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PAPER

CROP: Community-Relevance-Based Opportunistic Routing in
Delay Tolerant Networks

Je-Wei CHANG† and Chien CHEN††a), Nonmembers

SUMMARY Researchers have developed several social-based routing
protocols for delay tolerant networks (DTNs) over the past few years. Two
main routing metrics to support social-based routing in DTNs are central-
ity and similarity metrics. These two metrics help packets decide how to
travel through the network to achieve short delay or low drop rate. This
study presents a new routing scheme called Community-Relevance based
Opportunistic routing (CROP). CROP uses a different message forward-
ing approach in DTNs by combining community structure with a new
centrality metric called community relevance. One fundamental change
in this approach is that community relevance values do not represent the
importance of communities themselves. Instead, they are computed for
each community-community relationship individually, which means that
the level of importance of one community depends on the packet’s des-
tination community. The study also compares CROP with other routing
algorithms such as BubbleRap and SimBet. Simulation results show that
CROP achieves an average delivery ratio improvement of at least 30% and
can distribute packets more fairly within the network.
key words: delay tolerant network, opportunistic routing, social networks

1. Introduction

Researchers have long studied routing protocols in Delay
Tolerant Networks (DTNs) [1] in an effort to cope with the
intermittent connectivity of conventional networks. To fa-
cilitate data delivery in a fragmented network, nodes may
have to temporarily carry data packets while they move, and
then forward the packets to other nodes in an opportunistic
hop-by-hop manner.

In such opportunistic networks, a node must decide
whether to forward packets to an encountered node. A node
typically makes forwarding decisions by evaluating extra in-
formation such as contact history [2]–[7], mobility pattern
information [8]–[12], or information on social interaction
[13]–[22]. Research that computes the delivery metric based
on social interaction between nodes in DTNs has become
popular in recent years. This approach constructs a social
graph based on the contacts of all nodes. Complex network
analysis over the social graph [19], [23] reveals the impor-
tance each node plays in routing in the network.

Most social-based routing schemes use following two
metrics to facilitate message delivery: centrality and sim-
ilarity. The centrality metric focuses on how often nodes
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function as bridges for message delivery. The similarity
metric determines if a node is in the neighborhood of the
destination node. When two nodes encounter each other, a
packet resident in one node is preferably forwarded to the
other node if it has greater similarity to the destination node
of that packet. If both nodes have the same similarity to
a packet, the packet is forwarded to the node with greater
centrality (i.e. greater chance to reach the destination). Peo-
pleRank [21] computes the centrality metric, that is the im-
portance of a node in the social graph, in an approach sim-
ilar to the idea of PageRank in Google Search. SimBet
[13] computes betweeness centrality by counting how often
a node is part of the shortest path between any two nodes,
and computes similarity by counting how often destination
nodes appear within a two-hop range of a node. BubbleRap
[20] uses degree centrality, where a node’s degree is the
number of its direct neighbors and computes similarity by
detecting each node’s community affiliation.

Community based routing has become more and more
popular in recent years. The nature of community struc-
tures makes it possible to predict neighborhood similarity
between two nodes. However, previous studies have sel-
dom discussed a centrality metric at the community level.
Some social communities already exist such as different
companies in an office building or different laboratories on
a campus. The degree of social interactions between dif-
ferent communities are different. For instance, two labs in
the same department on a campus may have a higher social
interaction with each other than two labs in different depart-
ments. Thus, social interaction between communities is a
good basis for the centrality metric design.

In addition, all previous methods forward packets
based on a single centrality metric of each node without
regard to packet destination. These approaches cause the
nodes with higher centrality metric to have a higher proba-
bility to be asked to forward packets for other nodes. The
invariant centrality metric leads the traffic in social-based
routing to concentrate on a small number of high centrality
nodes [18]. Under realistic conditions, the optimal routing
path of a packet should vary depending on its source and
destination nodes. Therefore, the centrality of a node should
vary depending on its packets’ destinations. Thus, our cen-
trality metric design consider the packets’ destinations.

The goal of this study is to develop a routing algo-
rithm based on the community-relevance metric between
any two communities in a DTN [24]. The proposed rout-
ing scheme [24] assumes that (1) all of the communities
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are known in advance, (2) which node belongs to which
community is also known in advance, and (3) a node can
be part of multiple communities. These assumptions are
feasible since there are many such existing communities in
human society such as multiple clubs in a school, multiple
branch offices in a company, etc. [25]. A community transi-
tion graph is first transformed from the contact graph. The
community relevance R (c, b) between two communities c
and b is the inverse of the expected random walk distance
from c to b in the community transition graph. Although
the community relevance is computed based on the com-
munity transition graph, this computation can be done in
distributed way (i.e. without full knowledge of the commu-
nity transition graph). This study also proposes a routing
scheme, called Community-Relevance based Opportunistic
routing (CROP). When a node encounters another node, a
packet is forwarded to the node with a higher community
relevance to the destination community of that packet. If
two nodes have the same community relevance, the packet
is forwarded to the node with a higher degree (number of
neighbors). Since a community may have a higher relevance
to one community but a lower relevance to another commu-
nity, CROP can provide different centrality values for differ-
ent packets destined to different communities. Therefore, by
using the community-relevance metric, it is possible to dis-
tribute traffic more fairly within the network and avoid the
traffic being concentrated on a small number of high cen-
trality nodes. In addition, the node with a larger community
relevance to a destination community has a shorter expected
random walk distance to that community. Therefore, it is
more likely in the neighborhood of that destination commu-
nity. Thus, our community-relevance metric conceptualizes
the similarity metric and the centrality metric into one met-
ric design.

This study further compares CROP with another
community-based opportunistic routing algorithm (Bub-
bleRap) in terms of (maximum) throughput theoretically.
The maximum throughput is formulated as a modified maxi-
mum multi-commodity flow problem by adapting the differ-
ent flow constraints for the two routing schemes. Results in-
dicate that CROP achieves a 50% throughput improvement
compared to BubbleRap. A series of proofs show that at
least one routing path exists between any two communities
in CROP, which may not be true in BubbleRap. Simulation
results show that CROP offers an average delivery ratio im-
provement of 30% compared to other social-based routing
schemes. The simulation results further indicate that CROP
distributes traffic load fairly within the network, leading to
smaller packet dropping rates under the limited buffer sce-
nario.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 introduces the network
model. Section 4 presents details of centralized and dis-
tributed community-relevance metric computation, and the
CROP routing scheme. We analyze the maximum through-
puts of the two routing protocols, BubbleRap and CROP in
Sect. 5. Section 6 discusses simulation results, and Sect. 7

concludes the paper.

