{-11} cm³ molecule⁻¹ s⁻¹, with an average of all data $k_3 = (8.2 \pm 1.4) \times 10^{-11} \text{ cm}^3$ molecule⁻¹ s⁻¹ for experiments in N₂ and O₂; the error limits represent one standard deviation in averaging. Some representative sensitivity analyses are shown in the supplementary material.³⁷ At high pressure, the analysis clearly shows that reactions (1a), (1b) and (2b) are more sensitive to the variation of $[CH_2OO]$ than reaction (3), but the factors of reactions (1a) and (1b) have similar values with opposite signs because these reactions are competing with CH₂I for the formation of either CH₂OO or ICH₂OO. The sensitivity of reaction (3), $\partial x/\partial (\ln k_3)$, in which x is the mass fraction of CH₂OO, indicates that k_3 has greater errors at high pressure than at low pressure, mainly because [CH₂OO] is small relative to [ICH₂OO]. At lower pressure [CH₂OO] is much greater than [ICH₂OO] and the sensitivity of reaction (3) is greater than of reactions (2a) and (2b), but still smaller than of reactions (1a) and (1b). However, the effect of reactions (1a) and (1b) on k_3 cancels each other. Even under such conditions and in the critical range 20–150 μ s, $\partial(\ln k_3)/\partial(\ln k_i)$

 $\approx 0.4-1.0$ for i = 2a and 2b, indicating that k_3 is sensitive to values of k_{2a} and k_{2b} . Considering the large variations in k_{2a} and k_{2b} under our experimental conditions, the consistency of values of k_3 throughout the pressure range supports the validity of the mechanism including decomposition reaction (1c).

Two assumptions were made in these fits: $k_{1a} + k_{1b} = 1.5 \times 10^{-12} \text{ cm}^3$ molecule⁻¹ s⁻¹ and $\alpha_1/\alpha_2 = 1$. The former was actually tested with our experimental data, even at high pressure, and we fixed this value simply to minimize the variables in our fitting. The value of α_1/α_2 might deviate slightly from 1; a deviation of 30% implies a deviation of k_{2b} by 30%, which translates to ~20% in k_3 at low pressure. Considering the estimated relative error of 20% in concentration measurements of CH₂OO, which translates to ~60% error in k_3 at high pressure and ~30% at low pressure based on sensitivity analysis, 24% error induced by the uncertainty of K^{-1} (=55 ± 15), 17% error in the least-square fit of each individual temporal profile, we report $k_3 = (8 \pm 4) \times 10^{-11} \text{ cm}^3$ molecule⁻¹ s⁻¹ with the error representing the 95% confidence level.

Previously, using IR absorption to monitor CH₂OO, we could only roughly estimate the rate coefficient of k_3 because of large uncertainties.²¹ Because the IR probe beam did not follow the UV photolysis beam, the average concentration in the photolysis volume hence differed from that of the IRprobed volume. The conversion between concentrations of CH₂OO in the UV-photolyzed volume and the IR-probed volume had large errors. The initial concentration of CH₂I in the photolyzed volume was estimated with the UV absorption cross section of CH₂I₂ and the laser fluence, which was estimated from the energy and the size of the laser beam. The concentration of CH₂OO measured from IR absorption also had large errors because the IR absorption cross section predicted with quantum-chemical computations might have large errors which affect the bimolecular rate coefficient by approximately the same factor. Furthermore, the mechanism employed previously ignored reactions (1b) and (1c), and also employed theoretically predicted rate coefficients for reactions (2a)–(2c). All these factors might result to an underestimated error bar of our previous estimate. The dependence of k_3 on temperature is expected to be small, so the previously reported value of $k_3 = (4 \pm 2) \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 343 K might have been overestimated. Our determination of $k_3 = (8 \pm 4) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 295 K in this work agrees with the recently reported value $k_3 = (6.0 \pm 2.1)$ $\times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ at 297 K by Buras *et al.*,³² even though a simplified mechanism was employed in that work.

