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Abstract—The plane wave scattering by 2-D gratings is studied
by a rigorous mode-matching technique. Specifically, the grating
considered in this work is made of periodically patterned
graphene. Due to the 2-D periodicity, the electromagnetic fields
in the uniform medium are expressed in terms of characteristic
Floquet solutions, with each space harmonic representing a plane
wave solution consisting of both TE and TM constituents. By
imposing the boundary condition on the tangential components
of the electromagnetic fields at the graphene interface via the
conductivity tensor of graphene, one can set up an input-output
relation expressed in terms of the generalized scattering matrix.
For a planar multilayer structure consisting of a finite stack of 2-D
graphene-based gratings, the overall scattering characteristics
can be obtained by cascading each of the input-output relations of
the 2-D grating successively.

Index Terms—Graphene, mode-matching approach, scattering
analysis, tensor conductivity, 2-D graphene-based gratings.

I. INTRODUCTION

RAPHENE’S complex conductivity (o4 = g4, + 0, ;)

depends on the angular frequency w, chemical potential
e, temperature 7', and the relaxation time of charged carriers 7.
The imaginary part (o ;), relating to the level of chemical po-
tential, can be a positive or negative number in different ranges
of operating frequencies [1], [2]. A graphene sheet with a posi-
tive value of o, ; can support a transverse magnetic (TM) sur-
face wave. However, when o,; < (, the TM surface wave
no longer exists; instead, a weakly guided TE (transverse-elec-
tric) surface wave is present [3]. Plasma waves in a 2-D elec-
tron-hole system in a graphene-based heterostructure controlled
by a highly conducting gate were studied [4]. The dielectric
function, screening, and plasmons in 2-D graphene were inves-
tigated [5]. The method of dyadic Green’s functions was devel-
oped to calculate the electromagnetic fields in the presence of
an anisotropic surface conductivity model of biased graphene
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It is interesting to note that the graphene conductivity can
be dynamically altered by gate (bias) voltage in real time.
Consequently, the desired conductivity patterns can be created
by inhomogeneously biasing the DC voltage on a graphene
layer. Several innovative applications have been proposed. For
example, the SPP (surface plasma polariton) waveguide and
transformation optics have been implemented using graphene
by tuning its conductivity locally [3], the metamaterial-based
electro-absorption THz modulators with frequency-selec-
tive-surfaces (FSS) and graphene has been developed [8],
[9], and the effect of spatially dispersive phenomenon on the
performance of graphene-based plasmonic devices, including
phase shifters and low-pass filters, has been reported [10].

Recent studies addressed the dependence of graphene con-
ductivity on the propagation wavenumber of the waveguide
mode and concluded that the spatial dispersion becomes es-
pecially important for extremely slow waves. The spatially
dispersive intraband conductivity tensor for arbitrary wave
vector values was derived analytically [11]. The effect of spa-
tial dispersion on surface waves propagation along a graphene
sheet was reported [12]. The dispersion characteristics of dom-
inant modes supported by the 2-D graphene-based waveguide
were studied by using the transverse resonance technique;
in particular, the spatially dispersive nature of the graphene
conductivity was taken into account [13]. The propagation of
surface waves along a spatially dispersive graphene-based 2-D
waveguide was also investigated. Graphene was characterized
by using full-£, conductivity model under the relaxation-time
approximation [14].

Regarding the scattering characteristics of a graphene-based
periodic structure, several graphene metasurfaces were pre-
sented to show that such ultrathin surfaces could be used to
dynamically control the electromagnetic wave reflection, ab-
sorption, and polarization [15]. Notably, the spatial dispersion
was included in the scattering analysis; however, its influence
on the scattering property was found to be negligible [16]. A
reflectarray antenna based on square graphene patches was
proposed to achieve good array performance, including the unit
cell size reduction and grating lobe suppression [17]. The plane
wave scattering and absorption by finite and infinite gratings of
freestanding infinitely long graphene strips without considering
the spatially dispersive nature of graphene were studied in the
THz range [18].

