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An Improved RIP-Based Performance Guarantee
for Sparse Signal Recovery via Orthogonal

Matching Pursuit
Ling-Hua Chang and Jwo-Yuh Wu

Abstract— A sufficient condition reported very recently for
perfect recovery of a K -sparse vector via orthogonal matching
pursuit (OMP) in K iterations (when there is no noise) is that
the restricted isometry constant (RIC) of the sensing matrix
satisfies δK+1 < (1/

√
K + 1). In the noisy case, this RIC upper

bound along with a requirement on the minimal signal entry
magnitude is known to guarantee exact support identification.
In this paper, we show that, in the presence of noise, a relaxed
RIC upper bound δK+1 < (

√
4K + 1 − 1/2K) together with

a relaxed requirement on the minimal signal entry magnitude
suffices to achieve perfect support identification using OMP.
In the noiseless case, our result asserts that such a relaxed RIC
upper bound can ensure exact support recovery in K iterations:
this narrows the gap between the so far best known bound
δK+1 < (1/

√
K + 1) and the ultimate performance guarantee

δK+1 = (1/
√

K). Our approach relies on a newly established
near orthogonality condition, characterized via the achievable
angles between two orthogonal sparse vectors upon compression,
and, thus, better exploits the knowledge about the geometry of
the compressed space. The proposed near orthogonality condition
can be also exploited to derive less restricted sufficient conditions
for signal reconstruction in two other compressive sensing prob-
lems, namely, compressive domain interference cancellation and
support identification via the subspace pursuit algorithm.

Index Terms— Compressive sensing, interference cancellation,
orthogonal matching pursuit, restricted isometry property (RIP),
restricted isometry constant (RIC), subspace pursuit.

I. INTRODUCTION

A. Overview

ORTHOGONAL matching pursuit (OMP) [1]–[4] is
a popular greedy algorithm capable of recovering

a K -sparse signal x ∈ RN based on a set of incomplete
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TABLE I

OMP ALGORITHM. IN STEP 3.2, ei DENOTES THE i TH UNIT STANDARD

VECTOR OF A SUITABLE DIMENSION; IN STEP 3.4, THE ENTRIES OF

q
� j ∈ R j ARE THOSE OF THE UPDATED q CORRESPONDING

TO THE INDEX SET � j

measurements y ∈ RM obeying the linear model

y = �x + w, (1.1)

where � ∈ RM×N is the sensing matrix with N � M(� K ),
and w ∈ RM is the measurement noise. Basically, OMP
(outlined in Table I) is an iterative algorithm, whereby in each
iteration an index of the signal support is identified. When
noise is absent, i.e., w = 0 in (1.1), the study of sufficient
conditions for perfect signal recovery using OMP recently
received considerable attention in the area of compressive
sensing [2]–[4]. Various reports on the performance guarantee
of OMP have been available, all of which are specified
in terms of either the restricted isometry property (RIP)
or the mutual coherence of the sensing matrix � [4]–[11].
RIP-based analysis of an OMP-like algorithm, in which the
square-error metric for support identification in each iteration
is replaced by a general convex objective function, is con-
sidered in [12]. Notably, by allowing more than K iterations
in OMP, the RIP-based recovery condition reported in [12] is
similar to that in the �1-minimization algorithm [3] for both the
noiseless and noisy cases; in addition, the recovery condition
under noise does not rely on the magnitude of the signal
coefficients. Reconstruction of a class of structured sparse
signals modeled by trigonometric polynomials via OMP is
addressed in [13] and [14]. A comprehensive review of greedy
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algorithms for sparse signal recovery, as well as the related
analytical performance guarantees, can be found in [3, Ch. 8].

B. RIP-Based Performance Guarantee: Existing Results

The sensing matrix � is said to satisfy RIP of order K
[15]–[17] if there exists 0 < δK < 1 such that

(1 − δK ) ‖s‖2
2 ≤ ‖�s‖2

2 ≤ (1 + δK ) ‖s‖2
2 (1.2)

holds for all K -sparse s. The constant δK is the so-called
restricted isometry constant (RIC) of the sensing matrix �.
Under the noiseless environment, i.e. w = 0 in (1.1),
Davenport and Wakin [5] showed that the OMP algorithm
can exactly identify the support of a K -sparse signal in K
iterations if � satisfies RIP of order K + 1 with RIC δK+1 <
1/(3

√
K ). Hung and Zhu [6] then derived the less restricted

sufficient condition δK+1 < 1/(1+√
2K ). As the latest report,

Mo and Shen [7], and Wang and Shim [8], both proved that
the upper bound on δK+1 can be further relaxed to

δK+1 <
1√

K + 1
. (1.3)

In [7] and [8], examples are also given to illustrate the failure
of exact support identification in K iterations in case that

δK+1 = 1√
K

. (1.4)

Such results also verified the conjecture made by
Dai and Milenkovic in [9], viz., values of δK+1 no less than
1/

√
K may result in the failure of perfect support recovery.

RIP-based performance analysis for OMP in the noisy case
has also been considered in [18] and [19]. Specifically, to
guarantee exact support identification under measurement
noise, sufficient conditions specified in terms of the RIC
bound (1.3) along with certain requirements on the minimal
signal entry magnitude have been derived in [18].

C. Paper Contribution

In this paper, we derive improved performance guarantees
for perfect support recovery via OMP. Under either the
�2 - or �∞ -bounded noise model, we show that exact support
identification is guaranteed if the RIC δK+1 satisfies

δK+1 <

√
4K + 1 − 1

2K
, (1.5)

and the minimal amplitude of the signal entries exceeds
a certain lower bound. Since 1√

K+1
<

√
4K+1−1

2K and the
derived lower bound for the signal entry amplitudes for either
noise model is smaller than that given in [18], our sufficient
conditions are less conservative. In the noiseless case, our
result asserts that OMP can perfectly identify the support in
K iterations if the RIC δK+1 satisfies (1.5). Since 1√

K+1
<√

4K+1−1
2K < 1√

K
, the proposed bound (1.5) narrows the

gap between the so far best known bound (1.3) and the
ultimate performance guarantee (1.4). Our proofs exploit a
newly established near-orthogonality property, which is char-
acterized via achievable angles between two orthogonal sparse
vectors upon compression. Hence, the improved performance

guarantee benefits from more explicit geometric insights of
compressed sparse vectors under the RIP of the sensing matrix.
The developed near-orthogonality condition as well as the
proof techniques has a far-reaching impact: it finds applica-
tions in RIP-based performance analyses in two other signal
reconstruction problems in compressive sensing. Specifically,

• Compressive-Domain Interference Cancellation via
Orthogonal Projection [20]–[24]: In this problem,
a central issue regarding the study of the signal
reconstruction performance upon interference removal
is to specify the RIC of the effective sensing matrix,
which is a product of an orthogonal projection matrix
and a random sensing matrix [20]–[24]. Based on the
developed analysis techniques, we derive a more accurate
estimate of the RIC of the effective sensing matrix as
compared to the previous works [20] and [23].

• Support Identification via Subspace Pursuit (SP) [9]: SP
is another popular greedy algorithm for sparse signal
recovery in compressive sensing [9], and RIP-based
performance guarantee for SP has been investigated
in [9] and [10]. By using the proposed approach (in
particular, the approximate orthogonality condition), we
show in this paper that, to guarantee perfect/stable signal
reconstruction via SP, the requirement on the RIC of the
sensing matrix � can be relaxed even further. Specifically,
assuming that the sensing matrix � satisfies RIP of order
3K , it is shown that δ3K ≤ 0.2412 suffices to guarantee
exact (stable, respectively) support identification via SP
in the noiseless (noisy, respectively) case. Our bound
thus improves the results in [9] and [10]: in the absence
of noise, the requirement on RIC reported in [9] is
δ3K < 0.165; when noise is present, the required bound
shown in [9] is δ3K < 0.083, and in [10] is then pushed
to δ3K < 0.139.

The organization of this paper is as follows. Section II derives
improved performance guarantees for OMP in both noisy and
noiseless cases. Section III further investigates the applica-
tions of the proposed proof techniques in the study of two
other signal reconstruction problems, namely, compressive-
domain interference cancellation and signal recovery via SP.
For the former, a more accurate estimate of the RIC of the
effective sensing matrix upon interference removal is derived;
for the later, less conservative sufficient conditions for signal
reconstruction are developed. Some concluding remarks are
then drawn in Section IV. To ease reading, most of the
technical proof is relegated to the appendix.