2. Related Work

Many routing protocols attempt to enhance the packet deliv-
ery ratio in DTNs. These protocols generally fall into one
of the three categories: message ferrying routing, determin-
istic routing (space-time routing), or opportunistic routing
schemes.

Message ferrying routing schemes use several extra
mobile nodes, called message ferries (or data mules), to
ferry data in a network. The message ferry receives pack-
ets from the source node as soon as it comes close to the
source node, and disseminates packets to the destination
nodes when it is near the destination nodes. The message
ferrying scheme plans the trajectory of the ferry route to visit
all the nodes in the DTN, and minimizes the message ferry’s
total travel distance by solving the travelling salesman prob-
lem (TSP) [8]–[11].

Deterministic routing schemes assume that each node
has a varying level of prior knowledge of the network (e.g.,
contact time of two nodes, node queue size, available band-
width of a connection, etc). The authors of [26] designed
different routing protocols that depend on different types of
given prior knowledge that satisfy different QoS-level con-
straints. In [27], the authors constructed a space-time graph
from nodes’ contacts. A shortest path in the graph can be
discovered using Dijkstra’s shortest path algorithm.

Opportunistic routing schemes prioritize the packets in
the buffer to decide which packets should be forwarded to
the encounter nodes and which packets should be dropped in
case of a buffer overflow. Most schemes use a delivery met-
ric between source and destination under different criteria to
evaluate the importance of packets in the network. These
schemes can be further categorized as prediction-based and
social-based schemes.

Prediction-based schemes compute a delivery metric to
forecast the future contact probability between two nodes.
The authors of [4] analyzed the path strength between
source and destination within k hops. The cost of each
hop (i, j) is 1 − f i

j , where f i
j is the contact probability be-

tween nodes i and j. The authors of [6] used a proba-
bilistic space-time graph based on a node’s mobility pat-
tern. The frequency of the nodes’ visits at each possible
position is the basis of the future distance calculation in
the Euclidean space. The authors of [17] computed a de-
livery probability Pr (i, d, r, h) in which node i is the sender
node, node d is the destination node, r is the residual time
of the packet, and h is the remaining hop counts of the
packet. When node i meets node j, node i forwards a
packet to node j if Pr (i, d, r − 1, h) < Pr (i, d, r − 1, h − 1) ∗
Pr ( j, d, r − 1, h − 1). In [28], they considered the stochastic
future contact time distribution between nodes and formu-
late it as a time-homogeneous semi-Markov chain. A node
can use contact time distribution to find the best forwarding
time of a packet to another node.

Social-based schemes consider that social relationships
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affect human mobility. Complex network analysis [19], [29]
over the social graph can reveal the importance of a node
as a gateway node for data dissemination. Social-based
schemes usually work with two delivery metrics: the cen-
trality metric and the similarity metric. The centrality met-
ric focuses on the ability of a node to act as a bridge node in
the network. The similarity metric determines whether the
encounter is within the neighborhood of a destination node.
For example, SimBet [13] uses both neighborhood similar-
ity and betweeness centrality. SimBet uses neighborhood
similarity to detect encounter nodes that are within two hops
of the destination node. Betweeness centrality is used to
check if an encounter node is a bridge node. In an encounter
between two nodes, the packet is forwarded to the node with
a higher similarity to the destination node. Otherwise, the
packet is temporarily stored at the node with the highest cen-
trality metric. SimBetAge [14] exhibits the same concept of
SimBet, but includes aging of contacts in social graphs to
achieve a more accurate delivery metric. BubbleRap [20]
is the first algorithm to include the community concepts. A
packet is forwarded to nodes with high centrality values un-
til it reaches the destination community. The centrality of
a node in BubbleRap is the number of the node’s neigh-
bors (also called degree). Once the packet reaches the des-
tination community, the packet is only forwarded to nodes
within that community with high local centrality. LocalCom
[15] achieves distributed community detection by consider-
ing k-hop information. LocalCom uses a restricted flood-
ing mechanism to decrease the number of transmissions in
a DTN. A packet is first forwarded to a gateway node via
source routing. When a packet reaches a gateway node be-
tween two or more communities, that gateway node delivers
one copy of the packet to each neighbor community, and
keeps the original packet. PeopleRank [21] adopts the con-
cept of Google’s PageRank to calculate the importance of a
node in social networks. When a node encounters another
node, the packet is forwarded to the encountered node if
it has a higher importance than the current node. The au-
thors of [18] showed that packets in social based routing
schemes are usually unfairly concentrated on a small num-
ber of nodes because of the invariant centrality metric. They
designed a delivery metric that considers both the buffer uti-
lization and the centrality of the encounter node to eliminate
unfair packet distribution in social based routing. Other re-
searchers [19] showed that the number of contacts used in
the creation of the social graph has a significant effect on
the accuracy of the metric. Therefore, they conceptualized a
density-based contact collection method to identify the op-
timal number of contacts to collect for different DTNs.

This study proposes a social based routing algorithm
which is different from other social based routings in the
following aspects. Firstly, our approach computes the com-
munity relevance between any two communities instead
of the importance of a community itself. Secondly, most
of the previous studies consider the centrality metric and
the similarity metric, respectively, whereas our community-
relevance metric conceptualizes the similarity metric and the

centrality metric into single metric design. Finally, most of
the previous social routings consider an invariant centrality
metric, but our community-relevance metric provides differ-
ent centrality values for different destination communities.

3. Network Model

Consider a mobile network consisting of n mobile nodes
represented by the set V = {v0, v1, . . . , vn−1} and k communi-
ties represented by the set C = {c0, c1, . . . , ck−1}. Each node
can belong to one or more communities. Since a node can
belong to multiple communities, we define C (i) as a set of
communities that node i belongs to. Each node knows the
community set it belongs to in advance. This study uses
V(c) = {m | m ∈ V, c ∈ C (m)} to represent all the nodes in
community c. A directed community graph G = 〈C, E〉 is
constructed to compute the community relevance between
two communities, where C is the community set and E is
the edge set of the community graph. There is an edge e =
(a, b) between communities a and b in a community graph
(for a � b) if and only if there exists at least one node
in V (a) that is in contact with a node in V (b). The term
N (a) = {b | (a, b) ∈ E} stands for the neighbor communities
of community a. For instance, Fig. 1 is an example of the
community graph G = 〈C, E〉. We have C = {c0, c1, . . . , c4},
E is all of the edges in Fig. 1, and N (c0) = {c1, c2, c4}. A
community graph can be constructed by aggregating con-
tacts within a social network. To reflect the underlying so-
cial or mobility structure of the network, not all contacts
within a DTN should be used for the community graph. A
sliding-window aggregation method as in [20] can be used
to aggregate contacts to form a community graph. Only con-
tacts within the last periods of time T , whose contact time is
greater than t are considered valid, where T and t are empir-
ically determined. Here, the term γ represents all those valid
contacts. The term “contact” in the following is referred to
as the valid contact if not specified otherwise. Since a node
may belong to multiple communities, a contact between two
nodes may cause multiple contacts in the community graph.
Specifically, node i in contact with node j generates con-
tacts ηi j = {(a, b) |a ∈ C (i) , b ∈ C ( j) , a � b} in the commu-
nity graph. An indicator Ii j (a, b) is used to show if nodes i
and j can generate a contact between communities a and b
in the community graph. Hence, Ii j (a, b) = 1 for all con-
tacts (a, b) ∈ ηi j and Ii j (a, b) = 0 otherwise. The example in
Fig. 2 shows that node i belonging to community set C (i) =
{c1, c2}, has a contact with node j of community set C ( j) =
{c2, c3}. From the definition of ηi j, contacts (c1, c2), (c1, c3),
and (c2, c3) are generated in the community graph. In this
example, we have Ii j (c1, c2) = Ii j (c1, c3) = Ii j (c2, c3) = 1.
A weight w (a, b) is assigned to each edge (a, b) ∈ E, where
w (a, b) is the number of contacts between communities a
and b. The weight w (a, b) can be calculated easily using a
cost function w (a, b) =

