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Abstract—In this paper, the interfacial adhesion strength be-
tween metal layer and benzocyclobutene (BCB) polymer dielectric
in 3-D integration applications is investigated. The effects of layer
thickness, layer stacking order, and additional adhesion layer
of titanium (Ti) layer between copper (Cu) and BCB polymer
are investigated. Surprisingly, the conventional titanium adhesion
layer commonly used in the semiconductor industry weakens the
interfacial adhesion strength between copper and BCB. Addition-
ally, to figure out the interfacial adhesion mechanisms, the inter-
facial structures probed by sum-frequency-generation vibrational
spectroscopy are correlated to the adhesion strengths measured
from corresponding sample interfaces. It is found that ordered
C–H groups at the metal/BCB interface, such as titanium/BCB
or molybdenum/BCB, lead to weak interfacial adhesion strength,
whereas disordered interfaces, i.e., copper/BCB, lead to strong
interfacial adhesion strength.

Index Terms—Adhesion, benzocyclobutene (BCB), 3-D
integration.

I. INTRODUCTION

THREE-DIMENSIONAL integrated circuit (3-D IC) is a
new approach for IC fabrication and system integration.

It is very important for advancing the semiconductor industry
because it has many advantages including heterogeneous in-
tegration, high performance, and low power consumption. In
addition, it is viewed as the extension of Moore’s law [1]. The
development of key technologies in 3-D IC is critical before the
new approach can be applied in industrial productions. Bonding
is one of the key technologies in 3-D IC. Among different
bonding schemes including metal bonding and polymer bond-
ing, metal–polymer bonding has recently become a popular
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Fig. 1. The interfacial adhesion structure between copper and BCB in (left)
hybrid bonding and (right) underfill.

methodology in 3-D IC because it can provide both electrical
connection and strength enforcement simultaneously [2], [3].

Regarding the metal and polymer selection for bonding
schemes, copper is a widely used metal for interconnection
in semiconductor fabrication because of its excellent thermal
and electrical properties. In addition, benzocyclobutene (BCB)
is a commonly used polymer in semiconductor and packaging
industries due to its excellent physical properties such as low
curing temperature and high degree of planarization with metal-
lization systems. Therefore, the adhesion between Cu and BCB
polymers becomes important in two schemes of 3-D integration
[4]–[7], as shown in Fig. 1. One is the hybrid bonding scheme,
and the other one is using BCB as an underfill. Adhesion mech-
anisms are mostly related to the interfacial molecular interac-
tions and interfacial chemical structures. However, it is very
challenging to inspect interfacial molecular structures without
breaking the interface. It is also difficult to investigate buried in-
terfaces in situ. The conventional method to investigate a buried
interface is to break the samples and analyze the two surfaces
to deduce the interfacial chemical structures at the originally
buried interface. However, such approach may damage the
original interfacial chemical structure and molecular interac-
tions, particularly for the interfaces with excellent adhesion.

In recent years, sum frequency generation (SFG) vibrational
spectroscopy has been applied to investigate interfaces and
surfaces at the molecular level in situ [8]–[12]. SFG vibrational
spectroscopy is a second-order nonlinear optical procedure
that investigates the second-order nonlinear susceptibility of
the material. The selection rules supply SFG interface and
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submonolayer surface sensitivity [13], [14]. Therefore, SFG
vibrational spectroscopy becomes a powerful technique for
interfacial studies.

SFG vibrational spectroscopy is the only current technique
that can provide vibrational spectra at buried interfaces to figure
out the interfacial mechanisms. Furthermore, SFG vibrational
spectroscopy can be used to examine interfacial molecular
interactions and interfacial chemical structures, such as in-
terfacial bonding formation, interfacial diffusion, orientation
distribution of interfacial functional groups, etc. [15]–[18]. In
this paper, we investigate the adhesion strength between copper
and BCB polymer dielectric to develop the guidelines for
copper and BCB bonding. In addition, since titanium is a com-
mon adhesion layer material in metal/metal and metal/oxide
dielectric interconnect layers of semiconductor devices [19],
the possibility of Ti as the solution for adhesion enhance-
ment needs to be investigated in the case of BCB polymer
dielectric.

On the other hand, in order to realize the adhesion mecha-
nisms between metal and BCB polymer dielectric, SFG vibra-
tional spectroscopy is applied to investigate buried interfaces
between metal and BCB polymer for a better understanding at
the molecular level.