Notation List: For S ⊂ {1, . . . , N} with cardinality |S|,
we use �S ∈ RM×|S| to denote the matrix obtained from
� ∈ RM×N by retaining its columns indexed by the subset
S. For u ∈ RN with (u)i as the i th entry, uS ∈ R|S| denotes
the vector whose entries consist of those of u indexed by S;
we write ũS ∈ RN to be the zero-padded version of uS such
that (ũS)i = (u)i for i ∈ S and (ũS)i = 0 otherwise (thus, ũS

is |S|-sparse with support S). Throughout the paper, ei ∈ RN

denotes the i th unit standard vector, I denotes the identity
matrix of a proper dimension, 0 represents the zero vector of
a proper dimension, and ()∗ stands for the transpose operation.
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R(M) denotes the column space of the matrix M. ‖·‖2
and ‖·‖∞ denote, respectively, the vector two-norm and
sup-norm [25]; 〈u, v〉 represents the standard inner product
between the two vectors u and v.

II. IMPROVED PERFORMANCE GUARANTEE FOR OMP

This section presents the derived improved RIP-based per-
formance guarantees for OMP in both the noiseless and noisy
cases. In the sequel, we denote the support of the desired
K -sparse vector x by T , with cardinality |T | = K . In addition,
as in various previous works [8], [10], and [11], it is assumed
that all columns of the sensing matrix � are normalized to be
of unit-norm. Section II-A first shows the near-orthogonality
property, which is the foundation for our analyses. Section II-B
then presents the main results. Finally, some discussions are
given in Section II-C.

A. Near Orthogonality Property

The development of the improved performance guarantees
relies crucially on the next lemma, which characterizes the
achievable angle between two compressed orthogonal sparse
vectors in terms of the RIC of the sensing matrix.

Lemma 2.1 (Near-Orthogonality Property): Let u and v be
two orthogonal sparse vectors with supports Tu and Tv fulfill-
ing |Tu ∪ Tv | ≤ K . Suppose that the sensing matrix � satisfies
RIP of order K with RIC δK . Then we have

|cos � (�u,�v)| ≤ δK , (2.1)

where � (�u,�v) denotes the angle between �u and �v.

Proof: See Appendix A. �
Lemma 2.1 asserts (in terms of the achievable angle) that, for
a small δK , the compressed vectors �u and �v are nearly
orthogonal as long as u and v are orthogonal. Notably, under
the same assumptions made as in Lemma 2.1 and based
on a plane-geometry analysis, the following upper bound on
|cos � (�u,�v)| has been derived in [24, Corollary 5.3]:

|cos � (�u,�v)| ≤ δK√
1 − δ2

K

. (2.2)

It can be seen that the proposed bound (2.1), which exploits
a geometric interpretation of the two-norm condition number
(details referred to Appendix A), improves the result (2.2).
An alternative characterization of orthogonality is via the inner
product between �u and �v [17]; more precisely, for u and v
with non-overlapping supports (thus, u and v are orthogonal),
it has been shown in [17] that

|〈�u,�v〉| ≤ δK ‖u‖2 · ‖v‖2 . (2.3)

It is worthy of noting that (2.3) in conjunction with the RIP
condition (1.2) can be directly used to derive an upper bound
of |cos � (�u,�v)|, as can be seen by

|cos � (�u,�v)| = |〈�u,�v〉|
‖�u‖2 · ‖�v‖2

(a)≤ δK ‖u‖2 · ‖v‖2

‖�u‖2 · ‖�v‖2

(b)≤ δK ‖u‖2 · ‖v‖2

(1 − δK ) ‖u‖2 · ‖v‖2

= δK

1 − δK
, (2.4)

where (a) follows from (2.3) and (b) holds due to the RIP (1.2).
The upper bound (2.4) derived by using the simple algebraic
approach shown above is even worse than (2.2); this is not
unexpected since algebraic analyses using RIP are known
to yield the worst-case estimate [26], [27]. To summarize,
Lemma 2.1 asserts that, when u and v are orthogonal, the
measure of orthogonality between �u and �v in terms of the
achievable angle � (�u,�v) can be improved as compared to
the previous results given by (2.2) and (2.4). We would like
to mention that the “near orthogonality” condition (either in
the form of (2.1) or (2.3)) plays a fundamental role in the
study of the signal reconstruction performance in compressive
sensing [17], [21], [24]. Thanks to the improved bound (2.1),
less restricted sufficient conditions for signal reconstruction
via OMP can be obtained in the next subsection; the impacts
of (2.1) on other two signal reconstruction problems will be
studied in Section III.

B. Main Results

To guarantee exact support identification via OMP in the
presence of noise,1 sufficient conditions specified in terms of
the RIC δK+1 and certain lower bounds for the signal entry
amplitudes have been reported in [18], and are summarized
in the next proposition. Throughout this section, r j denotes
the residual vector in the j -th iteration of the OMP algorithm
(cf. Step 3.5 in Table I).

Proposition 2.2 [18]: Consider the signal model (1.1). Then
the following results hold.
(1). (�2-bounded noise) Under ‖w‖2 ≤ ε1, OMP with the

stopping criterion
∥∥r j

∥∥
2 ≤ ε1 can exactly identify the

support T of the K -sparse signal x if δK+1 < 1/
(
√

K + 1) and the minimum magnitude of the nonzero
entries of x satisfies

min
i∈T

|(x)i | >

(√
1 + δK+1 + 1

)
ε1

1 − δK+1 − √
K δK+1

. (2.5)

(2). (�∞-bounded noise) Under
∥∥�∗w

∥∥∞ ≤ ε2, OMP with
the stopping criterion

∥∥�∗r j
∥∥∞ ≤ ε2 can exactly

identify the support T of the K -sparse signal x if
δK+1 < 1/(

√
K + 1) and the minimum magnitude of

the nonzero entries of x satisfies

min
i∈T

|(x)i | >

(√
K + √

K
√

1 + δK+1

)
ε2

1 − δK+1 − √
K δK+1

. (2.6)

�
By exploiting the near-orthogonality condition established in
Lemma 2.1, less conservative sufficient conditions for exact
support identification via OMP with noise corruption are
obtained below. For this, we need the following two technical
lemmas.

Lemma 2.3: Under the same assumptions as in Lemma 2.1,
we have

|〈�u,�v〉| ≤ δK ‖�u‖2 · ‖�v‖2 . (2.7)

1In our study, we focus on OMP with a residual based stopping criterion, as
in [18]. Notably, there have been several different implementations of OMP,
e.g., by setting a fixed number of iterations to halt the algorithm, see [28] and
[29].
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Proof: The result follows from |〈�u,�v〉| = ‖�u‖2 ·
‖�v‖2 · |cos (�u,�v)| and using (2.1). �

Lemma 2.4: Let x be a K -sparse vector with support T .
Assume that the sensing matrix � ∈ RM×N satisfies
RIP of order K + 1 with RIC δK+1. Then

∥∥�∗
T �x

∥∥
2 ≥√

1 − δK+1 ‖�x‖2 ≥ (1 − δK+1) ‖x‖2, or equivalently,

∥∥�∗
T �T xT

∥∥
2 ≥ √

1 − δK+1 ‖�T xT ‖2

≥ (1 − δK+1) ‖xT ‖2 . (2.8)

Proof: See Appendix B. �
We note that the inequality

∥∥�∗
T �T xT

∥∥
2 ≥ (1 −

δK+1) ‖xT ‖2, which provides an ambient-domain lower
bound for

∥∥�∗
T �T xT

∥∥
2, has been derived in, see

[30, Proposition 3.1]. The significance of Lemma 2.4
lies in that a tighter lower bound for

∥∥�∗
T �T xT

∥∥
2 is provably

to be
√

1 − δK+1 ‖�T xT ‖2 (a compressed-domain bound).
Based on Lemmas 2.3 and 2.4, the main results of this section
are given in the next theorem.

Theorem 2.5: Consider the signal model (1.1). Then the
following results hold.

(1). (�2-bounded noise) Under ‖w‖2 ≤ ε1, OMP with the
stopping criterion

∥∥r j
∥∥

2 ≤ ε1 can exactly identify the
support T of the K -sparse signal x if the sensing matrix
� satisfies RIP of order K + 1 with RIC δK+1 fulfilling

δK+1 <

√
4K + 1 − 1

2K
, (2.9)

and the minimum magnitude of the nonzero entries of
x satisfies

min
i∈T

|(x)i |> (
√

1 + δK+1 + 1)ε1

1 − δK+1 − √
1 − δK+1

√
K δK+1

. (2.10)

(2). (�∞-bounded noise) Under
∥∥�∗w

∥∥∞ ≤ ε2, OMP with
the stopping criterion

∥∥�∗r j
∥∥∞ ≤ ε2 can exactly iden-

tify the support T of the K -sparse signal x if � satisfies
RIP of order K + 1 with RIC δK+1 fulfilling (2.9), and
the minimum magnitude of the nonzero elements of x
satisfies

min
i∈T

|(x)i | >
(
√

K + 1)ε2

1 − δK+1 − √
1 − δK+1

√
K δK+1

. (2.11)

Proof: See Appendix C. �
For either noise model, it can be readily checked that the
derived lower bound (i.e., (2.10) or (2.11)) is smaller than that
shown in [18] (i.e., (2.5) or (2.6)). Our results thus assert that,
to guarantee exact support identification via OMP in the noisy
environment, the requirements on the RIC and the strength of
the signal components can be further relaxed as compared to
that reported in [18]. It is worthy of noting that, in the noiseless
case, Theorem 2.5 leads to the following corollary.

