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Norm-Constrained Capon Beamforming Using
Multirank Signal Models With
Kalman Filter Implementation
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Abstract—The performance of the Capon beamforming is
known to degrade dramatically in the presence of model mis-
matches, especially when the desired signal is present in the
training data. To improve the robustness, the diagonal loading
technique was introduced. However, the major drawback is
the selection of the diagonal loading level, which is related to
the unknown signal powers. Another way to alleviate perfor-
mance degradation is to use a more accurate signal model of the
array response. In this paper, a norm-constrained Capon beam-
forming using multirank signal models is proposed. Based on
the pseudo-observation method, the quadratic constraints can be
easily constructed. The problem is solved by a nonlinear Kalman
filter which can be implemented on-line. The simulation results
show that the design of the norm-constraint value is less sensitive
to the signal powers, small angle mismatches, and number of
sensors with a standard linear array. Further, it is shown that the
use of a multirank signal model and Kalman filter technique result
in less self-cancellation and performance degradation than that of
the rank-1 signal model and the estimation of sample matrix.

Index Terms—Capon beamforming, Kalman filter, multirank
signal model, norm constraint.

I. INTRODUCTION

C APONbeamforming [orminimum variance distortionless
response beamforming, (MVDR) beamforming] aims to

minimize variances of the interferences and noise while main-
taining the desired array response. It is known to degrade dramat-
ically due to even small mismatches of the desired signal model,
especially when the desired signal is present in the training data.
The research on robust Capon beamforming has focused on
maintaining the output signal-to-interference-and-noise-ratio
(SINR) performance against several array or propagation uncer-
tainties. In the real world environment, the spatial correlation
is typically multirank due to local scattering, wavefront fluc-
tuation, or reverberation [1]–[5]. It requires a multirank signal
model to provide a more accurate representation of the wave
propagation of the desired source to the sensors. In this case,
if the array response formulated by the multirank signal model
is known exactly, performance degradation as described above
can be alleviated. To further reduce the sensitivity to arbitrary
kinds of mismatches, the diagonal loading (DL) [6]–[10] tech-
nique has been widely used to improve the robustness of the
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Capon beamformer. The major drawback of DL is that it is hard
to choose the diagonal loading level since it is related to the
unknown signal power. Norm-constrained Capon beamforming
(NCCB) is known to be equivalent to DL [7], [10]. However,
knowledge of how to choose the norm-constraint value has not
been completely studied. In this paper, we will demonstrate
the superiority of using the norm constraint to the original DL
formulation (Section V).
To facilitate flexible implementation, the NCCB is solved

via the constrained Kalman filtering technique. Constrained
Kalman filtering [11]–[15] has been widely investigated in
the last decade. The approaches mainly fall into one of three
categories: pseudo-observation methods (or penalty methods),
projection methods, and dimension reduction methods. Among
these methods, the pseudo-observation method is the most
intuitive way in merging the constraints into the state space of
the Kalman filtering by considering the constraints as additional
measurement equations. In this way, several existing nonlinear
Kalman filtering algorithms can be directly applied. Chen and
Chiang [16] were the first to introduce the penalty method
[14], [15] into the traditional Capon beamforming problem.
El-Keyi et al. used the penalty method in robust adaptive beam-
forming based on worst-case performance optimization [17]. In
this paper, we also use the penalty method for robust adaptive
beamforming with multirank signal models and an additional
norm constraint. The settings of the initial conditions and pa-
rameter matrices are studied to achieve good performance and
prevent the ill-conditioning problem. Compared to the previous
work [1], the computation of the principal eigenvector can be
avoided in the proposed method.
Since the NCCB problem with multirank signal models is

quadratic, the associated nonlinear Kalman filtering can be
solved directly by the extended Kalman filter (EKF) [18]–[20].
Another popular method is the unscented Kalman filter (UKF)
[20]–[22]. The EKF approximates the Jacobian and Hessian
matrices (in the first- and second-order approximations) of the
nonlinear functions, while the UKF approximates the proba-
bility distribution of the nonlinear transformation using sigma
points. Theoretically, the second-order extended Kalman filter
(SOEKF) gives the best approximation in the mean square
error (MSE) sense. However, due to the approximation of the
second-order errors, the SOEKF is more sensitive to improper
initial conditions and parameter matrices. The comparison of the
above nonlinear Kalman filters will be discussed in Section VI.
The remainder of this paper is organized as follows. In