The numerical techniques for analyzing the periodic struc-
tures made of commonly used dielectric and metallic materials
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were extensively and intensively developed. For instance, the
numerical methods for calculating the scattering properties of
frequency selective surfaces were reviewed [19]. The rigorous
coupled wave analysis (RCWA) was developed for calculating
the diffraction properties of 1-D and 2-D gratings [20]. A rig-
orous formulation of the scattering and guiding characteristics
of a 1-D dielectric grating waveguide was also reported [21].
The modal transmission line approach for analyzing the wave
propagation in a multilayered structure consisting of dielectric
and metallic gratings was investigated [22]. A 2-D time-domain
finite-element formulation for a periodic structure was created
[23]. The method of lattice sums for off-axis electromagnetic
scattering by gratings was also developed [24]. Theoretical and
numerical studies of plane wave scattering by gratings com-
posed of periodic arrays of thin and lossy strips were researched
[25]. Besides, the 1-D periodic surface impedance model was
successfully applied to explain the Wood anomalies [26]. The
2-D periodic surface impedance model was used to evaluate
the scattering characteristics [27] and the dispersion relation of
waveguide modes [28] for a complex 2-D periodic structure.

In this work, we deal with the theoretical formulation of plane
wave scattering by a planar multilayer structure composed of
2-D gratings made of periodically patterned graphene. Notably,
the 2-D gratings considered here have the same 2-D unit cell
dimensions; however, they are allowed to have different 2-D
unit cell patterns. The graphene is represented by an infinites-
imally thin conductive sheet, characterized by a surface con-
ductivity obtained using a semi-classical quantum mechanical
method [2]. In the mathematical formulation, we take into ac-
count the tensor conductivity of graphene, which is due mainly
to magnetostatic field bias without considering spatial disper-
sion. As to the scalar conductivity, it can be regarded as the lim-
iting case of a tensor conductivity by equaling the main diagonal
terms and vanishing the off diagonal terms.

Concerning the theoretical formulation, we shall employ the
building block approach for providing flexible computation and
robust analysis. Firstly, the planar multilayer structure is de-
composed into the cascade of some basic building blocks, each
consisting of a 2-D periodically patterned graphene sheet sand-
wiched between two uniform mediums. The input-output re-
lation of each basic building block is expressed in terms of
the generalized scattering matrix. After cascading the general-
ized scattering matrix of each building block successively, the
scattering characteristic of the whole structure can be deter-
mined accordingly. As for the mathematical procedures for de-
termining the input-output relation is described briefly below.

The electric and magnetic fields in the uniform medium are
expressed in terms of the superposition of characteristic 2-D
Floquet solutions. An infinite number of space harmonics, in-
cluding propagating and nonpropagating (evanescent) waves,
have to be included. Each space harmonic is regarded as a plane
wave consisting of hybrid modes, that is, both TE and TM po-
larized modes. Thus, the electric and magnetic fields in a Carte-
sian coordinate system to be processed will be the vector fields
rather than the scalar ones. Taking into account that the sur-
face current induced in the graphene layer is related to the tan-
gential component of the electric field via surface conductivity,
one can define the electromagnetic field boundary condition at
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the graphene interface. The mode-matching technique was then
used to set up an input-output relation, which is expressed in
terms of the generalized scattering matrix, therein. It should
be noted that a variety of numerical methods can be used to
solve the problem under consideration. Some of these methods
have better computational efficiency than the mode-matching
approach, which needs a sufficient number of space harmonics
to achieve numerical convergence. Nevertheless, the purpose of
this work is to provide a physically based mathematical formu-
lation, the transmission line network representation, to facilitate
the understanding of the wave process involved in the periodic
structure.