Corollary 2.6: Consider the noiseless case, i.e., w = 0
in (1.1). Assume that the sensing matrix � satisfies RIP
of order K + 1 with RIC fulfilling (2.9). Then, for any
K -sparse x, OMP can perfectly identify the support of x from
the measurement y = �x in K iterations.

Proof: See also Appendix C. �

Fig. 1. Comparison of three bounds (i.e., (1.3), (1.4), and (2.9)) on δK +1
for different sparsity levels K .

C. Discussions

Some discussions regarding the improved performance guar-
antees derived in the previous subsection are given below.

1. It is noted that most existing RIP-based analyses for
OMP rely on analyzing

∣∣〈�ei , r j
〉∣∣, namely, the magni-

tude of the correlation between columns of the sensing
matrix � and the residual vector r j (see [7], [8], [18],
and our paper). A backbone of such analyses consists in
an upper bound of |〈�u,�v〉|, where u and v are sparse
with disjoint supports (see [7, Proof of Lemma 2.1],
[18, Lemma 3 and eq. (16)], and eq. (C.5) in
Appendix C of our paper). It is worthy of further
noting that both

∣∣〈�ei , r j
〉∣∣ and |〈�u,�v〉| are entirely

about inner products in the compressed domain, and
this to a large extent reflects the underlying fact: Since
measurement processing for signal reconstruction is
done in the compressed domain, the geometry of the
compressed space is important. With all the above in
mind, a fundamental difference between the technical
approaches used in the previous works ([7], [8], [18])
and our study can be seen as follows. In [7], [8],
and [18], the upper bound given in (2.3), developed
by Candes [17], is employed. Notably, the bound in
(2.3) is an ambient-domain bound, since it is specified
in terms of ‖u‖2 and ‖v‖2, the norms of u and v in
the ambient signal domain. By contrast, the proposed
approach relies on the compressed-domain bound (2.7)
(it is completely specified in terms of ‖�u‖2 and ‖�v‖2,
the norms of u and v upon compression). With the aid
of such compressed-domain bounds ((2.7) as well as
(2.8)), our approach can better exploit the geometry of
the compressed space: this overall leads to the improved
performance guarantees derived in Theorem 2.5.

2. Consider the noiseless case. Since 1√
K+1

<
√

4K+1−1
2K <

1√
K

, the proposed RIC bound (2.9) thus improves the

best-known result 1√
K+1

reported in [7] and [8]. Figure 1
shows the three bounds (namely, (1.3), (1.4), and (2.9))
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for various sparsity levels K . As can be seen from the
figure, the improvement over 1√

K+1
is slight when K is

large. This is not unexpected since, for large K , the gap
between 1√

K+1
and the ultimate performance guarantee

1√
K

is pretty small, and it is therefore rather difficult to
achieve a substantial improvement.

3. For the Gaussian noise case, ‖w‖2 can be bounded
from above with a sufficiently high probability. Hence,
under an additional probability constraint, a relaxed
lower bound for the minimal signal entry magnitude for
the Gaussian case can also be obtained by following
essentially the same procedures as in the �2-bounded
noise case.

III. IMPACTS OF THE APPROXIMATE ORTHOGONALITY

CONDITION (2.1)

As mentioned above, the approximate orthogonality
condition (2.1) (measured in terms of achievable angles)
not only enjoys its own technical novelty but also has a
wide spectrum of applications: it can be used for developing
improved RIP-based performance characterizations for other
sparse signal reconstruction schemes. Below we discuss two
such applications in details.

A. Sparse Signal Recovery Against Sparse Interference via
Orthogonal Projection

Consider the following compressive sensing system under
sparse interference corruption [20], [23]

y = �(x + d) = �x + �d, (3.1)

where d ∈ RN is a sparse interference/disturbance with
support Td . As in various previous works [20]–[24], it is
assumed that Td is known and does not overlap with the signal
support T . To exploit the knowledge of Td for interference
removal, one typical approach is via orthogonal projection.
More specifically, the measurement y is projected onto the
orthogonal complement of the interference subspace R(�Td )
to obtain [20]–[24]

ȳ � Qy = Q�x + Q�d = Q�x, (3.2)

where the projection matrix Q � I − �Td (�
∗
Td

�Td )
−1�∗

Td
removes all the components of y lying in R(�Td ). Upon
interference removal, the effective sensing matrix in (3.2)
is Q�, which is a product of an orthogonal projection matrix Q
and the original random sensing matrix �. The performance of
sparse signal reconstruction based on (3.2) depends crucially
on the RIC of Q�. The RIP of Q� as well as the achievable
RIC was first studied in [20]; the results are summarized in
the next proposition.

Proposition 3.1 [20]: Consider the system (3.2). Assume
that � satisfies the RIP of order K with RIC given by δK ,
and that the interference support Td satisfies |Td | < K . The
following inequality holds for all (K − |Td |)-sparse x whose
support does not overlap with Td :

(
1 − δ̄A

) ‖x‖2
2 ≤ ‖Q�x‖2

2 ≤ (1 + δK ) ‖x‖2
2 , (3.3)

Fig. 2. RIC of Q� for different values of δ, the RIC of �.

where

δ̄A � min

{
1,

δK

1 − δK

}
. (3.4)

�
Proposition 3.1 asserts that Q� still enjoys RIP, but is with
an RIC δ̄A larger than δK . In [23] and [24], an improved
estimate of RIC of Q� was obtained by means of certain
plane geometry analyses, as asserted in the next proposition.

Proposition 3.2 [23], [24]: Under the same assumptions
as in Proposition 3.1, the following inequality holds for all
(K − |Td |)-sparse x whose support does not overlap with Td :

(
1 − δ̄G

) ‖x‖2
2 ≤ ‖Q�x‖2

2 ≤ (1 + δK ) ‖x‖2
2 , (3.5)

where

δ̄G min

{
1, δK + δ2

K

1 + δK

}
. (3.6)

�
By leveraging Lemma 2.1, the following theorem shows that
the estimate of the RIC of Q� can be improved even further.

Theorem 3.3: Under the same assumptions as in
Proposition 3.1, the following inequality holds for all
(K − |Td |)-sparse x whose support does not overlap with Td :

(
1 − δ̄

) ‖x‖2
2 ≤ ‖Q�x‖2

2 ≤ (1 + δK ) ‖x‖2
2 , (3.7)

where

δ̄ � min
{

1, δK + δ2
K (1 − δK )

}
. (3.8)

Proof: See Appendix D. �
It is easy to verify that δ̄ < δ̄G < δ̄A, viz., the proposed
solution (3.8) improves the previous estimates in [20], [23],
and [24] (this is also confirmed by Figure 2, which plots
the three estimated RIC of the effective sensing matrix Q�

with respect to different values of δK , the RIC of the random
sensing matrix �). Since a smaller RIC results in a better
signal reconstruction performance [3], our result implies that
the achievable performance of sparse signal recovery with
interference-nulling is actually better than as predicted by the
previous works [20], [23], and [24].
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TABLE II

THE SP ALGORITHM

B. Support Identification via SP

SP is another popular greedy algorithm for sparse signal
recovery in the area of compressive sensing [9]; see Table II
for an outline of the algorithm. In each iteration, SP tries to
keep track of an estimated support consisting of K elements
by adding and then removing certain elements to and from
the candidate set. RIP-based performance guarantees for SP,
in both noiseless and noisy cases, have been reported in
[9] and [10]. The following proposition summarizes the result
in [9] when noise is absent. In the sequel, r j denotes the
residual vector in the j -th iteration of the SP algorithm
(cf. Step 3.8 in Table II).

Proposition 3.4 [9]: Assume that the sensing matrix �

satisfies RIP of order 3K with RIC

δ3K < 0.165. (3.9)

Then, for any K -sparse x, the SP algorithm with stopping
criterion

∥∥r j
∥∥

2 ≥ ∥∥r j−1
∥∥

2 can perfectly identify the support
of x from the measurement y = �x via a finite number of
iterations. �

By means of Lemma 2.1, an improved result (in terms of
a less strict requirement on the RIC of the sensing matrix) is
derived in the next theorem.

Theorem 3.5: Assume that the sensing matrix � satisfies
RIP of order 3K with RIC

δ3K ≤ 0.2412. (3.10)

Then, for any K -sparse x, the SP algorithm with stopping
criterion

∥∥r j
∥∥

2 ≥ ∥∥r j−1
∥∥

2 can perfectly identify the support

of x from the measurement y = �x via a finite number of
iterations.