Section II, we briefly review the Capon beamforming problem
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with multirank signal models. Section III introduces the NCCB
problem with multirank signal models. Section IV gives the
state-space model of the NCCB problem based on the penalty
method and presents the solutions using the EKFs and the UKF.
Section V shows the superiority of design of the norm-con-
straint value and Section VI compares the beamformers.
Finally, the conclusions are drawn in Section VII.

II. PROBLEM FORMULATION

Considering an array with sensors, the output of a narrow-
band beamformer is given by

(1)

where is the time index, is the complex observa-
tion vector, and is the complex beamformer weight
vector. The observation vector is composed of statistically in-
dependent components as

(2)

where , and are the desired signal, interference,
and sensor noise, respectively. In the general case of the Capon
beamforming problem, the weight vector is designed to min-
imize the output power subject to a distortionless constraint
as [1]

(3)

where

(4)

(5)

are the signal and interference-plus-noise covariance matrices,
respectively. This problem is equivalent to maximizing the
SINR [1]

(6)

The signal covariance matrix describes the relationship be-
tween the desired source and the sensors. One commonly used
model of the signal field is a point source in a homogeneous
field [23], where is measured as

(7)

where and are the variance and steering vector of the de-
sired signal. In practical environments, is multirank due to
the local scattering, wavefront fluctuation, and reverberation.
In the case of an incoherently scattered source, can be ex-
pressed by

(8)

where is the normalized angular power density function
, and is the steering vector at direction

.

In practical applications, is estimated by the input sample
covariance matrix as

(9)

where is the training size. An analytical solution to the Capon
beamforming problem in (3) is given by

(10)

where denotes the operator that yields the normalized
principal eigenvector of a matrix where the normalization
is applied to satisfy the distortionless constraint in (3). This
solution is denoted as the multirank sample matrix inverse
(MRSMI) beamformer [1]. However, when the desired signal
exists in the training data, Capon beamforming is known to
degrade dramatically due to the mismatches between the pre-
sumed and actual array responses to the desired signal [1]. This
is the so-called self-cancellation phenomenon. To improve the
robustness of Capon beamforming against mismatches, one of
the most popular approaches is DL method. It is equivalent to
imposing an additive noise on the input covariance matrix [6],
[7], and the solution is modified as

(11)

where is the DL level to be determined. This solution is re-
ferred to as the multirank loaded SMI (MRLSMI) beamformer.
The major drawback of MRLSMI is that it is not clear how to
choose the best DL level since the optimal choice depends on
the unknown source power. In this paper, we will show the su-
periority of the selection of the norm-constraint value compared
to the DL level. Further, the benefits of using multirank signal
models and the Kalman filter are also studied.

III. NCCB WITH MULTIRANK SIGNAL MODELS

Cox et al. [7] have shown that the DL problem is equivalent
to the NCCB problem. For the multirank case, the NCCB can
be expressed by

(12)

where

(13)

denotes the normalized matrix of denotes the trace
operator; and is the designed constraint value of the squared
weight vector norm. The normalization of (13) removes the ef-
fect of and leaves spatial characteristics only. This helps to
design the threshold , which will be discussed later.
The Lagrangian function of (12) can be defined by

(14)
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By letting the derivatives with respect to , and be equal
to zero, an explicit solution to the Lagrangian function (13) has
the same form as (11)

(15)

where the normalized principle eigenvector has to satisfy
both the constraints in (12). According to the norm constraint

and the solution given by (15), the boundaries
of the norm-constraint threshold can be obtained by choosing

and

(16)

where

(17)