D. Yield of CH₂OO and its dependence on pressure

In Fig. 9 we plot the reciprocal yield of CH₂OO, $y^{-1} = (k_{1a}' + k_{1b} + k_{1c})/k_{1a}' = (k_{1a} + k_{1b})/k_{1a}'$, as a function of total density [M] for the pressure range 7.6–779.2 Torr. These data were fitted with the equations

$$y^{-1} = (1.24 \pm 0.03) + (9.13 \pm 0.33) \times 10^{-20} \,[M],$$

(12)
 $M = O_2 \text{ or } N_2$

in which [M] is the density in molecule cm⁻³; the errors represent one standard deviation in fitting. Our data are compared

FIG. 9. Reciprocal initial yield y of CH₂OO from CH₂I + O₂ as a function of total density [M]. $y^{-1} = (k_{1a} + k_{1b})/k_{1a}' = (k_{1a} + k_{1b})/\beta k_{1a}$. The data were fitted to a line with intercept 1.24 and slope 9.1 × 10⁻²⁰ cm³ molecule⁻¹ for M = O₂ or N₂. The results of Huang *et al.*³⁰ for M = He, O₂, and N₂, with slopes 0.95, 1.14, and 2.41 × 10⁻¹⁹ cm³ molecule⁻¹, respectively, and the result of Stone *et al.*³¹ for M = O₂ or N₂, with a slope 1.90 × 10⁻¹⁹ cm³ molecule⁻¹, are also shown for comparison.

with previous reports in Fig. 9. The smaller yield of CH₂OO (greater y^{-1}) at low pressure is due to the decomposition of CH₂OO*/ICH₂OO*; this reduction of yield would not appear in the experiments with I-atom detection. It is unclear why Huang *et al.* observed significantly different pressure dependence on N₂ and O₂;³⁰ our results for M = O₂ and N₂ agree satisfactorily with their report for M = He [slope = (0.93 \pm 0.13) \times 10⁻¹⁹] and O₂ [slope = (1.1 \pm 0.1) \times 10⁻¹⁹], but are much smaller than for M = N₂ [slope = (2.4 \pm 0.4) \times 10⁻¹⁹].³⁰ Our results also have a pressure dependence much less than that reported by Stone *et al.*³¹ with M = N₂ and O₂ [slope = (1.90 \pm 0.11) \times 10⁻¹⁹ for all data].

Our assumption of $-\Delta[CH_2I_2] = [CH_2I]_0$ might overestimate [CH₂I]₀ by as much as 15%, but not significantly enough to explain the discrepancies. When we tested the power dependence of this discrepancy, we found that this discrepancy was not due to secondary photolysis of CH₂I; it is likely due to the error of the reported cross section of CH₂I. Some uncertainties in these previous reports might have resulted from the indirect methods employed by observation of I atoms and H₂CO rather than CH₂OO, and the uncertainties in analysis of observed temporal profiles with their models. It should be noted that we performed experiments at 248 nm whereas Huang et al. employed light at 355 nm.³⁰ Weather the difference in internal energy of CH₂I affects the stabilization of ICH₂OO, even at high pressures, requires further investigation. However, from the results of Stone et al. in which laser light at both 248 nm and 355 nm was used, the effect of photolysis wavelength on yield of CH₂OO is insignificant.³¹

The estimated yields of CH₂OO from CH₂I + O₂ at 298 K and 760 Torr in air, ~15% reported by Huang *et al.*³⁰ and 18% by Stone *et al.*,³¹ were proposed to have significant implications for the oxidation chemistry of halogencontaining organic compounds and for the atmospheric chemistry in marine regions with large concentrations of CH₂I₂.

TABLE II. Summary of the	e rate coefficients and yield of	CH ₂ OO derived from the CH	$_{2}I + O_{2}$ system at 295 K
--------------------------	----------------------------------	--	---------------------------------