Proof: See Appendix E. �
When noise is present, SP is capable of achieving stable

signal reconstruction, in the sense that, if the sensing matrix
satisfies RIP with a small RIC, the reconstruction error is
bounded and the size does not exceed a constant times the
noise level. The following proposition, which was established
in [9], makes this point precise.

Proposition 3.6 [9]: Assume that the sensing matrix �

satisfies RIP of order 3K with RIC

δ3K < 0.083. (3.11)

Then, the SP algorithm reconstructs the K -sparse vector x
from the measurement y = �x + w with the reconstruction
error bounded as

∥∥x − x̂
∥∥

2 ≤ c′
K ‖w‖2 , with c′

K �
1 + δ3K + δ2

3K

δ3K (1 − δ3K )
, (3.12)

where x̂ is the estimated sparse signal vector. �
By using the variation of the proof of [9, Th. 10], an

improved performance guarantee has been derived in [10], and
is given in the next proposition.

Proposition 3.7 [10]: Assume that the sensing matrix �

satisfies RIP of order 3K with RIC

δ3K < 0.139. (3.13)

Then, the SP algorithm reconstructs the K -sparse vector x
from the measurement y = �x + w with the reconstruction
error bounded as
∥∥x − x̂

∥∥
2 ≤ c̄K

∥∥�∗
Te

w
∥∥

2
, with c̄K � 2(

7−9δ3K +7δ2
3K −δ3

3K
(1−δ3K )4 ),

(3.14)

where x̂ is the estimated sparse signal vector and Te �
arg max

S with |S|=K

∥∥�∗
Sw

∥∥
2. �

By exploiting the approximate orthogonality property shown
in Lemma 2.1, we can obtain a less conservative sufficient
condition for guaranteeing stable signal reconstruction as well
as a tighter reconstruction error bound. Specifically, we have
the following theorem.

Theorem 3.8: Assume that sensing matrix � satisfies RIP
of order 3K with RIC

δ3K ≤ 0.2412. (3.15)

Then, the SP algorithm reconstructs the K -sparse vector x
from the measurement y = �x + w with the reconstruction
error bounded as

∥∥x − x̂
∥∥

2 ≤ cK ‖w‖2 ,

with

cK � (1 + δ3K
√

1+δ3K√
1−δ3K

)( 2+√
1+δ3K β√

1−δ3K −√
1+δ3K α

) + 1√
1−δ3K

, (3.16)

where x̂ is the estimated sparse signal vector,

α � ( 2δ3K
1−δ3K

)
√

1 + δ2
3K

1+δ3K
1−δ3K

√
1 + 4δ2

3K
1+δ3K
1−δ3K

, (3.17)
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and

β � ( 2
√

1+δ3K
1−δ3K

)

√
1 + 4δ2

3K (1+δ3K )
1−δ3K

+ 2√
1−δ3K

. (3.18)

Proof: See Appendix F. �
In summary, for either the noiseless or the noisy case, we

have pushed the bound for δ3K in the sufficient conditions to
0.2412. In addition, when noise is present, it can be shown
through some algebra that the proposed reconstruction error
upper bound (3.16) is smaller than (3.12) (under a fixed
RIC δ3K ). To further compare our error bound (3.16) with
the result in [10], we first use (3.14) to obtain the following
bound independent of �∗

Te
:

∥∥x − x̂
∥∥

2 ≤ c̄K
∥∥�∗

Te
w
∥∥

2
≤ c̄K

√
1 + δ3K ‖w‖2 , (3.19)

where the second inequality can be obtained by using
Lemma A.1 in Appendix A. Based on (3.19) and by invoking
the definition of c̄K in (3.14), it can be shown that cK <
c̄K

√
1 + δ3K , viz., the proposed bound (3.16) is also smaller

than (3.19). Hence, our analysis shows that the reconstruction
performance of SP is actually better than as asserted in [9]
and [10].

IV. CONCLUDING REMARKS

In this paper, we derive improved RIP-based performance
guarantees for perfect support identification via OMP. In the
noisy case, less restricted sufficient conditions for exact sup-
port recovery via OMP is first obtained. Compared to the most
recent work [18], our result shows that relaxed requirements
on the RIC and the smallest signal entry magnitude can ensure
exact support identification. In the noiseless case, our result
narrows the gap between the so-far best known bound on
the RIC of the sensing matrix and the ultimate performance
guarantee. The proposed approach exploits a newly established
approximate orthogonality condition, which is characterized
via the achievable angles between two compressed orthogonal
sparse vectors under RIP. Such a near-orthogonality prop-
erty in conjunction with the developed analysis techniques
evidenced a wider spectrum of applications. Indeed, for the
problem of compressive-domain interference cancellation, we
derive a more accurate estimate of the RIC of the effective
sensing matrix (in comparison to the results in [20] and [23]).
Also, we study support identification via SP in both noiseless
and noisy settings. By means of the approximate orthogonality
condition, it is shown that, compared to [9] and [10], the
requirement on the RIC of the sensing matrix for guaranteeing
exact/stable signal recovery can be further relaxed; in addition,
when noise is present, the reconstruction error upper bound
is provably to be smaller. Improved RIP-based performance
analysis of other greedy algorithms, such as CoSaMP [30],
by using the developed analysis techniques in this paper is
currently under investigation.

APPENDIX

A. Proof of Lemma 2.1

To prove Lemma 2.1, we need the following two lemmas.

Lemma A.1 [9]: Assume that � ∈ RM×N satisfies RIP of
order K with RIC δK . Then, for S ⊂ {1, . . . , N } with |S| ≤ K ,
the M×|S| sub-matrix �S is of full column rank with singular
values σ1(�S) ≥ σ2(�S) ≥ · · · ≥ σ|S|(�S) > 0 satisfying

√
1 − δK ≤ σ j (�S) ≤ √

1 + δK , j = 1, . . . , |S| . (A.1)

�
Lemma A.2: Let A ∈ Rm×n , with m ≥ n, be of full

column rank, and σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A) > 0 be
the singular values of A. Let κ(A) = σ1(A)/σn(A) be the
condition number of A. Then we have

κ(A) = cot(θ(A)/2) (A.2)

where 0 < θ(A) ≤ π/2 is given by

θ(A) = min〈x,y〉=0
(Ax, Ay) . (A.3)

Proof: The assertion can be shown by directly following
the proof in [25, Example 7.4.26]. �

Proof of Lemma 2.1: Let Tuv = Tu ∪Tv . As �u = �Tuv uTuv

and �v = �Tuv vTuv , we have

|cos � (�u,�v)| = ∣∣cos
(
�Tuv uTuv ,�Tuv vTuv

)∣∣ . (A.4)

Since u and v, supported on, respectively, Tu and Tv , are
orthogonal, so are the pairs (uTuv , vTuv ) and (−uTuv , vTuv ).
Also, since |Tu ∪ Tv | ≤ K and arbitrary K columns of
� are linearly independent, �Tuv is of full column rank.
By Lemma A.2, it follows immediately that

�(±�Tuv uTuv ,�Tuv vTuv ) ≥ θ(�Tuv ). (A.5)

From (A.5), we also have

�(∓�Tuv uTuv ,�Tuv vTuv ) ≤ π − θ(�Tuv ). (A.6)

With (A.5) and (A.6), it then follows that
∣∣cos �

(
�Tuv uTuv ,�Tuv vTuv

)∣∣ ≤ cos(θ(�Tuv )). (A.7)

It thus remains to show

cos(θ(�Tuv )) ≤ δK . (A.8)

The assertion of Lemma 2.1 then follows from (A.4), (A.7)
and (A.8). To prove (A.8), it is noted that, since κ(�Tuv ) =
cot(θ(�Tuv )/2) (cf. (A.2)), we have

cos(θ(�Tuv )) = cot2
(
θ(�Tuv )/2

) − 1

cot2
(
θ(�Tuv )/2

) + 1
= κ2(�Tuv ) − 1

κ2(�Tuv ) + 1

= 1 − 2

κ2(�Tuv ) + 1
. (A.9)

By definition, κ(�Tuv ) = σ̄ (�Tuv )/σ (�Tuv ), where σ̄ (�Tuv )
and σ̄ (�Tuv ) are, respectively, the maximal and minimal
singular values of �Tuv . Hence, with Lemma A.1 it follows
that

κ(�Tuv ) = σ̄ (�Tuv )

σ (�Tuv )
≤

√
1 + δK

σ(�Tuv )
≤

√
1 + δK√
1 − δK

. (A.10)

Inequality (A.8) can be directly obtained from (A.9) and
(A.10). �
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B. Proof of Lemma 2.4