(18)

denotes the standard Capon beamformer and
denotes the matched filter for the multirank case. It is worth
noting that the squared norm of that satisfies the dis-
tortionless constraint can be written as

(19)

where denotes the maximum eigenvalue of .
The matched filter is known to be optimal in the incoherent
noise field (for rank-1 signal model, it is the well-known
delay-and-sum filter).
For the case of the rank-1 signal model, the weight vector

can be decomposed into the subspace of the presumed steering
vector and its null space based on the concept of the generalized
sidelobe canceller (GSC) [6] as

(20)

where is the null space and the weight vector satisfies the
distortionless constraint . In this case, the norm of
the weight vector can be expressed as

(21)

It can be observed that the norm constraint restricts the norm of
the vector that does not belong to the feasible set of the dis-
tortionless constraint. In the case of the multirank signal models,
the weight vector can be decomposed in a similar way

(22)

If the signal model described by is full-rank, its null space
does not exist. As a result, the norm constraint is used to penalize
the additional term that does not satisfy the distortionless
constraint. In order to express the effect of , we decompose
the threshold into

(23)

By expressing as (23), we found that the best selection of is
between 0.005 and 0.02 which only depends on the number of

sensors. It is useful that the best selected does not change with
different signal mismatches or noise conditions. In comparison,
the selection of the DL level is hard and sensitive to the desired
signal power. In Section V, we will demonstrate the superiority
of tolerance to the signal power and small angle mismatches
using the best selected .
Note that the norm constraint on the Capon beamforming

problem is useful only when there is a contradiction between
the minimization of the output power and the distortionless con-
straint. In detail, when the presumed and actual signal models

are mismatched, the input desired signal may be consid-
ered as interference and a sharp transition can occur to satisfy
the minimization and distortionless objectives (similar principle
in [10]). Such transition increases the Euclidean norm of the
weight vector, thus the imposed norm constraint is helpful in
alleviating the self-cancellation. Once the model mismatch is
large, the desired signal is wholly considered as interference
and the contradiction is not activated. In this case, the norm con-
straint can no longer protect the desired signal from self-cancel-
lation. On the other hand, the DL works better in large model
mismatches with carefully designed DL levels.
As a result, the design with the norm constraint is expected

to be useful without choosing and is expected to be more ro-
bust under moderate model mismatch conditions. In largemodel
mismatch conditions (which more easily occur with small an-
gular spreading and large angle mismatch), the norm constraint
may fail to protect the desired signal.

IV. SOLUTIONS USING THE KALMAN FILTER

The NCCB problem is formulated into a state-space model
by using the penalty method. Based on the state-space model,
nonlinear Kalman filtering approaches can be used to solve the
quadratic problem. Subsequently, the settings of the initial con-
ditions and parameter matrices are discussed.

A. State-Space Formulation Using the Penalty Method

The pseudo-observation method (or penalty method) treats
the set of constraint equations as additional observations
without measurement noise [14], [15]. In this case, the con-
straint equations are called perfect measurements, and the
constraints are considered as “hard constraints”. However, it is
known that perfect measurements result in a singular error co-
variance matrix, which will lead to the ill-conditioning problem
in the Kalman filter. Thus, small variances of the constraint
equations are added instead which gives the “soft-constrained”
solutions.
Considering the NCCB problem in (12), the state-space

model is given as (24)–(28),
State-Space Formulation of the NCCB Problem
State equation

(24)

Measurement equation

(25)
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where

(26)

(27)

A vector form of (25) is expressed as

(28)

where and are the process andmeasurement noises
respectively. Typically, the noise processes and
are assumed to be zero-mean and mutually uncorrelated with
the covariance matrices

(29)

(30)

The only real measurement in (25) is the input vector in the
first equation given by the objective of minimizing the filtered
output power in the MSE sense, i.e., .
Considering the measurement update in the Kalman filter

(31)

It can be shown that the estimated state is the solution to
the optimization problem [15]

(32)

where is the Kalman gain and is the a priori state
error covariance matrix at time index . Now the constraint pa-
rameters and act as penalty terms. When the constraint
parameters approach zero, the weightings of the constraint costs
are increased, and the solutions that do not satisfy the constraint
are more penalized. The solution of the penalty should approach
the solution of the NCCB problem in (12) if the constraint pa-
rameters and are much smaller than . This means that
the approximation of the nonlinear functions is adequate. To
avoid numerical problems, typically the constraint parameters
are set to be nonzero values. Therefore, the penalty method does
not satisfy the constraints strictly, but provides a flexible ap-
proach to incorporate different equality constraints.