∑
(i, j)∈γ

Ii j (a, b). The goal of this study

is to compute the community relevance using the Markov
stochastic process. Thus, this study further transforms the
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Fig. 1 Community graph.

Fig. 2 Contacts between two communities.

Fig. 3 Community transition graph.

community graph G into a community transition graph G′.
In this case, G and G′ are isomorphic. The only differ-
ence between the two graphs is the edge weight. More pre-
cisely, the edge weight in G′ is based on a transition prob-
ability between two communities. The community transi-
tion probability p (a, b) from community a to community b
is w (a, b)/

∑
(a,v)∈E w (a, v), which is the ratio of the number

of contacts from community a to community b to the total
number of all contacts of community a with other commu-
nities. Figure 3 shows the community transition graph trans-
formed from the community graph in Fig. 1. For example,
if we want to compute the transition probability p (c2, c0),
the number of generated contacts of community c2 with the
communities c0, c3, and c4, are 1, 2, and 1. Based on the
above, we can compute p (c2, c0) = 1

(1+2+1) =
1
4 .

4. Community-Relevance-Based Opportunistic Rout-
ing

This section introduces a community-relevance based rout-
ing method. Section 4.1 describes a centralized community-
relevance metric computation over a community transition

Fig. 4 An example of G′ (C0).

graph. Section 4.2 proposes a routing protocol based on the
community-relevance metric called CROP. Section 4.3 in-
troduces a distributed algorithm to obtain the community-
relevance metric.

4.1 Community Relevance Computation

For a packet in community a destines to community b,
this study defines the community relevance metric R (a, b)
between communities a and b as the inverse of the ex-
pected random walk hop distance from a to b, denoted
as h (a, b) , over community transition graph G′. When a
packet reaches the destination community b, it does not
need to random walk to other communities from community
b. Therefore, this study removes all of the outgoing edges
{(b, c) |c ∈ N (b) } of destination community b from G′. Thus,
the term G′ (b) represents destination community transition
graph of community b which is the sub-graph of G′ after
removing edges {(b, c) |c ∈ N (b) } . This study computes the
community relevance R (a, b) for any destination commu-
nity b ∈ C over G′ (b) . Figure 4 demonstrates G′ (c0), which
can be derived from the destination community transition
graph of community c0 in Fig. 3 by removing all of outgo-
ing edges of community c0.

For a packet in community a whose destination com-
munity is b, suppose that community a chooses one of its
neighboring community c as the next hop. Then, the ex-
pected random walk hop distance h (a, b) from a to b through
c is equal to h (c, b) + 1. Therefore, we can calculate h (a, b)
by the following recurrence:

h (a, b) =

⎧⎪⎪⎨⎪⎪⎩
∑

c∈N(a)
p (a, c) · (h (c, b) + 1) if a � b

0 if a = b
(1)

where p (a, c) is the transition probability from communities
a to c, and N (a) is the neighbor communities of community
a. We can further derive:

h (a, b) =

⎛⎜⎜⎜⎜⎜⎜⎝
∑

c∈N(a)

p (a, c) · (h (c, b))

⎞⎟⎟⎟⎟⎟⎟⎠ + 1.

In Eq. (1), h (a, b) can be derived by solving the lin-
ear equations as follows. All the expected random
walk hop distances from any community to the destina-
tion community b can be described by a vector H (b) =
[h0 (b) h1 (b) · · · ha (b) · · · hk−1 (b)]T

k×1
, where the value of
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ha (b) represents the result of h (a, b). The term Π (b) =(
πi j (b)

)
k×k

denotes a k × k community transition probabil-
ity matrix in G′ (b). The value πi j (b) is assigned as follows:

πi j (b) =

{
p (i, j) if edge (i, j) exists in G′ (b)
0 otherwise

, (2)

where p (i, j) is the transition probability from communitiy
i to community j. The distance vector can be defined as
D (b) = [d0 (b) d1 (b) · · · da (b) · · · dk−1 (b)]

T

k×1, where da (b)
= 0 for a = b and da (b) = 1 for a � b. Equation (1) can be
transformed into the following matrix equation:

H (b) = (Π (b) × H (b)) + D (b) (3)

It is then easy to solve H (b) in the following equation;

H (b) = (I − Π (b))−1 × D (b) (4)

where I is a k×k identity matrix. The relevance R (a, b) from
communities a to b is obtained by (h (a, b))−1 by solving
H (b). For instance, the transition probability matrix Π (c0)
of G′ (c0) and distance vector D (c0) in Fig. 4 are:

Π (c0)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
1
2 0 0 1

2 0
1
4 0 0 1

2
1
4

0 1
3

2
3 0 0

1
2 0 1

2 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and D (c0)=

[
0 1 1 1 1

]T

Then H (c0) = [0 3.56 4.32 5.06 3.16]T can be derived by
solving Eq. (4).

To compute all community-relevance values between
any two communities, this study iteratively selects a desti-
nation community b ∈ C and calculates the community rele-
vance from all communities to selected destination commu-
nity b. It is then possible to deduce the community relevance
between any two communities.