II. EVALUATION OF ADHESION BETWEEN CU OR

TI LAYER AND BCB POLYMER DIELECTRIC

A. Experimental Method of Four-Point Bending Test for
Ti/BCB and Cu/BCB Interface Layers

As shown in Table I, three groups of samples, metal/BCB
polymer layer, are investigated the effect of adding adhesion
layer, metal thickness, and layer stacking order. In group 1, a
3-μm-thick BCB polymer film is formed on bare p-type (100)-
oriented Si wafers first. Some wafers are then sputtered with
a 30-nm-thick Ti layer. Finally, all wafers are sputtered with a
0.2-μm-thick Cu layer. On the other hand, the group-2 wafers
are prepared with the same steps as those for group 1, but the
thickness of Cu and Ti layers is changed to 1.2 μm and 100 nm,
respectively. In order to realize the effect of layer stacking or-
der, in group 3, the wafers are prepared by sputtering a 1.2-μm-
thick Cu layer first on bare Si wafers. Some wafers are then
sputtered with a 100-nm Ti layer. Finally, a 3-μm-thick BCB
polymer dielectric is coated on all these wafers.

In this paper, adhesion strength is estimated by a four-
point bending test, which can assess the interfacial strength of
thin layers [19]. In addition, the four-point bending test can
be used to analyze the fracture behavior at the interface and
measure the fracture energy of debonding layers to obtain the
adhesion strength. The interfacial quantitative fracture-energy
value (GC) can be obtained to estimate the physical adhesion
strength from the following expression [20]:

GC =
21(1 − ν2)P 2

CL
2

16EB2h3

where ν, PC , L, E, B, and h denote the Poisson’s ratio
of the silicon substrate (ν) = 0.28, the critical applied force
(PC), half the difference of the outer to inner span with the

TABLE I
SCHEMATIC OF TEST STRUCTURES AND THE RESULTS OF

CORRESPONDING INTERFACIAL ADHESION STRENGTH

loading points (L) = 17.5 mm, Young’s modulus of the silicon
substrate (E) = 170 GPa, the sample width (B) = 5 mm, and
the half thickness of the sandwich sample (h) = 625 μm,
respectively.

Prior to a four-point bending test, each sample from three
groups of metal/polymer samples is cleaned and then bond face
to face with one bare p-type (100)-oriented silicon samples
with the same size (70 mm × 70 mm) through epoxy glue.
The bonded samples by epoxy glue are annealed at 150 ◦C
for 1 h in nitrogen environment for glue curing. For the four-
point bending test, the bonded samples are subsequently diced
into dies with 5 mm × 70 mm size, and a notch is created in
each bonded sample by dicing at the middle position of the
metal layer/BCB polymer dielectric side. Finally, each sample
of bonded samples, i.e., 5 mm × 70 mm size, with notch is
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Fig. 2. (a) Four-point bending test tool setup. (b) Schematic of the test
structure.

prepared for the next four-point bending test. Fig. 2(a) and (b)
shows the setup of the four-point bending test and a schematic
of the testing structure, where PC/2B is the bending force per
unit length.

B. Investigation of the Effects of Adding Adhesion Layer,
Metal Thickness, and Layer Stacking Order

After the four-point bending test, X-ray photoelectron spec-
troscopy (XPS) and scanning electron microscopy (SEM) are
used to investigate the fracture interface location and morphol-
ogy. The location of the facture interface can be determined
by detecting the composition of copper, titanium, carbon, and
silicon elements. Through the evaluation of the four-point
bending test, the fracture behavior at the metal/BCB interface
can be analyzed. The critical applied force makes the fracture
interface of metal/BCB, and the interfacial quantitative fracture
energy (GC) can be obtained from the aforementioned formula.
Therefore, the fracture energy can be obtained to evaluate the
adhesion strength of each metal/BCB test structure.

Table I shows the measured results of interfacial quantitative
fracture energy (GC) for three group samples to investigate
the effect of adding adhesion layer, metal thickness, and layer
stacking order. The results from groups 1(a) and 2(a) indicate
that increasing the thickness of the copper layer is not a critical
factor to affect the interfacial adhesion strength. For all other
groups, the extra titanium layer cannot enhance the interfacial
adhesion strength between BCB and copper metal, but causes
interfacial adhesion strength degradation. It is unexpected that
titanium, which is a common adhesion layer material in the
interconnect layers of semiconductor IC devices, weakens
the interfacial adhesion strength. However, the results from
group 3 show that changing the stacking order of copper and
BCB polymer can effectively increase the interfacial adhesion
strength significantly, and the group 3(a) structure without an
extra Ti layer has yielded the best fracture energy result in
this study.

In general, the interfacial stress between layers is dependent
on the thickness of the metal layer. In this study, the scale of
copper layer thickness is small, and the interfacial stress effects
between thin films are not obvious [22]. Therefore, the variation
of interfacial adhesion strength for groups 1 and 2 is low and
about the same quantity.

Fig. 3. (a) Fracture interface of one sample after the four-point bending
test. (b) and (c) XPS results of copper and carbon from group 3 without the
titanium layer, respectively. (d) Scheme of the fracture path during the four-
point bending test.