B. Solutions Using EKFs

The measurement equation described by (28) can be ap-
proximated by the Taylor series expansion to the second-order,
around an estimate , as

(33)

where and is the number

of measurement equations. denotes the Jacobian matrix of
the nonlinear function , and denotes the Hessian
matrix of the -th measurement equation in . Two
major algorithms of the nonlinear Kalman filtering are the EKF
[18]–[20] and the UKF [20]–[22]. The EKF directly estimates
the Jacobian and Hessian matrices. On the other hand, the
UKF implicitly estimates the first- and second-order terms in
the nonlinear transformation in (33) using sigma points. The
Jacobian and Hessian matrices of the nonlinear function in (28)
can be computed as

(34)

(35)

(36)

(37)

The first- and second-order extended Kalman filters (FOEKF
and SOEKF) can be summarized as (38)–(43) [20].
Multirank NCCB Using the FOEKF and SOEKF

(38)

(39)

(40)

(41)

(42)

(43)

where and are the innovation vector and its covari-
ance matrix. In the SOEKF, the Hessian matrices lead to the
additional terms in the innovation and its covariance ma-
trix under the MSE sense. The bias terms and
in our problem can be expressed as

(44)

(45)

C. Solutions Using UKFs

The UKF uses sigma points to approximate the first- and
second-order moments of the nonlinear transformation. There
are different ways to set the sigma points and the weightings
[20]–[22]. In this paper, we choose the method given by [20]
since it gives positive weightings. The sigma points
for the approximation of the nonlinear measurement equations
are generated by (46), shown at the bottom of the following
page, and the transformed sigma points are given by

(47)
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where denotes the -by-1 all-one vector. The UKF is sum-
marized as (48)–(56) [20].
Multirank NCCB Using the UKF

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

D. Initial Conditions

The setting of the initial conditions is important for con-
strained Kalman filtering problems. The initial conditions
should satisfy the constraints or at least be close to the feasible
sets of the constraint in the order of the chosen variance param-
eter in matrix . Improper settings can dramatically degrade
the performance under nonlinear constraints. In our application,
the distortionless constraint should be satisfied to maintain the
array response. According to the decomposition of in (22), it
is suggested that the initial state be set as

(57)

which strictly satisfies the distortionless constraint. On the other
hand, for the initialization of the a posteriori state error covari-
ance matrix , we can refer to the update in the projection
method for the rank-1 case [11], which gives a projection matrix
of the null space of the steering vector

(58)

Likewise, for the case with multirank signal models, can
be initialized as

(59)

E. Estimation of Parameter Matrices

In the update equations of the proposed Kalman filters,
there are two parameter matrices to be determined: and
. In general, stands for the random walk during the state

update, which is typically assumed as stochastically white. For
stationary environments, can be chosen. The larger
the parameter chosen, the larger the allowed random walk
of the state. i.e., the state variation can be large to track the
nonstationary environmental changes. Second, corresponds
to the error variances of each measurement. In (30), corre-
sponds to the average output power. It is suggested to be the
same order of the optimal output power of the array; however,
the variance of the desired signal is not known a priori and it
is related to the norm of the state . and correspond to
the augmented distortionless and norm constraints. controls
the fitness of the distortionless constraint in (12). When
approaches zero, the beamformer approaches the matched filter
in (18), which is distortionless to the presumed signal model
but fails to reject the interferences. controls the fitness of
the norm constraint. The norm constraint controls the sidelobe
level of the beamformer. When the norm-constraint value
is small and approaches zero, the beamformer emphasizes
reducing the sidelobe level instead of rejecting interferences.
Since there is only one “true measurement” in the measure-

ment equations, we propose only to estimate the parameter
and consider and as adjustable parameters to control the
tradeoff between signal distortion and interference rejection.
Contrary to the adaptive beamforming problems [16], [17],
which suggested setting the variance parameters corresponding
to the constraints as a very small value , it is suggested in
this dissertation to set a “properly” small value if there are some
tradeoffs between the constraint sets. For such a case, if both
and are set very small, the problem may not be feasible.