4.2 CROP Routing Protocol

This study proposes a community-relevance based oppor-
tunistic routing protocol called CROP. The CROP is a
single-copy routing protocol such that only one copy of a
packet is forwarded within the network during routing pro-
cess. The reason of choosing single-copy scheme is because
the buffer space on a node in DTN is precious. We do not
want to waste extra space for multiple copies of a packet.
CROP consists of two parts: 1) a forwarding scheme and 2)
a buffer management scheme. These two schemes are both
based on the community-relevance metric.
1) Forwarding scheme: The CROP forwarding scheme is
designed based on the community-relevance metric. Each
node i assigns a relevance cost, Ri (ρ) = max

a∈C(i),b∈C(d)
(R (a, b))

to a packet ρ whose destination is node d, where C (i) and
C (d) are the community sets that nodes i and d belong to, re-
spectively. Since each node in CROP may belong to several
communities, Ri (ρ) represents the highest community rel-
evance among all possible community relevances between

the communities of node i (i.e., C (i)) and the communities
of destination node d of packet ρ (i.e., C (d)). Node i then
decides whether to send the packets ρ from its buffer to node
j according to the following rules.

• Case 1: node i immediately sends all of the packets
whose destination is node j in its buffer to node j.
Then, for the remaining packet ρ, we have:
• Case 2

(
Ri (ρ) < Rj (ρ)

)
: node j has a higher relevance to

packet ρ than node i. Therefore, node i sends packet ρ to
node j.
• Case 3

(
Ri (ρ) = Rj (ρ)

)
: nodes i and j have the same rel-

evance to packet ρ. In this case, the number of neighbors
of node i and node j are compared. If the degree of node j
is larger than node i, then node i sends packet ρ to node j.
Otherwise, ρ remains in the buffer of node i. This study
defines a node u as a neighbor of node i if the contact
time between node u and node i is larger than t within last
period time T [20].
• Case 4

(
Ri (ρ) > Rj (ρ)

)
: because node i has a larger rele-

vance to packet ρ, it keeps packet ρ in its buffer.

This study supposes that node i can exchange all the pack-
ets in its buffer with node j when nodes i and j encounter
one another. Since the buffer space of each node is a re-
stricted resource, a packet received from another node may
cause buffer overflow. Hence, CROP also considers a simple
buffer management scheme to control buffer overflow.
2) Buffer Management: The buffer management scheme is
also designed based on the community-relevance metric.
When a buffer overflow occurs in node i, the packet ρ with
the smallest Ri (ρ) is removed from i’s buffer until the buffer
overflow disappear.

4.3 Distributed Community Relevance Computation

Since Sect. 4.1 computes community relevance in a central-
ized manner, this subsection describes a distributed cluster
based scheme to deduce community relevance using Eq. (1).
A cluster head CHa of community a is responsible for com-
puting the estimated community-relevance vector R′ (a) =[
r′0 (a) r′1 (a) . . . r′b (a) . . . r′k−1 (a)

]
1×k

, where r′b (a) is the
estimated community relevance from community a to com-
munity b. There are some cluster head selection algorithms
for DTNs [15], but the methods of selecting the best cluster
heads in DTNs are beyond the scope of this study.

In the beginning of the algorithm, all values of r′b (a) =
1 for a � b and r′b (a) = ∞ for a = b. Based on Eq. (1), the
following equation can be obtained:

R′ (a) =

⎛⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎝
∑

c∈N(a)

p′ (a, c) · (R′ (c)
)−1

⎞⎟⎟⎟⎟⎟⎟⎠ + D(a)

⎞⎟⎟⎟⎟⎟⎟⎠
−1

, (5)

where p′ (a, c) is the approximate transition probabil-
ities between community a and its neighbor commu-
nity c. X−1 =

[
(x1)−1 (x2)−1 . . . (xk)−1

]
is the inverse

function for vector X = [x1x2 . . . xk] , and D (a) =
[d0 (a) d1 (a) · · · db (a) · · · dk−1 (a)]1×k is the distance vector,
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where db (a) = 0 if a = b, otherwise db (a) = 1. From
Eq. (5), CHa can compute its community-relevance vector
based on the local information of its neighbor communities
only (i.e., without full knowledge of the community transi-
tion graph). Specifically, CHa needs further obtain 1) the
approximate transition probabilities of community a to all
its neighbor communities and 2) the estimated community-
relevance vectors of all its neighbor communities. CROP at-
taches these two information to the community contact mes-
sages.

Community contact messages are generated to obtain
community contact information. Each community contact
message m has a 4-tuple (src community, dst community,
dst relevance, TimeStamp). When node i has a contact with
node j with a contact time larger than a constant t within
the last time period T , node i generates a set of community
contact messages Mi j at current time ψ:

Mi j =
{(

u, v,R′ (b) , ψ
) | (u, v) ∈ ηi j

}
,

where ηi j = {(u, v) | u ∈ C (i) , v ∈ C ( j) , u � v}. Note that
since node i and node j could belong to multiple communi-
ties, multiple contact messages could be generated by a con-
tact between nodes i and j. When two nodes encounter one
another, they exchange the contact messages stored in their
buffers. For every T time slots, cluster head CHa computes
approximately p′ (a, c) = ω/Ω to compute R′ (a) based on
community contact messages χ it received. Where ω is the
number of the contact messages in χ which are from com-
munities a to c and Ω is the number of the contact messages
in χ whose src community is community a. After comput-
ing p′ (a, c), cluster head CHa updates the latest estimated
community-relevance vector R′new (a) based on the previous
estimated community-relevance vector R′old (a) and the cur-
rently received contact messages by the following weight
function:

R′new (a) = β · R′old (a) + (1 − β)

·
⎛⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎝
∑

c∈N′(a)

p′ (a, c) · (R′ (c)
)−1

⎞⎟⎟⎟⎟⎟⎟⎠+D(a)

⎞⎟⎟⎟⎟⎟⎟⎠
−1

(6)

where β is the weight that user predefined parameter (we
use β = 0.5 in our experiments), R′ (c) is the latest estimated
community-relevance vector of community c attached to the
contact messages. Then, the latest R′new (a) is sent through
the DTN. Upon receiving the R′new (a), a node belonging to
community a updates its local relevance vector R′ (a) to be-
come the latest R′new (a). To let a contact message have an
opportunity to be computed at least once by cluster heads,
all contact messages in Mi j generated at time ψ must expire
at time ψ + T. To avoid generating too many community
contact messages, the time interval to generate two consec-
utive community contact message sets for the contact be-
tween nodes i and j must exceed Δ time slots. Specially, if
Mi j is generated at time ψ, then the next time to generate
Mi j must be after ψ + Δ.

When nodes i and j encounter each other, they ex-
change their community-relevance vectors. Based on the

received relevance vectors from node j, node i can compute
the relevance costs for all of the packets in its buffer to node
j. Node i then sends the packets in its buffer to node j, when
node j has higher relevance costs to those packets than node
i. In the same way, node j sends the packets in its buffer
to node i, when node i has higher relevance costs to those
packets.