From the experimental results, since the thermal expansion
coefficients of different materials induce the interfacial stress
mismatch between different layers, layer stacking order can
affect the interfacial adhesion strength significantly. A well-
designed layer stacking order for a multilayer structure can
minimize the extrinsic stress of mismatch, which can further
increase the interfacial adhesion strength [23].

The BCB polymer used in this study is CYCLOTENE
4000 Series advanced electronic resins (photosensitive BCB).
In general, BCB polymers have siloxane groups and −CH3,
−CH2−, and >CH− groups in the backbone. Since Si atoms
from the substrate may contaminate the BCB surface during
sample preparation, we choose the C atom signal for detecting
the BCB polymer. Fig. 3(a) shows the cross-sectional SEM
image of the sample Si–Cu(1.2 μm)–BCB(3 μm) (group 3a in
Table I) after the four-point bending test. It is clear to show
that the BCB polymer and the Cu layer still bond together,
which indicates that the interfacial quantitative fracture energy
(GC = 11.2 J/m2) comes from the epoxy glue or BCB polymer,
but not the interface between copper and BCB polymer. XPS
analysis results show that most interface fractures are located
on copper/BCB or titanium/BCB, except for the group 3(a)
test structure. As Fig. 3(b) and (c) presents, the XPS results
on the fracture interface surface show that the copper element
is not detected, but carbon signals containing C–C, C–H, and
C–O peaks, which may come from BCB and epoxy glue, are
detected. Fig. 3(d) shows the scheme of the fracture path in a
strong adhesion Cu/BCB structure during four-point bending.

III. COMPARISON STUDY OF DIFFERENT METALS

WITH BCB POLYMER AND RESULTS FROM SFG
VIBRATIONAL SPECTROSCOPY

A. Adhesion Investigation of Different Metals With BCB
Polymer Dielectric

In order to realize the reason that the interfacial adhe-
sion strength of the structure with added adhesion layer Ti
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TABLE II
PROPERTIES OF METALS TESTED

Fig. 4. Metals tested and corresponding adhesion strength results.

(Si–BCB–Ti–Cu) is significantly lower than that without
the titanium layer (which means only the Cu layer on the
BCB sample), different metal layers are considered through
four-point bending tests with the same layer thickness and
stacking order. Table II and Fig. 4 show the interfacial adhesion
strengths related to material density and crystal structure. For
two metals with the same crystal structure (HCP or BCC or
FCC), the one with the higher density has the higher interfacial
adhesion strength. It indicates that the interfacial adhesion
strength of the BCB polymer and metal layer correlates closely
with metal densities of similar crystal structure classification.
Therefore, considering the cases of Si/BCB/Cu and Si/BCB/Ti,
the interfacial adhesion strength of copper/BCB is larger than
that of titanium/BCB. Consequently, using Si–Cu–BCB layer
stacking order without the titanium layer for the fabrication of
copper/BCB on the silicon wafer can achieve the best adhesion
strength and could be adopted in 3-D integration application.

B. Interfacial Investigation of Metal/BCB Polymer With SFG
Vibrational Spectroscopy

In order to understand the interfacial adhesion mechanisms
between copper or titanium and BCB polymer dielectric, SFG
vibrational spectroscopy is applied to investigate buried inter-
faces between metal and BCB polymer after a cure process.
The samples for the SFG data collection have a similar process
with the four-point bend test but without the following epoxy

glue bonding process. The correlation between molecular-level
chemical structures and physical adhesion strength is also in-
vestigated. In this study, a laser beam at 795 nm is generated
with a repetition rate of 1000 Hz and energy of 2 mJ/pulse. The
50% of the laser beam is used to produce a narrow-bandwidth
2-ps beam, and the rest is used to pump an optical parametric
amplifier (TOPAS-C, Coherent) to generate an IR beam. All
SFG spectra in this experiment are collected using the ssp
(s-polarized sum frequency output, s-polarized visible in-
put, and p-polarized IR input) polarization combination. The
795-nm beam (s-polarized) and the IR beam (p-polarized) are
temporally and spatially overlapped on the surface of the sam-
ple, with incident angles at 60◦ and 50◦, respectively. Finally,
the SFG vibrational spectroscopy signal is detected by a charge-
coupled device and collected from the interfaces between the
BCB and metal.

Fig. 5(a) shows the SFG spectrum of an air/BCB interface
(3-μm thickness of BCB on Si). Two main peaks are observed
at 2870 and 2930 cm−1, which are consistent with the methyl
group symmetric C–H stretching mode and the Fermi resonance
[18], [24].The SFG spectral results indicate that the methyl
groups are ordered at the air/BCB interface. The general C–H
spectral range, i.e., 2800–3000 cm−1, can be detected through
SFG vibrational spectroscopy [16]–[18], [24].