The rest of this paper is structured as follows. In Section II,
we first introduce the structure configuration of the 2-D
graphene-based gratings and incident condition. The mathe-
matical formulation for setting up the electromagnetic field
boundary condition via the tensor conductivity at the graphene
interface is derived, together with the input-output relation of
a single 2-D periodically patterned graphene; this is done in
Section III. In Section IV, scattering analyses were carried out
based on the mathematical formulation developed in Section I1I
for the 1-D and 2-D periodically patterned graphene, and
the multilayered structure composed of two graphene-based
gratings in different layers. Additionally, the numerical sim-
ulations with CST Microwave Studio were also performed
for the examples with scalar conductivity of graphene for
comparison. Significantly, the scattering characteristics of 2-D
periodically patterned graphene biased by magnetostatic field
was also demonstrated based on our approach. The mathemat-
ical procedures for determining the eigenwave solutions in a
uniform dielectric medium in the presence of 2-D periodicity
are presented in Appendix A. The explicit expression for the
components of the tensor conductivity of a magnetostatic and
electrostatic biased graphene are listed in Appendix B.

II. DESCRIPTION OF THE PROBLEM

The problem under consideration involves 2-D graphene-
based gratings embedded in a planar multilayer structure. As
shown in Fig. 1, the 2-D gratings made of graphene monolayers
are sandwiched between uniform dielectric layers. For a multi-
layer structure, the energy transmission across the layers is of
primary concern, and it is natural to denote the z-axis as the
longitudinal direction perpendicular to the layers.

The 2-D periodic patterns can be obtained by creating a 2-D
periodic variation of the conductivity on a graphene sheet or
by directly patterning a substrate. The graphene monolayer has
negligible one-atom thickness. Notably, the 2-D gratings have
2-D unit cells, as shown in Fig. 2, of the same dimensions;
however, they can have different unit cell patterns, the physical
explanation for which will be provided later. The upper- and
lower- semi-infinite half spaces are denoted as the super-strate
and substrate regions, with their relative dielectric constants de-
noted as ¢, and ¢, respectively. Here we consider that a plane
wave is incident into the structure, with the elevation angle ;.
counted from the z-axis and the azimuth angle ¢;,. counted
from the z-axis, as shown in Fig. 3. Such an excitation con-
dition is called an out-of-plane incident.



4738

superstrate

x-axis

Giapheneimonolayer

Graphene monolayer

z-axis

00

substrate

Fig. 1. Sideview of a planar multilayer structure consisting of graphene-based
2-D gratings; the layer thickness of the 2-D grating is assumed to be negligible.
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Fig. 2. 2-D graphene-based grating monolayer; the periods along the x:- and
y-axes are d,, and d,,, respectively. Notably, the 2-D grating can be obtained by
periodically varying the graphene chemical potential or patterning the graphene
directly.
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Fig. 3. Out-of-plane incident of the plane wave with angles ;... and ¢....

III. MATHEMATICAL FORMULATION

The mathematical procedure begins with the formulation of
electric and magnetic fields in the uniform dielectric medium in
the presence of 2-D periodicities along the - and y-axes. A Flo-
quet solution is used to express the electromagnetic field as the
double Fourier series expansion with the space harmonics along
the two orthogonal directions. For each space harmonic, the
complete set consisting of two orthogonal eigenvectors is found
to span the transverse electric and magnetic fields. The two
eigenvectors correspond to the commonly used TE (£, = 0)
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and TM (H, = 0) polarized waves. Specifically, the expan-
sion coefficients (Floquet harmonic amplitudes) of the trans-
verse electric (magnetic) field individually relate to the voltage
(current) wave. Moreover, the voltage and current waves satisfy
the 1-D transmission line equations along the z-axis.

Due to the plane wave excitation, the surface current induced
in the 2-D periodically pattern graphene layer is present. The
surface current density depends on the tensor conductivity of
order two and the tangential component of the electric field
therein. Moreover, the discontinuity of the tangential compo-
nent of magnetic fields at the graphene interface is equal to
the surface current density. As a consequence, one can define
the boundary condition on the tangential electric and magnetic
fields at the graphene interface via the tensor conductivity. In
this section, the mode-matching technique will be introduced
to convert the above electromagnetic boundary condition into
the input-output relationship between the Floquet harmonic am-
plitudes in respective mediums adjacent to the single interface.
Furthermore, the generalized scattering matrix (GSM) is used
to represent the input-output relation and is taken as a basis for
building block approach. The detailed procedure for the mathe-
matical formulation is provided as follows.