5. Protocol Analysis

This section analyzes the maximum throughputs of the two
routing protocols, BubbleRap and CROP. We formulate the
maximum throughput as the maximum multi-commodity
over a contact graph. To compute the maximum multi-
commodity flow for both protocols, we first transform a
contact graph into the corresponding color graphs for both
BubbleRap and CROP. Section 5.1 introduces the construc-
tion of color graphs. Each community is assigned a unique
color and each node in the same community has the same
color in the color graph. Additionally, each edge (i, j) con-
tains a color attribute set to represent which destination com-
munities of packets can be forwarded from nodes i to j
based on the BubbleRap and CROP forwarding rules, re-
spectively. Section 5.2 describes the modified maximum
multi-commodity flows over the color graphs. Section 5.3
proves that there always exists a routing path between any
two communities in CROP, but not the case in BubbleRap.

5.1 Color Graph

A contact graph can be generated by accumulating all con-
tacts between any two nodes over time. Since this graph
does not consider the time sequences of contacts, a routing
path between a source and a destination in the contact graph
may not exist under realistic conditions. Hence, the pro-
posed analysis is an upper bound of the maximum through-
put within a period of time.

To simplify the analysis, we assume that each node in
the DTN belongs to a single community. It is easy to ap-
ply the proposed analysis scheme to a multiple-community
case. To measure the maximum throughputs of BubbleRap
and CROP, the contact graph is first transformed to the cor-
responding color graph. The term Gc = 〈V, E′〉 represents a
color graph, where V is all of the nodes in the network and
E′ is the directed edge set. Each node i in Gc is assigned
a color Ci to represent the community to which node i be-
longs. Each edge (i, j) in Gc is assigned a color set Λi j. The
term Λi j indicates which communities of destination nodes
of the packets can be forwarded from nodes i to j based on
different forwarding rules of routing protocols. For exam-
ple in Fig. 5, packets whose destination node belongs to one

Fig. 5 Color graph.
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of the communities Y , G, or B are allowed to be forwarded
via edge (u, v), and packets belonging to destination node
in community P are forwarded via edge (v, u). Both Bub-
bleRap and CROP have their own color graphs. Based on
their routing principles, the color set Λi j on each edge (i, j)
can be assigned in advance.

Assuming that γ denotes a set of contacts during a pe-
riod of time. For each contact (u, v) in γ, two directed edges
(u, v) and (v, u) are generated in the color graphs of both
BubbleRap and CROP. The color sets on (u, v) and (v, u) for
both BubbleRap and CROP are assigned by considering the
following two conditions:
1). Nodes u and v belong to the same community: All
packets are forwarded to the node with the larger number of
neighbors in the network for both BubbleRap and CROP.
If the number of neighbors of node v, denoted as dv, is
larger than the degree of node u, denoted as du, then both
CROP and BubbleRap set color attributes Λuv = C and
Λvu = {∅} on their corresponding color graphs, where C =
{c0, c1, . . . , ck−1} is the community set in the DTN. Other-
wise, both CROP and BubbleRap set Λvu = C and Λuv = {∅}
on their corresponding color graphs.
2). Nodes u and v belong to different communities: The
color attribute assignments for BubbleRap and CROP are
different in this case. The forwarding rule in BubbleRap
requires that all packets except the ones with the same desti-
nation community as the sender’s community are forwarded
to the node with higher degree. If dv > du, all packets in
node u except those with destinations in community Cu are
forwarded from u to v. Therefore, BubbleRap sets Λuv =

C − {Cu} and Λvu = {Cu} in its color graph. Otherwise, Bub-
bleRap setsΛuv = {Cv} andΛvu =C−{Cv}. In CROP, packets
are forwarded to the node with higher community relevance
to the packet destination community. Thus, CROP sets in its
color graph:{

Λuv = {b |b ∈ C,R (Cu, b) < R (Cv, b) }
Λvu = {b |b ∈ C,R (Cu, b) ≥ R (Cv, b) }

5.2 Modified Multi-Commodity Flow in a Color Graph

This study formulates throughput as a modified maximum
multi-commodity flow problem in a color graph. A com-
modity set M is assigned in the beginning, where the source-
destination pair of each commodity is randomly selected
among the DTN nodes. For each commodity m ∈ M, nodes
m+ and m− represent the source and destination nodes of
commodity m, respectively. C (m−) represents the commu-
nity of the destination node of commodity m. For each com-
munity c ∈ C, M (c) denotes the set of commodities with
destination nodes in community c. In the color graph, all
flows of commodity m are allowed to travel on the edge
whose color set contains the destination community of com-
modity m. Hence, for each commodity m ∈ M and each
node i, only the incoming and outgoing edges in node i,
which can carry commodity m, are considered. Here, E+i (m)

=
{
(i, j) | (i, j) ∈ E′,C (m−) ∈ Λi j

}
represents the outgoing

Table 1 Notation table of multi-commodity flow in the color graph.

edge set of node i which can carry commodity m, and E−i (m)

=
{
( j, i) | ( j, i) ∈ E′,C (m−) ∈ Λ ji

}
represents the incoming

edge set of node i which can carry commodity m. Li j is
the restricted capacity on edge (i, j), which represents the
number of contacts between nodes i and j. To compute the
maximum multi-commodity flow in the color graph, a vari-
able Xm

i, j represents the total flows of commodity m ∈ M on
edge(i, j) , where Xm

i, j = 0, 1, . . . , Li j. Table 1 lists all of the
notations used in this study. The linear-programming equa-
tions of the modified multi-commodity flow are introduced
as follows.
Objective Function

max

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑
m∈M

∑
(m+, j)∈E+

m+
(m)

(
xm

m+, j

)⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (7)

Equation (7) demonstrates the main objective function that
maximizes the sum of outgoing flows of the commodities
from their corresponding source nodes.
Constraints:∑
(i, j)∈E+i (m)

xm
i, j−
∑

( j,i)∈E−i (m)

xm
j,i = 0 ∀m ∈ M, i ∈ V − {m+,m−} (8)

Equation (8) demonstrates the flow conservation constraints
on nodes. Except for the source node and the destination
node of commodity m, the sum of incoming flows of com-
modity m in node i is equal to the sum of outgoing flows of
commodity m in node i.∑

c∈Λi j

∑
m∈M(c)

xm
i, j ≤ Li, j ∀ (i, j) ∈ E (9)

Equation (9) demonstrates the capacity constraints on each
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edge. The sum of flows on each edge (i, j) must be less or
equal to the capacity of edge (i, j).∑

( j,m+)∈E−
m+

(m)

xm
j,m+ = 0 ∀m ∈ M (10)

∑
(m−, j)∈E+

m− (m)

xm
m−, j = 0 ∀m ∈ M (11)

Equations (10) and (11) demonstrate the constraints on
source nodes and destination nodes. For the source node
m+ of commodity m, there is no incoming flow of commod-
ity m on node m+. Similarity, there is no outgoing flow of
commodity m on destination node m−.