Let �T = U�V∗ be a singular value decomposition of
�T ∈ RM×|T |, where U ∈ RM×M and V ∈ R|T |×|T | are

orthogonal, and � =
[
�1
0

]
∈ RM×|T | with �1 ∈ R|T |×|T |

being diagonal with positive diagonal entries. The assertion of
Lemma 3.2 follows from the following set of relations:

∥∥�∗
T �x

∥∥
2 = ∥∥�∗

T �T xT
∥∥

2 = ∥∥V�∗U∗U�V∗xT
∥∥

2

(a)=
∥∥∥∥V[�∗

1 0]
[

U∗
1

U∗
2

]
[U1U2]

[
�1
0

]
V∗xT

∥∥∥∥
2

=
∥∥∥∥V[�∗

1 0]
[

U∗
1

U∗
2

]
[U10]

[
�1
0

]
V∗xT

∥∥∥∥
2

(b)=
∥∥∥∥[�∗

1 0]
[

U∗
1

U∗
2

]
[U10]

[
�1
0

]
V∗xT

∥∥∥∥
2

=
∥∥∥∥�∗

1 U∗
1 [U10]

[
�1
0

]
V∗xT

∥∥∥∥
2

(c)≥ √
1 − δK+1

∥∥∥∥U∗
1 [U10]

[
�1
0

]
V∗xT

∥∥∥∥
2

= √
1 − δK+1

∥∥∥∥
[

U∗
1

0

]
[U10]

[
�1
0

]
V∗xT

∥∥∥∥
2

(d)= √
1 − δK+1

∥∥∥∥
[

U∗
1

U∗
2

]
[U10]

[
�1
0

]
V∗xT

∥∥∥∥
2

(e)= √
1 − δK+1

∥∥∥∥[U10]

[
�1
0

]
V∗xT

∥∥∥∥
2

= √
1 − δK+1

∥∥∥∥[U1U2]

[
�1
0

]
V∗xT

∥∥∥∥
2

= √
1 − δK+1

∥∥U�V∗xT
∥∥

2

= √
1 − δK+1 ‖�T xT ‖2

= √
1 − δK+1 ‖�x‖2

( f )≥ (1 − δK+1) ‖x‖2 ,

where in (a) we partition U into U = [U1U2], where
U1 ∈ RM×|T | and U2 ∈ RM×(M−|T |), (b) holds since V
is orthogonal, (c) is true since Lemma A.1 asserts that the
singular values of �T (appearing as the diagonal entries of �∗

1 )
are no less than

√
1 − δK+1, (d) is true because U∗

2U1 = 0,
and (e) follows since [U1U2]∗ = U∗ is orthogonal, and (f) is
due to RIP. This thus proves the lemma. �

C. Proof of Theorem 2.5 and Corollary 2.6

We present first the proof of performance guarantees via
OMP with l2- and l∞-bounded noise (case (1) and case (2) in
Theorem 2.5). The proof for noiseless case (Corollary 2.6) is
similar and is shown next.

Proof of Case (1): Note that, in the j -th iteration, the index
ρ j determined yields the maximal

∣∣〈�ei , r j−1
〉∣∣ (see Step 3.2

in Table I). We first claim that, if δK+1 satisfies (2.9) and
the requirement (2.10) holds, such ρ j ’s, where j = 1, . . . , K ,
belong to the support T . Also, according to the orthogonality
property of OMP [8, Lemma 7], all the selected indexes ρ j ’s,
j = 1, . . . , K , are distinct. We will then prove that OMP
with the stopping criterion

∥∥r j
∥∥

2 ≤ ε1 halts exactly after K
iterations. The assertion of the theorem then follows.

To prove the claim, it suffices to show that the following
conditions hold for all j = 1, . . . , K : in the j -th iteration,
there exists some K -sparse z j ∈ RN with support T such that
r j−1 in Step 3.2 reads r j−1 = �z j + w,

∣∣∣
〈
�ei , r j−1

〉∣∣∣ ≤
∥∥∥�z j

∥∥∥
2
δK+1 + ε1 for all i /∈ T, (C.1)

and∣∣∣
〈
�ei , r j−1

〉∣∣∣ >
∥∥∥�z j

∥∥∥
2
δK+1 + ε1 for some i ∈ T . (C.2)

Hence, we have ρ j ∈ T for all j = 1, . . . , K . The proof
of (C.1) and (C.2) is done by induction. In the first itera-
tion ( j = 1), r j−1 needed to compute the inner product in
Step 3.2 is

r0 = y = �x + w, (C.3)

and hence∣∣∣
〈
�ei , r j−1

〉∣∣∣ =
∣∣∣
〈
�ei , r0

〉∣∣∣ = |〈�ei ,�x〉 + 〈�ei , w〉|
≤ |〈�ei ,�x〉| + |〈�ei , w〉|
≤ |〈�ei ,�x〉| + ε1, (C.4)

where the last inequality follows since each column of � is
of unit-norm and, thus, |〈�ei , w〉| ≤ ‖�ei‖2 ‖w‖2 ≤ ε1. Note
that, for i /∈ T , we have 〈ei , x〉 = 0 and |{i} ∪ T | = K + 1.
From Lemma 2.3 and since each column of � is of unit-norm,
it follows immediately that

|〈�ei ,�x〉| ≤ ‖�ei‖2 ‖�x‖2 δK+1

= ‖�x‖2 δK+1 for all i /∈ T . (C.5)

From (C.4) and (C.5), we have
∣∣∣
〈
�ei , r0

〉∣∣∣ ≤ ‖�x‖2 δK+1 + ε1 for all i /∈ T, (C.6)

i.e., (C.1) holds when j = 1 with z1 = x. We then go on to
show by contradiction that (C.2) is also true when j = 1 with
z1 = x. Assume otherwise that∣∣∣

〈
�ei , r0

〉∣∣∣ ≤ ‖�x‖2 δK+1 + ε1 for all i ∈ T . (C.7)

Then, it follows from (C.7) that
∥∥∥�∗

T r0
∥∥∥

2
=

√∑

i∈T

∣∣〈�ei , r0
〉∣∣2 ≤ √

K (‖�x‖2 δK+1 + ε1)

= √
K δK+1 ‖�x‖2 + √

K ε1. (C.8)

Also,∥∥∥�∗
T r0

∥∥∥
2

= ∥∥�∗
T (�x + w)

∥∥
2 ≥ ∥∥�∗

T �x
∥∥

2 − ∥∥�∗
T w

∥∥
2

(a)≥ √
1 − δK+1 ‖�x‖2 − ∥∥�∗

T w
∥∥

2
(b)≥ √

1 − δK+1 ‖�x‖2 − √
1 + δK+1ε1, (C.9)

where (a) follows from Lemma 2.4 and (b) is true due to
Lemma A.1 and ‖w‖2 ≤ ε1. Under assumption (2.9), it can
be shown that

√
1 − δK+1 ‖�x‖2 − √

1 + δK+1ε1 >
√

K δK+1 ‖�x‖2

+ √
K ε1. (C.10)
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Then, combining (C.9) and (C.10) yields
∥∥∥�∗

T r0
∥∥∥

2
>

√
KδK+1 ‖�x‖2 + √

Kε1, (C.11)

which contradicts with (C.8). This then implies (C.2) is true
for j = 1 with z1 = x. To verify (C.10), we first write

√
1 − δK+1 ‖�x‖2 − √

1 + δK+1ε1

= √
K δK+1 ‖�x‖2 + √

K ε1

+
(√

1 − δK+1 − √
K δK+1

)
︸ ︷︷ ︸

γ

‖�x‖2

−
(√

1 + δK+1 + √
K
)

ε1. (C.12)

Under assumption (2.9), one can check that

γ = √
1 − δK+1 − √

K δK+1 ≥ 0. (C.13)

Thus, it follows from (C.12) and (C.13) that
√

1 − δK+1 ‖�x‖2 − √
1 + δK+1ε1

(a)≥ √
K δK+1 ‖�x‖2 + √

K ε1

+
(√

1 − δK+1 − √
K δK+1

)
︸ ︷︷ ︸

=γ

√
1 − δK+1 ‖x‖2

−
(√

1 + δK+1 + √
K
)

ε1

(b)
>

√
K δK+1 ‖�x‖2 + √

K ε1

+√
K (

√
1 + δK+1 + 1)ε1 −

(√
1 + δK+1 + √

K
)

ε1

= √
K δK+1 ‖�x‖2 + √

K ε1 + ε1(
√

K − 1)
√

1 + δK+1︸ ︷︷ ︸
≥0

≥ √
K δK+1 ‖�x‖2 + √

K ε1, (C.14)

where (a) follows since � satisfies RIP and x is a K -sparse
vector, (b) follows since x is K -sparse (thus, with at most K
nonzero entries), and, using assumption (2.10) together with
straightforward manipulations.