The location of one C–H spectral peak is determined by the
interference of resonant modes. Therefore, C–H spectral peaks
at different locations may be detected in each individual case
[18], [24]. Fig. 5(b) and (c) shows the SFG spectra of molyb-
denum/BCB and titanium/BCB interfaces, respectively. Both
SFG spectral signals show strong peaks at ∼2950 cm−1 in the
C–H range at the interface of molybdenum/BCB and titanium/
BCB, due to the methyl Fermi resonance [24]. The peak at
2880 and 2860 cm−1 can be observed, indicating that methyl
groups C–H symmetric stretching and Fermi resonance are
ordered at the interface [24], [25]. Another peak at 2920 cm−1

can also be observed, revealing that methylene groups are also
ordered at the metal/BCB interface [24]. These SFG spectral
results show that after depositing the molybdenum and titanium
layer, the C–H groups still remain in order at the metal/BCB
interface. In addition, a peak at 2850 cm−1 (negative peak) is
detected in the case of titanium/BCB because of methylene
symmetric stretching [24], [26]. Due to interference between
resonant and nonresonant contributions or between contribu-
tions from different resonant modes, the resonant peaks in the
SFG spectra (from a metal/polymer interface) may appear neg-
ative or asymmetric [18]. In fact, the significance values of the
positive and negative peaks are the same. Their main difference
is the order direction. Furthermore, the small positive or neg-
ative peak could be considered that an extreme small amount
of C–H groups is ordered at the interface or system noise.

However, in the range of C–H spectrum, no SFG spectral
signal can be detected from the interface of copper and BCB
polymer, indicating an interfacial disordering in Fig. 5(d).
Comparing Fig. 5(b), (c), and (d), it is clear that the C–H groups
of BCB are observable at the interfaces of titanium/BCB and
molybdenum/BCB, whereas it is undetectable at the copper/
BCB interface. It demonstrates that the BCB polymer main-
tains certain ordering at the interfaces of molybdenum/BCB
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Fig. 5. SFG spectrum of (a) air/BCB, (b) Mo/BCB, (c) Ti/BCB, and (d) Cu/
BCB interfaces.

and titanium/BCB but becomes disordered at the copper/BCB
interface. The ordering change of BCB upon deposition of the
copper film is an indication that there is a stronger interaction
between copper and BCB, which is consistent with the above
four-point bending test.

In this paper, the direction of C–H groups at the Cu/BCB
interfaces may be changed from toward the copper layer to
the interface. However, for the molybdenum or titanium layer,
the C–H groups can be contributed from different resonant

modes without excluding the C–H groups from the metal layer.
On the other hand, we agree that the possibility of the Cu
atom diffusing and migrating into the BCB layer should be
considered. It is really possible that the interfacial boundary
between Cu and BCB may be blurred from Cu atom diffusion,
which results in the disorder of C–H groups. However, these
assumptions need to be further investigated as well as the
adhesion mechanism among metal/BCB.

Furthermore, the surface roughness and inherent chemical
nature should be considered in interfacial adhesion strength
investigation. The surface roughness may be one of key factors
about interfacial adhesion. The adhesion mechanism of surface
roughness is similar to a mechanical interlock action, and
the effect of mechanical interlock on adhesion strength with
surface roughness has been discussed in detail in the previous
study [27].

Another possible factor is the inherent chemical nature of
polymer, which needs to be evaluated considering other types
of polymer dielectric materials. In this paper, since BCB is
a commonly used polymer in semiconductor and packaging
industries, we focus on the interfacial chemical property for
metal/BCB with considering the ordering of C–H groups. In
order to effectively study the interfacial polymer group ordering
with the aid of SFG vibrational spectroscopy, further research
need to be carried out with other types of polymer dielectric
materials such as SU8 and polyimide.

IV. CONCLUSION

Interfacial adhesion strength between metals and BCB poly-
mer dielectric has been investigated using the four-point bend
test method in this paper. The layer stacking order for the test
structure was found to impact the adhesion strength between
metal and BCB layers. The addition of a Ti layer between Cu
and BCB showed poor interfacial adhesion strength. An in-
crease in adhesion strength was observed with metals of higher
material density and crystal order. In addition, SFG vibrational
spectral results were useful in understanding the interfacial
adhesion behaviors between metals and BCB layers through the
ordering of C–H organic groups in the BCB polymer dielectric
material. The presence of such molecular ordering in the case
of Mo/BCB and Ti/BCB interfaces showed poor adhesion. On
the other hand, negligible SFG spectral signal in the case of
the Cu/BCB interface corresponds to disordering of the BCB
organic groups, which promotes improved adhesion.
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