A. Electromagnetic Fields in a Uniform Medium in the
Presence of 2-D Periodicity

By the Floquet-Bloch theory, the electric and magnetic field
components, with time dependence exp(—iwt) suppressed, can
be written as

E l y Y, 7 Z Z mn '(/Jm n(‘L y) (1)
Hi(z,y,2) Z Z Pjomn(2)mn(y)  (2)

M=—00 N=—-0C

exp (iky m) exp (iky ny)

?/}m,n(x7 y) = \/d— \/d\ (3)
x Yy
kym =k + mZ—ﬂ- 4)
2
kyn =k, + ulil (5)

where i = /—1.

The function, ¥, » (2, y), consisting of variables x and y is
the mn** Floquet harmonic that satisfies the periodic boundary
conditions along the z and ¥ axes. Additionally, the z-dependent
functions corresponding to the electric and magnetic field com-
ponents, € nn(2) and h; .., (2), are the Fourier coefficients of
the mn*”* space harmonic. The subscript j represents x, y, or z.
The periods along the # and y axes are denoted as d; and d,,, re-
spectively. If a plane wave is incident from the medium with rel-
ative dielectric constant denoted as £, , the phase constants along
the z- and y-axes are written as k, = ko\/€4 i Binc COS Pinc
and k, = ko\/eq sin i, sin ¢iyc, respectively.

By means of the mathematical derivation in Appendix A, for
each space harmonic, the z-dependent Fourier coefficients of
the electric and magnetic field components can be completely
determined by solving the eigenvalue problem; the transverse
components of the electric and magnetic fields can be expressed



HWANG: RIGOROUS FORMULATION OF THE SCATTERING OF PLANE WAVES BY 2-D GRAPHENE-BASED GRATINGS

&

graphene monolayer

E

+

2o

Fig. 4. Graphene-based 2-D grating located at the interface between two uni-
form dielectric mediums denoted as £ and _, respectively.

as a superposition of the orthogonally polarized fields. Conse-
quently, the general field solutions in a uniform medium can be
written as follows:

2o X E(x,y, 2

Z Z {1)777;77/ 4)(177]7:27/ + ,U7(32L( )a'gz')n;}
“Ymn (JJ y) (6)

-EX [0 ()0l + i) ()02

wmn(m'/ 7/) (7)

(z,y,2

l .. )
Parameters 'Ufn)n(z) and Lmn(z) are the transmission line

voltage and current along the z-axis given in (A13) and (A14),
where [ = 1 stands for TE polarization and [ = 2 for TM
polarization, respectively; g,(,% and gg% are two orthogonal
eigenvectors given in Appendix A.

The above equations reveal that each space harmonic appears
as a plane wave with the transverse field components generally
represented as a superposition of the TE- and TM-polarized
plane waves.

B. Conduction Current on the Graphene Monolayer

As shown in Fig. 4, the graphene grating locates on the z = 0
plane; the graphene layer is sandwiched between two uniform
dielectric mediums, with the relative dielectric constants de-
noted as £ and ¢_, respectively. From the electromagnetic
boundary condition, the discontinuity of the magnetic fields on
the two opposite sides at the interface, z = 0, is due to the con-
duction current induced in the graphene monolayer, which is
written as

zo X [H(p.0T) = H(p.0 )] = J.(p,0) ®)

where p = zxz + YY,- The notations 0T and 0~ are designated
as the positions of z = 0 4 € and z = 0 — ¢, respectively, with
e — 0.