We move on to the next iteration. Since the index selected in
the first iteration belongs to T , in the second iteration ( j = 2),
r j−1 needed in Step 3.2 is

r j−1 = r1 = y − ��1q�1 = �x − ��1q�1 + w

= �x − �q̃�1 + w = � (x − q̃�1)︸ ︷︷ ︸
�Z2

z2 + w,(C.15)

where q̃�1 ∈ RN is a 1-sparse vector with all entries equal to
zero except the one indexed by �1 ⊂ T . Then z2 = x − q̃�1

is a K -sparse vector with support T . By following essentially
the same procedures as in the first iteration, (C.1) and (C.2)
can be shown to be true for j = 2 with the K -sparse vector z2.
By repeating such procedures, one can inductively show that
the first K selected indexes all belong to the support T . Also,
since the selected indexes are distinct, the columns of ��K ∈
RM×K are those of � indexed by T .

Now we turn to show that, with the stopping criterion∥∥r j
∥∥

2 ≤ ε1, OMP stops exactly after K iterations. This can

be done by showing that∥∥∥r j
∥∥∥

2
> ε1 for all j = 0, . . . , K − 1,

and
∥∥∥r j

∥∥∥
2

≤ ε1 for j = K . (C.16)

The condition (C.16) can be proved by following essentially
the same procedures as in the analyses between eq. (24)∼(26)
in [18]; the details are thus omitted (the interested readers are
referred to [31]).

Proof of Case (2): Similar to case (1), it suffices to show
that the indexes selected in the first K iterations all belong to
T by the following claim: in the j -th iteration, j = 1, . . . , K ,
there exists some K -sparse z j ∈ RN with support T such that
r j−1 in Step 3.2 reads r j−1 = �z j + w,∣∣∣

〈
�ei , r j−1

〉∣∣∣ ≤
∥∥∥�z j

∥∥∥
2
δK+1 + ε2 for all i /∈ T, (C.17)

and∣∣∣
〈
�ei , r j−1

〉∣∣∣ >
∥∥∥�z j

∥∥∥
2
δK+1 + ε2 for some i ∈ T . (C.18)

By going through essentially the same induction-and-
contradiction procedures as in Case (1), it can be verified that
(C.17) and (C.18) are true. Also, the indices thus identified are
distinct, according to [8]. It then remains to show that OMP
with the stopping criterion max

i=1,...,N

∣∣〈�ei , r j
〉∣∣ ≤ ε2 will not

halt during the first K iterations. This can be done by proving
that

max
i=1,...,N

∣∣∣
〈
�ei , r j

〉∣∣∣ > ε2 for all j = 0, . . . , K − 1. (C.19)

Still, the condition (C.19) can be proved by following essen-
tially the same procedures in the proof of [18, Th. 2], and
the details are thus omitted (the interested readers are referred
to [31]).

Proof of Corollary 2.6 (Noiseless Case): Since the selected
indexes are distinct [8, Lemma 7], it suffices to show that
the first K identified indexes belong to the support T . The
proof is essentially the same as that of the l2–bounded
noise case. In particular, we show that (C.1) and (C.2)
hold for j = 1, . . . , K with ε1 = 0. For j = 1,
the assertion can be easily shown by first going through
the proof from (C.3) to (C.13). Note that, with ε1 = 0,
(C.12) becomes

√
1 − δK+1 ‖�x‖2 = √

K δK+1 ‖�x‖2 +(√
1 − δK+1 − √

KδK+1

)
‖�x‖2. This equality, together with

(C.13), implies
√

1 − δK+1 ‖�x‖2 ≤ √
K δK+1 ‖�x‖2 . (C.20)

Then, replace (C.14) by (C.20). Thus we can conclude that
(C.1) and (C.2) with ε1 = 0 are true for j = 1. By induction,
one can show that (C.1) and (C.2) with ε1 = 0 holds for
j = 2, . . . , K . �

D. Proof of Theorem 3.3

In the sequel, for S ⊂ {1, . . . , N} with |S| < K , PS �
�S(�

∗
S�S)−1�∗

S represents the orthogonal projection onto
R(�S). We need the next lemma to complete the proof.

Lemma A.3: Assume that � satisfies RIP of order K with
RIC δK . Let S ⊂ {1, . . . , N} with |S| < K , and PS be the
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Fig. 3. Schematic description of orthogonal projection of �x onto the column
space of �S .

orthogonal projection onto R(�S). Then for all (K − |S|)-
sparse x whose support does not overlap with S, we have

‖PS�x‖2
2 ≤ δ2

K ‖�x‖2
2 ≤ (1 + δK )δ2

K ‖x‖2
2 , (D.1)

and

‖(I − PS)�x‖2
2 ≥ (1 − δ2

K ) ‖�x‖2
2

≥ (1 − δK )(1 − δ2
K ) ‖x‖2

2 . (D.2)

Proof of Lemma A.3: Since PS = �S(�∗
S�S)−1�∗

S , we have
PS�x = �S(�

∗
S�S)−1�∗

S�x = �Sz with

z = (�∗
S�S)−1�∗

S�x. (D.3)

It follows that (see Figure 3)

‖PS�x‖2
2 = ‖�x‖2

2 |cos � (�x,�Sz)|2
and

‖(I − PS)�x‖2
2 = ‖�x‖2

2 |sin � (�x,�Sz)|2 . (D.4)

Since �Sz can be written as

�Sz = �z̃, (D.5)

where z̃ is obtained by padding zeros to z (the support of z̃ is
thus S), we obtain

� (�x,�Sz) = � (�x,�z̃) . (D.6)

Note that x and z̃ are orthogonal since the supports of x and
z̃ do not overlap. According to Lemma 2.1, it follows

|cos � (�x,�z̃)|2 ≤ δ2
K (D.7)

and thus

|sin � (�x,�z̃)|2 = 1 − |cos � (�x,�z̃)|2
≥ 1 − δ2

K . (D.8)

Combining (D.4), (D.7) and (D.8) yields ‖PS�x‖2
2 ≤

δ2
K ‖�x‖2

2 and ‖(I − PS)�x‖2
2 ≥ (1 − δ2

K ) ‖�x‖2
2. Also, since

� satisfies RIP, (D.1) and (D.2) directly follow. �
Proof of Theorem 3.3: By definition, Q is the orthogonal

projection onto the orthogonal complement of R(�S). Under
the assumptions that � satisfies the RIP of order K with RIC
δK , and that the support of the (K − |S|)-sparse x does not
overlap with Td , it then follows from Lemma A.3 that

‖Q�x‖2
2 ≥ (1 − δK )(1 − δ2

K ) ‖x‖2
2 . (D.9)

Also, we have

‖Q�x‖2
2 ≤ ‖�x‖2

2 ≤ (1 + δK ) ‖x‖2
2 . (D.10)

Combining (D.9) with (D.10) immediately gives

(1 − δK )(1 − δ2
K ) ‖x‖2

2 ≤ ‖Q�x‖2
2 ≤ (1 + δK ) ‖x‖2

2 . (D.11)

The assertion thus follows from (D.11). �

E. Proof of Theorem 3.5

The proof is based on that of [9, Th. 1]; in particular, it
suffices to show

‖r j‖2 < ‖r j−1‖2 if ‖r j−1‖2 > 0, (E.1)

that is, the norm of the residual is reduced iteration by
iteration provided that

∥∥r j−1
∥∥

2 > 0. If (E.1) is true, the
stopping criterion

∥∥r j
∥∥

2 ≥ ∥∥r j−1
∥∥

2 will be satisfied only
when

∥∥r j0−1
∥∥

2 = 0 for some j0−12. Indeed, if
∥∥r j0−1

∥∥
2 = 0,

SP will halt at the j0-th iteration since
∥∥r j0

∥∥
2 ≥ ∥∥r j0−1

∥∥
2 = 0.

It then remains to show that, for such a j0, we also have∥∥r j0−1
∥∥

2 = 0, implying that the estimated sparse vector after
j0 iterations is exactly x. Hence, the proof of theorem 3.5 is
completed.

Notably, in [9], the proof first relies on Theorems 3 and 4
to obtain [9, eq. (6)], which then leads to (E.1). Our proof
basically follows the similar flow; in particular, the improved
performance guarantee shown in Theorem 3.5 is obtained
by using the newly derived approximate orthogonality
condition (2.1) to tighten the performance bounds in
[9, Th. 3 and 4] and [9, eq. (16)]. First of all, based on the
newly derived approximate orthogonality condition (2.1) we
obtain the following two lemmas, which improve the results
in, respectively, [9, Th. 3 and 4].