	Reaction/description	Expression ^a	Conditions	Assumptions ^a
k _{1a}	$CH_2I + O_2 \rightarrow CH_2OO + I$	$1.5 \times 10^{-12} / \{1 + (1.1 \pm 0.1) \times 10^{-19} \text{ [M]}\}$	$P \ge 60$ Torr	$k_{1a} + k_{1b} = 1.5 \times 10^{-12}$
k_{1a}'	$CH_2I + O_2 \rightarrow CH_2OO + I$	$\beta \times 1.5 \times 10^{-12} / \{1 + (1.1 \pm 0.1) \times 10^{-19} [M]\}$	P < 60 Torr	$k_{1a}' + k_{1b} + k_{1c} = 1.5 \times 10^{-12}$
β	Fraction of survival of CH ₂ OO at low P,	$1 - (0.47 \pm 0.11)/\{1 + (3.2 \pm 1.2) \times 10^{-18} \text{ [M]}\}^{b}$	P < 60 Torr	
	$\beta = k_{1a}'/k_{1a}$			
k _{1b}	$CH_2I + O_2 \xrightarrow{M} ICH_2OO$	$1.5 \times 10^{-12} - k_{1a}$		$k_{1a} + k_{1b} = 1.5 \times 10^{-12}$
k_{1c}	$CH_2I + O_2 \rightarrow products$ other than	$k_{1a}(1-\beta)$	P < 60 Torr	
	CH ₂ OO or ICH ₂ OO			
k _{2a}	$CH_2OO + I \rightarrow CH_2I + O_2$	55 k_{1a}		$K^{-1} = 55$
k_{2h}	$CH_2OO + I \xrightarrow{M} ICH_2OO$	55 $k_{\rm lb}$		$K^{-1} = 55, \alpha_1 = \alpha_2$
k_{2c}	$CH_2OO + I \rightarrow H_2CO + IO$	9.0×10^{-12}		P-independent
k_3	$CH_2OO + CH_2OO \rightarrow 2 H_2CO + O_2 (^1\Delta_g)$	$(8 \pm 4) \times 10^{-11}$		P-independent
у	Yield of CH ₂ OO, $y^{-1} = (k_{1a}' + k_{1b})$	$y^{-1} = (1.24 \pm 0.03) + (9.13 \pm 0.33) \times 10^{-20}$ [M],		$-\Delta[\mathrm{CH}_{2}\mathrm{I}_{2}] = [\mathrm{CH}_{2}\mathrm{I}]_{0}$
	$(k_{1a})/k_{1a}' = (k_{1a} + k_{1b})/k_{1a}'$	$M = O_2 \text{ or } N_2$		- *

^aRate coefficient in cm³ molecule⁻¹ s⁻¹, [M] in molecule cm⁻³, and K, β , and y are dimensionless. K is the equilibrium constant of the reaction CH₂I + O₂ = CH₂OO + I; K⁻¹ = 55 provides the best fitting.

^bApproximate fitting of the scattered data below 60 Torr.

Our estimate of a yield \sim 30% at 295 K and 760 Torr would enhance these effects significantly.

Following the same method²¹ to simulate the experimental conditions in the laboratory investigations of the ozonolysis of C_2H_4 using the revised k_3 value and a model reported previously,⁹ we found that, when the self-reaction of CH₂OO is included in the model, the simulated yield of hydroperoxymethyl formate [HPMF, CH2(OOH)-O-CHO] and formic acid anhydride [FA, (HCO)₂O] decreased by $\sim 7\%$ and that of HCOOH increased by $\sim 3\%$. The H₂CO produced due to the self-reaction of CH₂OO accounts for an additional yield ~ 0.03 . When we increased the rate coefficient for O₃ + alkene from 1×10^{-18} cm³ molecule⁻¹ s⁻¹ for C₂H₄ to 1 $\times 10^{-16}$ cm³ molecule⁻¹ s⁻¹ for larger alkenes,³⁰ the simulated yield of compounds due to the reaction of Criegee intermediate + HCOOH, corresponding to HPMF + FA in O_3 + C_2H_4 , decreased by 25%–30%, whereas that of HCOOH increased by 10%–12%. Furthermore, the additional carbonyl compounds produced from the self-reaction of the Criegee intermediates account for a yield 0.11-0.14, explaining the observed stoichiometry ratio larger than unity. Even though the significantly reduced value of the rate coefficient k_3 decreased its effect on the laboratory ozonolysis experiments, it might play an important role when the concentration of CH₂OO is large.

The rate coefficients k_{1a} , k_{1a}' , k_{1b} , k_{1c} , k_{2a} , k_{2b} , k_{2c} , k_3 , and values of β (fraction of survival of CH₂OO) and y (yield of CH₂OO) derived in this work are summarized in Table II.

V. CONCLUSION

To investigate the detailed kinetics of the $CH_2I + O_2$ reaction, we monitored the UV absorption of CH_2I_2 , CH_2I , IO, and CH_2OO simultaneously in the reaction system of $CH_2I + O_2$ at 295 K upon photolysis of a flowing mixture of CH_2I_2 , O_2 , and N_2 (or SF₆) at 248 nm. Using a detailed mechanism for the reaction, we simulated the temporal profiles of CH_2OO and IO that agreed satisfactorily with experimental data over a wide range of experimental conditions with P = 7.6-779 Torr. We found that, at pressure below 60 Torr, some internally excited ICH₂OO^{*} or CH₂OO^{*} decomposed; the fraction of survival $\beta = k_{1a}' / (k_{1a}' + k_{1c})$ was determined to be as small as ~0.75 near 7.8 Torr.