Integer programming analysis is time consuming. The
computation time of this analysis may increase dramatically
when the number of nodes increases. We can use the La-
grangian relaxation method to obtain an approximate result.
However, it is beyond the scope of this paper.

5.3 Analysis Results

In this subsection, we obtain the maximum multi-
commodity flows in the color graphs of BubbleRap and
CROP. Since social graph has the small-word behavior [30],
we assume that this social graph can govern the contact
of two nodes over time. Hence, we use the CAVE model
[19] (i.e., a small-world social graph) to generate synthetic
contacts in the contact graph. Then, a corresponding color
graph can be derived from the contact graph for both Bub-
bleRap and CROP.

The CAVE model is a social network comprising N
nodes which are grouped in cliques (caves) of size g (i.e.,
the number of the nodes in each clique). Two nodes i and j
in the same cave n are categorized as being in the same com-
munity Cn. Thus, there are k = 
N/g� distinct communities
(caves). Figure 6(a) illustrates the CAVE model for N = 16
and g = 4. In this case, nodes i and j belong to C1. To
create the small-world property in the CAVE model, some
shortcuts are created via the rewiring of some edges, where
each edge has probability p of being rewired†. Fig. 6(b) il-
lustrates the CAVE model after rewiring 4 edges. Nodes i
and j are friends if there is an edge (i, j) in the CAVE model.
Otherwise, they are strangers. In this simulation, each node
generates 10 contacts to form a contact graph. Node i has

Fig. 6 Caveman model.

†Probabilistically, there are N · (k − 1) · p rewired edges in the
CAVE model.

probability q of having a contact with its friends, and has
probability (1 − q) of having a contact with its strangers.
Parameter q is equal to 0.5 in each simulation. Each sim-
ulation involves 10 commodities, and the source and des-
tination nodes of commodities are randomly selected. The
parameter ranges are as follows: N is set from 100 to 200
(N = 100 by default), g is set from 10 to 25 (g = 10 by de-
fault), and p is set from 0.1 to 0.25 (p = 0.1 by default). In
each simulation, only one parameter functions as a variable,
while the other parameters are set at their default values.

To compute the community-relevance values, CROP
generates a community graph based on the contact graph
generated from the CAVE model with rewired edge. If
nodes i and j, belonging to different communities, have a
contact to each other, then two contacts

(
Ci,C j

)
and
(
C j,Ci

)
are generated in the community graph, where Ci and C j

are the communities nodes i and j belong to, respectively.
Both BubbleRap and CROP require the nodes’ neighbor in-
formation. According to the contact generation rule in this
simulation, a node has more chance to have contact with
its friend. Therefore, the simulations in this study use the
number of friends of node i in the CAVE model as the num-
ber of neighbors of node i for both routing protocols. Af-
ter computing the community relevance between any two
communities and obtaining the neighbor information of the
nodes, BubbleRap and CROP can each generate their corre-
sponding color graphs based on the principles described in
Sect. 5.1.

Figure 7(a) compares the throughputs (i.e., maxi-
mum multi-commodity flows) under different numbers N of
nodes. The CROP throughput is greater than that of Bub-
bleRap. Specifically, CROP achieves a 60–200% improve-
ment in throughput compared to BubbleRap. Since the di-
ameter of the network increases as N increases, it takes more
hops for a commodity to reach its destination. It is easier for
a commodity to stuck in the intermediate node with the high-
est centrality metric among its neighborhood for both Bub-
bleRap and CROP. Hence, the number of feasible paths for a
commodity should decrease for both routing protocols. Un-
der this circumstance, the throughputs of both BubbleRap
and CROP decrease as N increases. Since BubbleRap uses a
single centrality metric while CROP supports multiple cen-
trality metrics for different destination communities in mes-
sage delivery, the decreasing feasible paths should be less
severe in CROP compared to BubbleRap. Thus, the dif-
ference between the throughputs of these two protocols in-
creases as N increases. For number of nodes N=175, CROP
maintains almost the same throughput as in N=125, this may
be due to our multiple-centrality metric design that can help
to spread traffic loads more widely to keep a good through-
put. Figure 7(b) compares the throughputs under different
sizes g of nodes per community. CROP has approximately
50–60% throughput improvement over BubbleRap. As g
increases, the number of communities decreases. Thus, the
throughputs of both routing protocols slightly decrease, be-
cause the decreasing number of communities affects the ac-
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Fig. 7 The throughput comparison between BubbleRap and CROP under different network environment.

curacy of the delivery metric on both protocols. Figure 7(c)
compares the throughputs under different rewired probabil-
ity p values on each edge. CROP achieves approximately
50–60% greater throughput than BubbleRap. For p = 0.15,
both CROP and BubbleRap have the largest throughput
When p = 0.2 and p = 0.25, the throughputs slightly decease
for both protocols. This phenomenon may be affected by
the number of intra-community and inter-community con-
nections. As p increases, the inter-community connections
increase but intra-community connections decrease. Then, it
may increase the throughput for inter-community traffic, but
decrease the throughput for intra-community traffic. These
two factors may cause the total throughput to fluctuate.

5.4 CROP Protocol Property Analysis

This study shows that there is always a path between any two
communities in the CROP protocol. The following theorems
prove this statement.

Theorem 1. For any community i and destination commu-
nity b where i � b, there exists a neighbor community
j ∈ N (i) of community i such that the expected random
walk distance h ( j, b) between community j and destination
community b is smaller than h (i, b) between the communi-
ties i and b.

Proof. This theorem can be proven by contradiction. Sup-
pose thath (i, b) is the minimum among all of its neigh-
bor communities: h (i, b) ≤ min

j∈N(i)
(h ( j, b)) . Since h (i, b) =∑

j∈N(i) pi j · h ( j, b) + 1, we can derive:

h (i, b)=
∑
j∈N(i)

pi j · h ( j, b)+1 ≥
∑
j∈N(i)

pi j · h (i, b)+1 (12)

Since the sum of all transition probabilities from community
i to its neighbor communities equals 1, the inequality (13)
can be derived:

h (i, b) =
∑
j∈N(i)

pi j · h ( j, b) + 1 ≥ h (i, b) + 1 (13)

Since h (i, b) ≥ h (i, b) + 1 is never true, the assumption

that h (i, b) ≤ min
j∈N(i)

(h ( j, b)) is contradicted. Therefore,

there exists at least one neighbor community j such that
h ( j, b) < h (i, b). �

Corollary 1. For any community i and destination com-
munity b where i � b, there exists a neighbor community
j ∈ N (i) such that R ( j, b) > R (i, b).