Lemma A.4: Let �
j
� be the index set, with |� j

�| = K , such
that

{∣∣(�∗r j−1)i
∣∣}

i∈�
j
�

consists of the K largest elements of{∣∣(�∗r j−1)1
∣∣ , . . . , ∣∣(�∗r j−1)N

∣∣}, where r j−1 is the residual

vector in the ( j − 1)-th iteration. Then, for �̆
j = � j−1 ∪�

j
�,

∥∥∥x
T \�̆ j

∥∥∥
2

≤ 2δ3K

1 − δ3K

√
1 + δ2

3K (1 + δ3K )

1 − δ3K

∥∥∥xT\� j−1

∥∥∥
2
. (E.2)

Proof: The proof is placed at the end of this
appendix. �

Lemma A.5: Under the same assumptions made as in
Lemma A.4, we have the following result:

∥∥∥xT\� j

∥∥∥
2

≤
√

1 + 4δ2
3K (1 + δ3K )

1 − δ3K

∥∥∥x
T \�̆ j

∥∥∥
2
. (E.3)

Proof: The proof is placed at the end of this
appendix. �

Based on Lemma A.4 and Lemma A.5, we have the
following lemma, which improves the bound provided in
[9, eq. (6)].

Lemma A.6: Assume that the sensing matrix � satisfies RIP
of order 3K with RIC δ3K ≤ 0.2412. Let � j be the estimated
support in the j -th iteration of the SP algorithm. Then we have

∥∥∥xT\� j

∥∥∥
2

≤ α
∥∥∥xT\� j−1

∥∥∥
2
, (E.4)

2An upper bound for j0 − 1 can be found in [9].



5712 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 9, SEPTEMBER 2014

where α is defined in (3.17).
Proof: Inequality (E.4) can be directly obtained

from (E.2), (E.3), together with some straightforward
manipulations. �

To claim (E.1), we first recall from Steps 3.7-3.8 in Table II
that the residual vector is

r j = y − P� j y = [I − P� j ] (�� j x� j + �T \� j xT \� j )︸ ︷︷ ︸
y=�x

(a)= (I − P� j )�T \� j xT \� j , (E.5)

where (a) holds since �� j x� j ∈ R(�� j ) and P� j is the
orthogonal projection onto R(�� j ). With (E.5), we have

‖r j‖2 = ‖(I − P� j )�T \� j xT\� j ‖2 ≤ ‖�T \� j xT \� j ‖2

(a)≤ √
1 + δ3K ‖xT \� j ‖2

(b)≤ √
1 + δ3K α‖xT \� j−1‖2, (E.6)

where (a) follows due to Lemma A.1 and (b) holds from (E.4).
Now, based on Step 3.8, r j can also be written as3

r j = y − �� j q� j = �T \� j xT \� j + �� j x� j − �� j q� j

= �(x̃T\� j + x̃� j − q̃� j )

thus we have

‖r j−1‖2 = ‖�(x̃T\� j−1 + x̃� j−1 − q̃� j−1)‖2

(a)≥ √
1 − δ3K ‖x̃T \� j−1 + x̃� j−1 − q̃� j−1‖2

(b)= √
1 − δ3K

√
‖x̃T \� j−1‖2

2 + ‖x̃� j−1 − q̃� j−1‖2
2

≥ √
1 − δ3K ‖x̃T \� j−1‖2

= √
1 − δ3K ‖xT \� j−1‖2, (E.7)

where (a) follows from the RIP, and (b) is true since the
supports of x̃T \� j−1 and x̃� j−1 − q̃� j−1 are disjoint. One can
verify that if δ3K ≤ 0.2412, the following inequality holds:

√
1 − δ3K >

√
1 + δ3K α. (E.8)

The assertion (E.1) thus follows by combining (E.6), (E.7),
and (E.8).

Now we turn to show that if ‖r j0−1‖2 = 0 for some j0 − 1,
we also have ‖r j0‖2 = 0. Since r j0−1 = �x−�� j0−1q� j0−1 =
�(x − q̃� j0−1) (see Step 3.8 in Table II), we have 0 =
‖r j0−1‖2 = ‖�(x − q̃� j0−1)‖2 ≥ √

1 − δ3K ‖x − q̃� j0−1‖2,
immediately leading to x = q̃� j0−1 . It then implies the
supports of x and q̃� j0−1 , i.e., T and � j0−1, are the same,
thereby ‖xT\� j0−1‖2 = 0. Finally, it follows from (E.4) that
‖xT \� j0 ‖2 = 0 as well, namely, the estimated support at
the j0-th iteration is still � j0 = T . Then, q obtained by
Steps 3.6-3.7 is exactly x.

3We remind the readers of the following notation usage: For u ∈ RN ,
uS ∈ R|S| denotes the vector whose entries consist of those of u indexed
by the subset S ⊂ {1, . . . , N}, and ũS ∈ RN is the zero-padded version of
uS such that (ũS)i = (u)i for i ∈ S and (ũS)i = 0 otherwise (thus, ũS is
|S|-sparse with support S).

[Proof of Lemma A.4]: Write

P� j−1�T \� j−1xT \� j−1 = �z

for some z supported on � j−1. (E.9)

Then, the residual r j−1 in (E.5) can be expressed as

r j−1 = �x̃T \� j−1 − �z = �h j−1,

where h j−1 � x̃T \� j−1 − z. (E.10)

According to Step 3.1 of the SP algorithm (see Table II),
we must have ‖�∗

Sr j−1‖2 ≤ ‖�∗
�

j
�

r j−1‖2 for any sub-

set S ⊂ {1, . . . , N } of K elements, and thus ‖�∗
T r j−1‖2

2 ≤
‖�∗

�
j
�

r j−1‖2
2. Since ‖�∗

T r j−1‖2
2 = ‖�∗

T \� j
�

r j−1‖2
2 +

‖�∗
T ∩�

j
�

r j−1‖2
2 and ‖�∗

�
j
�

r j−1‖2
2 = ‖�∗

�
j
�\T

r j−1‖2
2 +

‖�∗
�

j
�∩T

r j−1‖2
2, it then implies

∥∥�∗
T \� j

�

r j−1
∥∥2

2 ≤ ∥∥�∗
�

j
�\T

r j−1
∥∥2

2. (E.11)

From [9, eq. (28) and (29)], an upper bound for the right-
hand-side (RHS) of (E.11) is

∥∥�∗
�

j
�\T

r j−1
∥∥

2 ≤ δ3K
∥∥h j−1

∥∥
2, (E.12)

and a lower bound for the left-hand-side (LHS) of (E.11) is
∥∥�∗

T \� j
�

r j−1
∥∥

2 ≥(
1−δ3K

)∥∥x
T \�̆ j

∥∥
2−δ3K

∥∥h j−1
∥∥

2. (E.13)

It then follows
∥∥x

T\�̆ j

∥∥
2

(a)≤ 2δ3K

1 − δ3K

∥∥h j−1
∥∥

2

(b)= 2δ3K

1 − δ3K

√∥∥x̃T\� j−1

∥∥2
2 + ∥∥z

∥∥2
2, (E.14)

where (a) is obtained by combining (E.11)∼(E.13), and (b) is
obtained by using the definition of h j−1 in (E.10) and the fact
that the supports of x̃T \� j−1 and z are disjoint. We also note
that

√
1 − δ3K ‖z‖2

(a)≤ ‖�z‖2
(b)= ‖P� j−1�T \� j−1xT \� j−1‖2

(c)≤ δ3K

√
1 + δ3K ‖xT \� j−1‖2, (E.15)

where (a) is due to RIP, (b) holds with (E.9), and (c) is obtained
based on Lemma A.3. It follows directly from (E.15) that

‖z‖2 ≤ δ3K

√
1 + δ3K√
1 − δ3K

‖xT \� j−1‖2. (E.16)

The assertion of Lemma A.4 follows immediately by
combining (E.14) and (E.16). �

Proof of Lemma A.5: According to the SP algorithm
(see Step 3.5 in Table II), the K elements of the estimated
support � j ⊂ �̆

j
are the K indexes corresponding to the K

largest magnitudes of q̆. Since the entries of q̆ are all zeros
except those 2K elements indexed by �̆

j
(see Steps 3.3-3.4

in Table II), the entries of q̆ indexed by �̄
j � �̆

j \� j are
thus those yielding the K smallest nonzero magnitudes; more
precisely, we have ‖q̆

�̄
j ‖2 ≤ ‖q̆S2‖2 for all S2 ⊂ �̆

j
of K (or
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more) elements. Since (�̆
j\T ) ⊂ �̆

j
consists of K or more

elements, we have

‖q̆
�̄

j ‖2 ≤ ‖q̆
�̆

j \T
‖2. (E.17)

As in [9], our proof is done by deriving an upper bound
(lower bound, respectively,) for the RHS (LHS, respec-
tively) of (E.17). Thanks to the improved orthogonality
condition (2.1), our bounds are tighter than those given in [9],
thereby leading to the better performance guarantee (3.10). We
claim that

‖q̆
�̆

j \T
‖2 ≤ δ3K

√
1 + δ3K√

1 − δ3K
‖x

T \�̆ j ‖2, (E.18)

and

‖q̆
�̄

j ‖2 ≥
√

‖xT \� j ‖2
2 − ‖x

T \�̆ j ‖2
2

−δ3K
√

1 + δ3K√
1 − δ3K

‖x
T \�̆ j ‖2. (E.19)

Then, inequality (E.3) can be obtained based on (E.17)∼(E.19)
together with some straightforward manipulations.