For the uniform linear array (ULA) with ten elements and
half-wavelength spacing, is a good choice for the tradeoff
between the distortionless and norm constraints. Further, to
avoid the ill-conditioning problem, the condition number of
the parameter matrix should be controlled. In this case, we
propose to use the following form:

(60)

where is the small variance set for the con-
straints. In this case, the condition number of is guaranteed
to be smaller than .
The parameter is estimated in a recursive way as

(61)

where is the forgetting factor close to unity and is the
first element of the innovation vector . The recursive ap-
proach is similar to the work in [24].

(46)
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Fig. 1. Normalized angular distribution function of the scattered source.

Compared to the variance estimation which used the a priori
state error covariance matrix [25], [26], the recursive
estimator in (61) depends on only the innovation and is not af-
fected by the initial conditions. This guarantees the stability of
the whole system. Typically, the parameter is initialized as
zero. For the simulations, is chosen.

V. ANALYSIS OF THE NORM-CONSTRAINT VALUE

In this section, we show that the best selected norm-constraint
value is less sensitive to the input signal powers,
central angle mismatches, and number of sensors than the se-
lection of the DL level with a standard linear array. For all
the analyses, the theoretical covariance matrices of the signals
were used. The equivalent of a chosen can be derived from
the equation .
For Simulation 1, the sensitivity of and to the input signal

powers are studied. A ULA of sensors with half-wave-
length spacing was used. The multirank signal model shown in
Fig. 1 was utilized with presumed central angles equal to 0 .
The scattered desired source and interference impinged into the
array from the central angles and 45 , respectively. Thus,
a 5 central angle mismatch was considered. The sensor noise
power was set to 1, and the interference-to-noise ratio (INR)was
30 dB. The signal-to-noise ratio (SNR) varies from 20 dB to
30 dB. Fig. 2 shows the output SINRs versus input SNRs for dif-
ferent selections of and . It can be seen that (note
that the ) and are good
choices considering all input SNR conditions. These values will
be used as the best choices for the rest of the simulations. For the
selection of , higher values give more penalties on the spatially
white noise (or incoherent noise), which leads to the matched
filter being . The matched filter does not form nulls in
the directions of interferences; hence, it may have poor output
SINR performance. As , this becomes the MVDR solu-
tion without norm constraint, which is sensitive to the array mis-
matches and has severe self-cancellation at high input SNRs.
For the selection of , it can be expected that the variation of
output SINR with different is relatively smaller than that with
different due to normalization of the eigenvector. When the

Fig. 2. Output SINR versus input SNR. (a) Different DL levels . (b) Different
norm-constraint values .

norm-constraint value , the weight vector becomes the
matched filter. When approaches the upper bound given in
(18), it results in the standard Capon solution.
From Figs. 3 and 4, the optimal selections of and for

different input SNR conditions are illustrated. In the figures,
the star symbols mark the optimal selections for each case. It
is obvious that the optimal selection of strongly depends on
the input signal power, while the optimal selection of is less
sensitive to the input signal power. Further, we found that the
best selection of only depends on the number of sensors and
does not change with different signal mismatch or noise con-
ditions. Since the powers of the desired signals are unknown a
priori and even time varying, the proposed robust beamformer
provides consistent SINR performances due to the insensitivity
of to the signal powers. Fig. 5 compares the best selected
and for different input SNR conditions. Since the optimal

choice of depends on the desired signal powers, the proposed
norm-constrained robust beamformer with the optimal gives
better output SINRs for most SNR conditions.
In Simulation 2, the comparison between the best selected

and for different central angle mismatches is analyzed. For
Simulations 2 and 3, the input SNR was set as 30 dB. It can be
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Fig. 3. Output SINR versus for different input SNRs.