The feature of our mechanism is that we clearly specified three channels for the reaction $CH_2I + O_2$ and three channels for $CH_2OO + I$, and include the self-reaction of CH_2OO that becomes important when the concentration of CH_2OO is large. The dependence of derived rate coefficients on pressure for the formation of $CH_2OO + I(k_{1a})$, ICH_2OO (k_{1b}) , and other products (k_{1c}) from $CH_2I + O_2$ and the formation of $CH_2I + O_2(k_{2a})$, $ICH_2OO(k_{2b})$, and $H_2CO +$ $IO(k_{2c})$ from $CH_2OO + I$ was determined; they conform to the expected behavior for enhanced stabilization of ICH_2OO at higher pressure. We also determined a rate coefficient k_3 $= (8 \pm 4) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ for the self-reaction of CH_2OO , significantly smaller than our previous estimate at 343 K using IR absorption.

The dependence on pressure of the yield y of CH₂OO from CH₂I + O₂ conforms to the equation $y^{-1} = (1.24 \pm 0.03) + (9.13 \pm 0.33) \times 10^{-20}$ [M] in which [M] = O₂ or N₂ is the total density in molecule cm⁻³. This dependence on pressure is smaller than in previous reports; the ~30% yield of CH₂OO at 760 Torr much greater than values 15%–18% in previous reports might have a significant impact on the atmospheric chemistry of marine regions.

ACKNOWLEDGMENTS

Ministry of Science and Technology, Taiwan (Grant Nos. NSC102-2745-M009-001-ASP and NSC100-2113-M-001-008-MY3) and the Ministry of Education, Taiwan ("ATU Plan" of National Chiao Tung University) supported this work. The National Center for High-Performance Computing provided computer time.

¹D. Johnson and G. Marston, Chem. Soc. Rev. **37**, 699 (2008).

²J. G. Calvert, R. Atkinson, J. A. Kerr, S. Madronich, G. K. Moortgat, T. J. Wallington, and G. Yarwood, *The Mechanisms of Atmospheric Oxidation of the Alkenes* (Oxford University Press, Oxford, UK, 2000), pp. 172–335.

- ³O. Horie and G. K. Moortgat, Acc. Chem. Res. **31**, 387 (1998).
- ⁴R. Criegee and G. Wenner, Justus Liebigs Ann. Chem. **564**, 9 (1949).
- ⁵W. Sander, Angew. Chem. Int. Ed. Engl. **29**, 344 (1990).
- ⁶W. H. Bunnelle, Chem. Rev. **91**, 335 (1991).
- ⁷S. Hatakeyama and H. Akimoto, Res. Chem. Intermed. 20, 503 (1994).
- ⁸G. Marston, Science **335**, 178 (2012).
- ⁹P. Neeb, O. Horie, and G. K. Moortgat, J. Phys. Chem. A **102**, 6778 (1998).
 ¹⁰C. A. Taatjes, D. E. Shallcross, and C. J. Percival, Phys. Chem. Chem. Phys. **16**, 1704 (2014).
- ¹¹C. A. Taatjes, G. Meloni, T. M. Selby, A. J. Trevitt, D. L. Osborn, C. J. Percival, and D. E. Shallcross, J. Am. Chem. Soc. **130**, 11883 (2008).
- ¹²O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross, and C. A. Taatjes, Science **335**, 204 (2012).
- ¹³J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045 (2012).
- ¹⁴L. Sheps, J. Phys. Chem. Lett. **4**, 4201 (2013).
- ¹⁵W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, and J. J. Lin, Phys. Chem. Chem. Phys. 16, 10438 (2014).
- ¹⁶Y.-T. Su, Y.-H. Huang, H. A. Witek, and Y.-P. Lee, Science **340**, 174 (2013).
- ¹⁷M. Nakajima and Y. Endo, J. Chem. Phys. **139**, 101103 (2013).
- ¹⁸M. C. McCarthy, L. Cheng, K. N. Crabtree, O. Martinez, T. L. Nguyen, C. C. Womack, and J. F. Stanton, J. Phys. Chem. Lett. 4, 4133 (2013).
- ¹⁹C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, D. L. Osborn, E. P. F. Lee, J. M. Dyke, D. W. K. Mok, D. E. Shallcross, and C. J. Percival, Phys. Chem. Chem. Phys. **14**, 10391 (2012).
- ²⁰D. Stone, M. Blitz, L. Daubney, N. U. M. Howes, and P. Seakins, Phys. Chem. Chem. Phys. 16, 1139 (2014).
- ²¹Y.-T. Su, H.-Y. Lin, R. Putikam, H. Matsui, M. C. Lin, and Y.-P. Lee, Nat. Chem. 6, 477 (2014).
- ²²Y. Liu, K. D. Bayes, and S. P. Sander, J. Phys. Chem. A **118**, 741 (2014).
- ²³J. Sehested, T. Ellermann, and O. J. Nielsen, Int. J. Chem. Kinet. **26**, 259 (1994).
- ²⁴A. Masaki, S. Tsunashima, and N. Washida, J. Phys. Chem. **99**, 13126 (1995).
- ²⁵S. Enami, J. Ueda, M. Goto, Y. Nakano, S. Aloisio, S. Hashimoto, and M. Kawasaki, J. Phys. Chem. A **108**, 6347 (2004).