Proof. Since community relevance R (i, b) is assigned
(h ( j, b))−1, the corollary 1 can be derived directly from the
result of Theorem 1.

Theorem 2. Under the condition of Corollary1, there ex-
ists a path from any community i to a destination community
b in the CROP protocol.

Proof. This theorem can be proven by mathematical in-
duction. First, sort all community relevances R (i, b) to a
destination community b for i ∈ C = {c1, c2, . . . , ck} in de-
creasing order, where C is the community set in the DTN.
The term 〈 j1 = b, j2, . . . , jk〉 represents this decreasing or-
der, where:

R ( j1, b) > R ( j2, b) ≥ R ( j3, b) . . . ≥ R ( jk, b) .

Let P (n) denote a path between communities j and b for
j ∈ { j1, j2, . . . , jn}. For n = 2, there are two communities
j1 = b and j2. By Corollary 1, there exists a neighbor com-
munity of j2 whose community relevance is larger than the
one of community j2. Therefore, there must be a path from
community j2 to community j1 = b. Hence, P (2) is correct.
Suppose that P (m) is correct. The correctness of P (m + 1)
can be shown as follows. By Corollary 1, one neighbor
community v of community jm+1 has a higher community
relevance to destination community b than community jm+1.
Therefore, the packet can be forwarded from jm+1 to v in
CROP. Since v is in { j1, j2, . . . , jm}, there is a routing path
Pv→b from community v to destination community b, while
P (m) holds. Therefore, there also exists a path from com-
munity jm+1 to destination community b (i.e., Pjm+1→v→b).
Hence, P (m + 1) also holds. �

The combination of Theorems 1 and 2, shows that a
routing path exists between any two communities in the
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Fig. 8 An example of BubbleRap showing that a routing path may not
always exist.

CROP protocol. However, a path between any two commu-
nities may not exist in BubbleRap. For example, in Fig. 8,
suppose that there are total of three communities in a DTN.
There are several contacts from C1 to C2 and C2 to C3 in
the community graph and there are packets being gener-
ated in C1 destined to C3. The routing path from C1 to C2

does not exist in BubbleRap if all the nodes in C1 have more
neighbors than the nodes in C2. That is because packets in
BubbleRap are only forwarded to nodes of higher degrees.
Therefore, there is no routing path from C1 to C3 in this
case. On the other hand, CROP provides multiple centrality
metrics for different destination communities. Since com-
munity C1 has only one neighbor community C2, the rank
of relevance to destination community C3 is C3 > C2 > C1

according to Corollary 1. For the same reason, the rank of
the relevance to destination community C1 is C1 > C2 > C3.
Hence, there always exists a routing path from C1 to C3 or
from C3 to C1.

6. Performance Evaluation

This study further evaluates and compares the performance
of CROP with two other social based forwarding proto-
cols: SimBet and BubbleRap using real mobility trace. Sec-
tion 6.1 introduces the simulation settings. Section 6.2
shows simulation results of CROP for a limited buffer size
on each node, where each node only belongs to a single
community. Section 6.3 shows simulation results of CROP
for a limited buffer size on each node, where each node can
belong to multiple communities.

6.1 Simulation Settings

This subsection compares CROP with two well-known so-
cial forwarding algorithms, namely, SimBet [13] and Bub-
bleRap [20]. We also measure the performances of the cen-
tralized CROP (C CROP) and distributed CROP (D CROP)
algorithms. The simulation settings are as follows. Each
node generates ρ packets every hour, and the destination
node of a packet is randomly selected. The range of ρ is
set from 1 to 64 (ρ = 10 by default). To measure the effects
of buffer sizes in different social forwarding protocols, each
node has a buffer of b packets, where b ranges from 500 to
4000 (b = 1000 by default). For D CROP, if a contact has
an accumulated time larger than 100 sec over the last 1hr,
then a contact message is generated in the network. For a
cluster head of a community, the time interval to update the
community-relevance vector is set to 2 hrs. This study mea-
sures three performance metrics: delivery ratio, delay, and
drop rate.

• Delivery ratio: The proportion of successfully deliv-
ered packets to all packets sent in the network.
• Delay: The amount of time (i.e., in hours) it takes a

successfully delivered packet to be forwarded from its
source node to its destination node.
• Drop rate: The proportion of dropped packets to all

packets sent in the network due to buffer overflow.

Different from the throughput analysis results in
Sect. 5.3, the simulation results in this section focus on fol-
lowing perspectives. Firstly, the simulation results evalu-
ate performance of the social based routing in DTNs under
real mobility traces, whereas the analysis results use syn-
thetic data. Secondly, the simulation results consider the
occurrence time of contacts in DTNs, whereas the analysis
results do not consider this factor. Thirdly, simulation re-
sults consider the buffer size on a node as a limited factor
but the transmission ability is an infinity factor (i.e., a node
can transmit all the packets in its buffer to other nodes when
they are in contact with each other). On the other hand, the
analysis results consider the transmission ability as a lim-
ited factor but the buffer size is an infinity factor on a node.
Although throughput analysis is performed in a more ideal
condition, analysis result can be used for forecasting the rel-
ative performance between BubbleRap and CROP in terms
of delivery ratio and drop rate.

6.2 Node Belonging to Single-Community Case

This subsection discusses the protocols’ performances un-
der the condition that a node in the network belongs to a
single community. The simulation for the single-community
case is set up using the real mobility trace (INFO’05) [31]
available in [32]. There are a total of 41 nodes in INFO’05.
Since there is no community information in INFO’05, pre-
processing was performed in advance using Newman’s fast
algorithm [33] to assign a community to each node. New-
man’s fast algorithm divides the social graph’s nodes into
communities based on the group of nodes within a commu-
nity that have more dense connections. The algorithm tries
to test a particular grouping using a quality or modularity
index. Since the number of grouping can grow exponen-
tially, a desicion tree is constructed to minimize the search-
ing space. Newman’s fast algorithm categorizes the nodes
in INFO’05 into 6 communities.

Figure 9 shows the results of different routing proto-
cols under different buffer sizes b on each node. The de-
livery ratio of CROP (either C CROP or D CROP) outper-
forms those of BubbleRap and SimBet (Fig. 9(a)). D CROP
achieves a 3–45% delivery improvement compared to Bub-
bleRap and SimBet. The delays of all routing protocols
increase as b increases (Fig. 9(b)), while the drop rates of
all the routing protocols decrease as b increases (Fig. 9(c)).
Since CROP has higher delivery ratio, the packets with
longer delay have a higher chance of reaching their desti-
nations. Therefore, CROP has a longer average delay. Since
CROP designs the community relevance based on different
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Fig. 9 Performances of routing protocols under different buffer sizes for each node belonging to a
single community.