Fig. 4. Output SINR versus for different input SNRs.

Fig. 5. Comparison between the best selected and for different input SNR
conditions.

seen from Fig. 6 that for small angular mismatches, the pro-
posed norm-constrained robust beamformer with the best se-
lected performs better than the best selected . As the input
SNR increases, the performance superiority becomes more ob-
vious when a small angular mismatch exists. This is because the
diagonal level becomes relatively small to the signal power and
is insufficient to maintain the robustness. It is also worth noting
that for low and moderate input SNR conditions, the method

Fig. 6. Comparison between the best selected and for different central
angle mismatches.

Fig. 7. Comparison between the best selected and for different numbers of
sensors.

using norm constraint outperforms that using DL even when
there is no angular mismatch. In this case, the improper large
DL reduces the eigenvalue spread of the sample matrix that is
not needed when there is no mismatch and hence degrades the
output SINR performance.
In Simulation 3, the comparison between the best selected

and for different numbers of sensors is investigated. Again, the
superiority of using the norm-constrained robust beamformer is
demonstrated in Fig. 7.

VI. SIMULATION RESULTS

In this section, the comparisons of the beamformers are
studied. The simulation condition is the same as in Simulation
1, except that the generated simulated data is used. For each
scenario, the average of 100 simulation runs is used to obtain
each data point. The detailed parameter settings and abbrevia-
tions of the algorithms are listed below:
1) MRSMI: Multirank sample matrix inverse [1]. The algo-
rithm is implemented by (10).

2) MRLSMI: Multirank loaded sample matrix inverse [1].
The algorithm is implemented by (11), where the DL level
is chosen as (note that the
).
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Fig. 8. Comparisons of the beamformers at 0 dB input SNR. (a) Output SINR
versus training size. (b) Beam pattern.

3) Rob: Robust adaptive filter given by (53) in [1]. The pos-
itive and negative DLs are chosen as and .
Note that for the selection of , the multirank signal model
is normalized as (13). The selection of is smaller than
the maximal eigenvalue of the normalized signal model to
guarantee the feasibility of the robust beamformer [1].

4) CKF: Constrained Kalman filter [16]. The CKF uses the
rank-1 model without the norm constraint and constructs
the state space using the penalty method. The parameter
matrices is set to a zero matrix, and the diagonal terms
of are set as and , where is estimated
using (61) with the forgetting factor .

5) RLSVL: Recursive least square with variable loading [27].
The RLSVL uses the rank-1 model and the GSC structure.
A norm constraint is imposed on the nulled vector to im-
prove the robustness. The forgetting factor and the norm
constraint are set as 0.999 and 0.2 as suggested in paper
[27].

6) MRNCKF-FOE: Multirank norm-constrained first-order
extended Kalman filter. The proposed beamformer is
implemented using (38)–(43) by letting both and

be zero. The parameter matrix is set to a zero

Fig. 9. Comparisons of the beamformers at 20 dB input SNR. (a) Output SINR
versus training size. (b) Beam pattern.

matrix, and is set as in (60) with for all the
proposed Kalman filters, where is estimated using (61)
with the forgetting factor . The norm constraint
value is chosen.

7) MRNCKF-SOE: Multirank norm-constrained second-
order extended Kalman filter. The proposed beamformer
is implemented using (38)–(43) with the second-order
terms and .

8) MRNCKF-U: Multirank norm-constrained unscented
Kalman filter. The proposed beamformer is implemented
using (46)–(56).