- ²⁶S. Enami, Y. Sakamoto, T. Yamanaka, S. Hashimoto, M. Kawasaki, K. Tonokura, and H. Tachikawa, Bull. Chem. Soc. Jpn. 81, 1250 (2008).
- ²⁷T. Gravestock, M. Blitz, W. Bloss, and D. E. Heard, ChemPhysChem 11, 3928 (2010).
- ²⁸V. G. Stefanopoulos, V. C. Papadimitriou, Y. G. Lazarou, and P. Papagiannakopoulos, J. Phys. Chem. A **112**, 1526 (2008).
- ²⁹A. J. Eskola, D. Wojcik-Pastuszka, E. Ratajczak, and R. S. Timonen, Phys. Chem. Chem. Phys. 8, 1416 (2006).
- ³⁰H. Huang, A. Eskola, and C. A. Taatjes, J. Phys. Chem. Lett. **3**, 3399 (2012); **4**, 3824 (2013).
- ³¹D. Stone, M. Blitz, L. Daubney, T. Ingham, and P. Seakins, Phys. Chem. Chem. Phys. 15, 19119 (2013).
- ³²Z. J. Buras, R. M. I. Elasmra, and W. H. Green, J. Phys. Chem. Lett. 5, 2224 (2014).
- ³³M.-N. Su and J. J. Lin, Rev. Sci. Instrum. **84**, 086106 (2013).
- ³⁴M.-N. Su and J. J. Lin, GSTF J. Chem. Sci. (JChem) 1, 52 (2013).
- ³⁵S. P. Sander, J. Abbatt, J. R. Barker, J. B. Burkholder, R. R. Friedl, D. M. Golden, R. E. Huie, C. E. Kolb, M. J. Kurylo, G. K. Moortgat, V. L. Orkin, and P. H. Wine, "Chemical kinetics and photochemical data for use in atmospheric studies," Evaluation Number 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, 2011, see http://jpldataeval.jpl.nasa.gov.
- ³⁶E. P. F. Lee, D. K. W. Kok, D. E. Shallcross, C. J. Percival, D. L. Osborn, C. A. Taayjes, and J. M. Dyke, Chem. Eur. J. 18, 12411 (2012).
- ³⁷See supplementary material at http://dx.doi.org/10.1063/1.4894405 for analysis of the transient absorption spectra, kinetic analysis, additional temporal profiles, a complete list of experimental conditions and fitted results, and sensitivity analysis.
- ³⁸H. Y. Chen, C.-Y. Lien, W.-Y. Lin, Y. T. Lee, and J. J. Lin, Science **324**, 781 (2009).
- ³⁹Z. J. Buras, R. M. I. Elasamra, A. Jalan, J. E. Middaugh, and W. H. Green, J. Phys. Chem. A **118**, 1997 (2014).
- ⁴⁰R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, Atmos. Chem. Phys. 7, 981 (2007).
- ⁴¹R. J. Kee, F. M. Rupley, and J. A. Miller, Chemkin-II, "A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics," Sandia Report, SAND89-8009B, 1995.