We first prove (E.18). Since P
�̆

j �
T \�̆ j x

T \�̆ j = �z for

some z supported on �̆
j
, it follows that

P
�̆

j y = P
�̆

j (�
T \�̆ j x

T\�̆ j + �
�̆

j x
�̆

j )

(a)= �z + �x̃
�̆

j = � (z + x̃
�̆

j )
︸ ︷︷ ︸
q̆ in Step 3.5

; (E.20)

where (a) holds because P
�̆

j �
�̆

j x
�̆

j = �
�̆

j x
�̆

j = �x̃
�̆

j .
Then, based on (E.20), we obtain

‖q̆
�̆

j \T
‖2 = ‖(z + x̃

�̆
j )

�̆
j \T

‖2

(a)= ‖z
�̆

j \T
‖2 ≤ ‖z‖2, (E.21)

where (a) follows since only those entries of x indexed by T
are nonzero. Also, by using the same technique in deriving
(E.15)∼(E.16), we have

‖z‖2 ≤ δ3K
√

1 + δ3K√
1 − δ3K

‖x
T \�̆ j ‖2, (E.22)

Inequality (E.18) directly follows from (E.21) and (E.22).
Now we turn to prove (E.19). From [9, eq. (37)], we have

‖q̆
�̄

j ‖2 ≥ ‖x̃
�̄

j ‖2 − ‖z̃‖2. (E.23)

Also, since T\� j = T \(�̆ j\�̄ j
) = (T\�̆ j

)∪(T ∩�̄
j
), where

T \�̆ j
and T ∩ �̄

j
are disjoint, we obtain x̃T \� j = x̃

T \�̆ j +
x̃

T ∩�̄
j , and

‖x̃T \� j ‖2
2 = ‖x̃

T \�̆ j ‖2
2 + ‖x̃

T ∩�̄
j ‖2

2

(a)= ‖x̃
T \�̆ j ‖2

2 + ‖x̃
�̄

j ‖2
2, (E.24)

where (a) follows because x is supported on T . The assertion
(E.19) thus holds by combining (E.22), (E.23) and (E.24). �

F. Proof of Theorem 3.8

In what follows, assume that the SP algorithm terminates
after l iterations.4 We first note that

P�l y = P�l [�(x̃�l + x̃T\�l ) + w]
= ��l x�l + P�l �T \�l xT \�l︸ ︷︷ ︸

��
�l f

+ P�l w︸ ︷︷ ︸
��

�l g

= ��l (x�l + f + g)︸ ︷︷ ︸
=q

�l in step 3.7

. (F.1)

Since x̂ = q is supported by �l (see Step 4 of SP), the
reconstruction error is

‖x − x̂‖2 =

∥∥∥∥∥∥∥
x̃T \�l + x̃�l︸ ︷︷ ︸

=x

−q̃�l

∥∥∥∥∥∥∥
2

≤ ‖xT \�l ‖2 + ‖x�l − q�l ‖2

(a)≤ ‖xT \�l ‖2 + ‖f‖2 + ‖g‖2, (F.2)

where (a) follows since q�l − x�l = f + g (cf. (F.1)) and
using the triangular inequality. As in the proof of [9, Th. 9],
our proof relies on deriving upper bounds of

∥∥∥xT \�l

∥∥∥
2
, ‖f‖2,

and ‖g‖2 in terms of ‖w‖2 under the given RIC
requirement (3.15). By exploiting the near-orthogonality con-
dition (2.1), our derived bounds are tighter, and thus improve
the achievable performance results. By means of Lemma A.1,
an upper bound for ‖g‖2 can be immediately obtained based
on the following:

√
1 − δ3K ‖g‖2 ≤ ∥∥��l g

∥∥
2 = ∥∥P�l w

∥∥
2 ≤ ‖w‖2 . (F.3)

Also, using the same technique in deriving (E.15)∼(E.16), it
follows that

‖f‖2 ≤ δ3K
√

1 + δ3K√
1 − δ3K

‖xT\�l ‖2. (F.4)

It then remains to derive an upper bound of ‖xT \�l ‖2 to
complete the proof. Toward this end, we need the following
lemma, which improves the bound provided in eq. (17) in
[9, Th. 10].

Lemma A.7: For α and β defined in, respectively,
(3.17) and (3.18), we have

‖xT \� j ‖2 ≤ α‖xT \� j−1‖2 + β‖w‖2. (F.5)

Proof: The proof is relegated to the end of this
appendix. �

Based on Lemma A.7, an upper bound on ‖xT \�l ‖2 is given
in the next lemma.

4Since there are totally C N
K = N !

K !(N−K )! candidate supports, the SP

algorithm with the stopping criterion ‖r j ‖2 ≥ ‖r j−1‖2 halts after at most

C N
K + 1 iterations. This is because �CN

K +1, the support identified in the
(C N

K + 1)-th iteration, must be the same as � j0 , the support identified in the
j0-th iteration for some 1 ≤ j0 ≤ C N

K . As a result, in the worst case we have

‖rCN
K +1‖2 = ‖r j0 ‖2 > ‖r j0+1‖2 > · · · > ‖rCN

K ‖2.
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Lemma A.8: Under the assumptions as in Theorem 3.8, it
follows that

‖xT \�l ‖2 ≤ (2 + √
1 + δ3K β)‖w‖2√

1 − δ3K − √
1 + δ3K α

, (F.6)

where α and β are defined in (3.17) and (3.18).
Proof: The proof is relegated to the end of

this appendix. �
Using Lemma A.8, (F.2), (F.3) and (F.4) together with some

straightforward manipulations, the assertion in Theorem 3.8
thus follows. �

Proof of Lemma A.7: The proof procedures are similar to
the proof of [9, Th. 10], which utilizes [9, eq. (15) and (16)]
for obtaining the reconstruction error given in [9, eq. (17)].
By exploiting the developed approximate orthogonality
condition (2.1), we can obtain the following two upper bounds
(which improves the bounds given in [9, eq. (15) and (16)]:

‖x
T \�̆ j ‖2 ≤ 2δ3K

1 − δ3K

√
1 + δ2

3K
1 + δ3K

1 − δ3K
‖xT \� j−1‖2

+ 2
√

1 + δ3K

1 − δ3K
‖w‖2, (F.7)

and

‖xT \� j ‖2 ≤
√

1 + 4δ2
3K (1 + δ3K )

1 − δ3K
‖x

T \�̆ j ‖2

+ 2√
1 − δ3K

‖w‖2. (F.8)

Inequality (F.5) follows immediately by substituting the upper
bound on

∥∥∥x
T \�̆ j

∥∥∥
2

given in (F.7) into (F.8) together with
some straightforward manipulations. The derivations of (F.7)
and (F.8) are similar to, respectively, the derivations of (E.2)
in Lemma A.4 and (E.3) in Lemma A.5, except that the noise
effect is taken into account. The details are thus omitted, and
are referred to the supplementary result [31]. �

Proof of Lemma A.8: We have

‖r j‖2
(a)≤ √

1 + δ3K ‖xT \� j ‖2 + ‖w‖2

(b)≤ √
1 + δ3K α‖xT \� j−1‖2

+ (1 + √
1 + δ3K β)‖w‖2, (F.9)

where (a) is from [9, eq. (19)] and (b) follows from
Lemma A.7. Note that r j can be expressed as r j = y −
�� j q� j = �x + w − �q̃� j (see Step 3.8 of SP). We then
obtain

‖r j−1‖2 = ‖�(x̃T\� j−1 + x̃� j−1 − q̃� j−1) + w‖2

≥ ‖�(x̃T\� j−1 + x̃� j−1 − q̃� j−1)‖2 − ‖w‖2

(a)≥ √
1 − δ3K ‖xT\� j−1‖2 − ‖w‖2, (F.10)

where (a) follows using the same technique in deriving (E.7).
By assumption, the SP algorithm terminates after l iterations,
i.e., ‖rl‖2 ≥ ‖rl−1‖2, which together with (F.9) and (F.10)
implies

(
√

1 − δ3K − √
1 + δ3K α)‖xT \�l ‖2

≤ (2 + √
1 + δ3K β)‖w‖2. (F.11)

Since (
√

1 − δ3K − √
1 + δ3K α) > 0 as δ3K ≤ 0.2412

(see (E.8)), the assertion of Lemma A.8 directly follows
from (F.11). �
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