For the first case, the convergences and beam patterns at
dB are studied. Fig. 8(a) shows the output SINR

performance versus the training size. The presence of the
desired signal causes the SINR performance to deteriorate due
to the self-cancellation phenomenon, which can be observed in
Fig. 8(b) around the central angle of the desired source .
Considering the performance of the pairs (MRSMI, MRLSMI)
and (CKF, RLSVL), it can be observed that the norm constraint
improves the SINR performance. From the comparison of the
MRLSMI and Rob beamformer, the negative loading in Rob
clearly improves the SINR performance. In this simulation,
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Fig. 10. Output SINR versus input SNR for different beamformers.

the proposed robust beamformer, MRNCKF-FOE, gives the
best performance among all the algorithms. It is worth noting
that the Kalman filter solutions seem to be more robust to the
steering mismatches than the beamformers using the estimation
of sample matrix. The Kalman filter is a close-loop system
which constrains the weight vector to the desired array response
in each iteration. On the other hand, the sample matrix inverse
method is an open-loop system which constrains the weight
vector after the sample matrix is estimated. Therefore, the latter
can be easily affected by the contaminated sample matrix since
the importance of the training data is the same when estimating
the sample matrix. Compared with the Rob [1], the proposed
method provides a more flexible structure so that additional
constraints can be easily imposed for other problems. Besides,
the eigenvalue decomposition is not needed. From the beam
pattern, it is shown that the proposed MRNCKF-FOE, gives
the best output SINR since it has the smallest signal distortion
at while keeping the same order of noise rejection at 45 .
For the second case, the convergences and beam patterns at

dB are studied. In Fig. 9(a), the large signal power
slows down the convergence of the algorithms. The strong
signal power leads to larger self-cancellation for the MRSMI
and MRLSMI beamformers. Despite the difference between
the Kalman filter and the one using the sample matrix, it also
reveals that the chosen DL level of the MRLSMI beamformer
is not appropriate under this SNR condition (see Fig. 3). This
demonstrates the advantage of using the norm constraint with
a more robust selection of the norm-constraint value. The
negative loading skill used in the Rob beamformer greatly
compensates for the problem of selection of . However, the
performance of the proposed beamformer outruns the Rob
beamformer as the number of iterations grows.
For the third case, the output SINR of the beamformers versus

the input SNR is illustrated in Fig. 10. The training size of this
simulation is . When the input SNR is small, all the
beamformers converge to the optimal MVDR solution. As the
SNR increases, the differences between the algorithms become
obvious. It is shown that the proposed beamformer has the best
performance through different SNR conditions.

Fig. 11. Output SINR versus input SNR for proposed Kalman filters.

Fig. 12. Beam patterns of the proposed Kalman filters at 20-dB input SNR.

For the last case, the output SINR of the proposed Kalman
filter solutions versus the input SNR is illustrated in Fig. 11. It
can be seen that the performances of the FOEKF and SOEKF
are almost the same. Compared to the extended solutions,
the UKF with the sigma points suggested in [20] has a worse
SINR performance. The UKF implicitly estimates the first-
and second-order approximation terms of the Taylor expansion
using sigma points. The sigma points were spread based on

times eigenvectors of the error covariance . An
issue for the spreading of sigma points is invoked when some
error dominates the covariance . In this case, some
sigma points are spread far away from the constraint sets and
the neighborhood of the current state estimate, which can
induce improper nonlinear transformations that degrade the
performance of the UKF. Tuning the sigma points for UKF
could possibly give rise to a better performance, but it may
require new algorithms that are beyond the scope of this paper.
Besides, the results indicate that the first-order extended solu-
tion is good enough for our problem. In Fig. 12, it can be seen
that the large error of interference rejection enforces noise re-
duction at both 45 and , which results in self-cancellation.
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VII. CONCLUSION

In this paper, we proposed a robust beamformer with multi-
rank signal models and the Kalman filter. Compared to the use
of the DL form, we showed that designing a standard linear
array with the norm-constraint value is less sensitive to un-
known signal powers, small angle mismatches, and the number
of sensors. Further, in comparison with the selection of the DL
level, the best selection of the norm-constraint value only de-
pends on the number of sensors and is robust to different signal
mismatch or noise conditions. Besides, the simulation results in-
dicate that the designs using the Kalman filter have less self-can-
cellation than the estimations of the sample matrix.
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