Fig. 10 Performances of routing protocols under different packet load for each node belonging to a
single community.

centrality metrics for different communities, its packet drop
rate results are the smallest of all three protocols. Speici-
fally, the drop rate is approximately 80% less than those of
BubbleRap or SimBet. The perfomrance results of C CROP
and D CROP are almost the same in delivery ratio, delay,
and drop rate.

Figure 10 shows the results of different routing pro-
tocols under different traffic loads. The delivery ratio de-
creases as the traffic load increases in all routing protocols
(Fig. 10(a)). CROP achieves a 30% average delivery ratio
improvement compared to the other routing protocols. The
delays in all protocols decrease as the traffic load increases
(Fig. 10(b)). Since each node is equipped with a fixed-size
buffer, the occurrence of buffer overflow increases as traf-
fic load increases (Fig. 10(c)). Therefore, only short-delay
packets can survive in a heavy load environment. In this
case, the average delay decreases as the traffic load increases
because long-delay packets are dropped more often. CROP
provides different centrality metrics for different communi-
ties, leading to an even traffic load distribution within the
network. This is why CROP achieves a 30–90% improve-
ment in the drop rate. Similar as Fig. 9, all of the per-
formance results of C CROP and D CROP are almost the
same.

In order to understand the impact of variant central-
ity values to the traffic distribution on a small number of
nodes. Figure 11 shows the percentage of the traffic load in
the DTN distributed over the top-k loaded nodes for b = 500
and ρ = 10, where k = 1, 2 . . . , 11. The top-k loaded nodes

Fig. 11 Traffic load of top k loaded nodes.

in CROP (either C CROP or D CROP) have lower total traf-
fic load than the other two social based routing algorithms.
When k = 11, CROP has 40% of the traffic load centralized
on those top 11 loaded nodes, while BubbleRap and Sim-
Bet have about 50% of traffic load centralized on those 11
nodes. This result indicates that the multi-centrality metric
design in CROP can help to distribute the traffic load in the
DTN more fairly.

6.3 Node Belonging to Multiple-Community Case

The simulation is set up using the real mobility trace
INFO’06 [31]. There are total 98 nodes in INFO’06. Since
the INFO’06 trace does not contain the community informa-
tion, preprocessing was performed. This study uses the α-
clique community detection algorithm over a contact graph
to assign multiple communities to each node. The authors
of [23] defined the α-clique community as a union of all α-
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Fig. 12 Performances of routing protocols under different buffer size for each node belonging to mul-
tiple communities.

Fig. 13 Performance of routing protocols under different traffic load for each node belonging to mul-
tiple communities.

cliques (complete sub-graphs of size α) in a network that can
reach each other via a sequence of adjacent α-cliques. Two
α-cliques are said to be adjacent if they share α − 1 nodes.
This simulation does not use all the trace’s contacts for com-
munity detection. Only a contact between two nodes whose
accumulated contact time is larger than 40000 seconds is
taken into consideration. If a node does not belong to any
community, then a community is created for that node. The
simulations set α = 3 and detected 37 communities using
the α-clique community detection algorithm.

Figure 12 compares the performances of the three so-
cial forwarding protocols under different buffer sizes for
each node (i.e., different b values). The delivery ratios of
all routing protocols increase as b increases (Fig. 12(a)).
D CROP outperforms the other social forwarding proto-
cols by approximately 9–52% and 36–66% delivery ratio
improvement compared to BubbleRap and SimBet respec-
tively. D CROP alomst has the same delivery ratio com-
pared to C CROP. The average delays of all routing pro-
tocols increase with increasing buffer size b (Fig. 12(b)).
This is because long-delay packets have a better chance of
reaching their destinations with larger buffer size b. As ex-
pected, the drop rates decrease with increasing buffer size
b (Fig. 12(c)). The drop rates of C CROP and D CROP
are smaller than those of Bubble Rap and SimBet. The
differences in the drop rates between CROP (C CROP or
D CROP) and other social based routings are 10–30% on
average. This is because CROP has different community-
relevance values for different communities. On the other
hand, BubbleRap and SimBet only consider a single cen-

Table 2 Successful rate under different β.

trality metric. Thus, CROP can distribute the traffic load in
a balanced manner within the network, unlike BubbleRap
and SimBet.

Figure 13 compares the performances of all routing
protocols under different traffic loads (i.e., different ρ val-
ues). The delivery ratios of all routing protocols decrease
as the traffic load increases (Fig. 13(a)). D CROP has a de-
livery improvement of approximately 2–45% and 20–63%
compared to BubbleRap, and SimBet, respectively. The
delivery ratio of D CROP is almost the same as that of
C CROP. The average delays decrease as the traffic load in-
creases (Fig. 13(b)). This is because the drop rate increases
(Fig. 13(c)), and long-delay packets have less opportunity
to reach their destination nodes. Thus, the average delay
of packets that actually reach their destinations is less under
these circumstances. The drop rates of all protocols increase
with higher traffic loads (Fig. 13(c)). The difference in the
drop rate between CROP and other routing protocols also in-
creases as the traffic load increases. This is because CROP
uses a multiple-centrality metric to forward packets.

Table 2 evaluates the successful rates of D CROP with
different weighted sum parameter β in Eq. (6) for b = 1000
and ρ = 10. The results show that β does not affect the suc-
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cessful rates. This may be because the community relevance
between two communities over time does not change very
much.

7. Conclusion

Researchers have developed delay tolerant networks
(DTNs) to address the problem of intermitent end-to-end
network connectivity. This study computes the community-
relevance metric R (a, b) between any two communities a
and b. The term R (a, b) is formulated as the inverse of the
random walk distance from a to b over the community tran-
sition graph. This study proposes a routing scheme, called
CROP, based on the community-relevance metric. When
two nodes encounter each other, CROP forwards a packet to
the node that has a higher community relevance to the desti-
nation community of that packet. Since one community may
have a higher relevance to one community but have a lower
relevance to another community, different centrality metrics
can be supported for different communities. The through-
put analsyis is formulated as a modified multi-commodity
flow problem. The results show that CROP achieves a 50%
throughput improvement compared to BubbleRap. A se-
ries of proofs show that the path-existence property between
any two communities always holds in CROP, but this prop-
erty may not hold in other routing schemes. Simulation re-
sults also show that CROP enjoys at least a 30% delivery
ratio improvement compared to other social based routing
schemes. Since CROP considers multiple centrality metrics
when forwarding packets, CROP achieves a smaller packet
drop rate than other social based routing schemes. Since a
communtiy may have some sub-communities, hierarchical
social community structures may exist in the networks. Our
future research on this topic includes computing community
relevance over hierarchical social communities.
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