The conduction current is relevant to the transverse electric
field on the graphene sheet via a tensor conductivity of graphene
I, which is written as

with
gt(m:yf )_O-LL(q Y, w) OT0+U¢q(T Y, w) 7/

+Uyr(xty7 )g(]g[]—f—ﬂ'yy(fﬂ,y, )y(]l(]' (10)

4739

The = and y components in (8) are written below, respectively

Ho(p,0%) = Ho(p,07)

=0y (7,1, w)E.(p,0) + 0y (z,y,w)E,(p,0)  (11)
Hy(p.0%) = Hy(p,07)

= — 0pa (2,4, w)Er(p, 0) =00y (0,9, w) By (p, 0). (12)

Substitution of (6) and (7) into (11) and (12), we obtain the
two equations given below

>3 [hamn(®

T T

= Z Z [0ya (2, Y, w)ew,mn(0) + oyy (2, 5, w)ey mn(0)]

'wmn(x7y) (13)

55 [y a0

T T

= Z Z [0 (2, Y, W)ew i (0) F 0y (2, 4, W)€y imn (0)]

(14)

) - h;v,mn(o—)] djmn(ma y)

) = by (07)] Prmn (2, )

: wmn(l‘7 y)

For the sake of succinctness, we group the index pair (1, )
and denote it as a new integer p; that is, p — (m,n), where p
ranges from 1 to co. The new index p represents the p*” space
harmonics pair, which is arranged in ascending order of the
cutoff frequencies of the space harmonics. Therefore, (13) can

be rewritten as
X0

Z [hTP(O+) o hfp(oi)] 1/)]2("1’.7 y)
= Z [Oya (@, Y, w)er p(0) + 04y (2, ¥, w)ey p(0)] Pp(e, v).

(15

Multiplying (15) with 1/11 (z,y) at both sides and taking the
integral over the unit cell of the 2-D periodic structure, we obtain
the equation given below

P g (OF) = By g (0 ngppw (0) + chPe, »(0)  (16)

. P= 1
with

it = / /7/1 (z, )0y (z, y, w0, (z, y)dzdy  (17)
(’?/f_/ / 7/’ T Y)oyy (v, y, W)y (w, y)dzdy  (18)

= / / 1/Jq (x, y)t,(z, y)dady 19)
Jd, Jd,

where the symbol “}” represents the complex conjugate and d,,
is the Kronecker delta.

Notably, the index ¢ stands for the index pair of (r, s). Equa-
tion (16) forms a system of linear equations with ¢ running from
1 to infinity. It can be expressed in terms of the matrix form
given below

b (07) = hy(07) = Cyee, (0) + Cyye, (0).  (20)
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Repeat the aforementioned procedure for (14), we obtain the
matrix equation given below

where C,, and C,, are full matrices with the (g, p)t" entry
written below

by, (07) = b, (0~ = Cuye,(0)

= [ [ et v 02
(,qp_/{] / 1/) T, Y) 0wy (2, y, W), (2, y)dedy. (23)

If the spatially dispersive nature is considered (under
the condition of vanishing electrostatic and magnetostatic
bias, at room temperature), the conductivity tensor & in
(10) will become a differential operator [7] with the diag-
onal terms 6., = 05, + @s0?/02% + [.40%/0y® and
Gyy = Olo + Bsa0?/02% + q0%/0y* and with the off-di-
agonal terms 6., = 6y, = 283:40? /0x:0y. The parameters
Olo, (sg and FBsg can be found in [7], [12]. Notably, the
aforementioned conductivity model in [7] is based on low-%,
approximations, i.e., only valid when the wavenumber is
sufficiently fast and up to THz frequencies. Otherwise, the
spatially-dispersive conductivity model defined in [11] should
be employed, which is much more complex and clearly out of
the scope of this paper.

Equations (17), (18), (22), and (23) can then be modified as
given below

2L _/ / 1,/) 2, y)(010 = sakZy, — [ﬂdkun)y (z,y)drdy
(24)
(’iyp :A A 1/)1(.’157y)(_Qﬁsdkmmkyn)z/}p(gjay)d$dy (25)

(,ZUP:/ /lQ/JI(LL',y)(alofﬁsdkimfasdk;n)@/)p(w,y)d:l:dy
(26)

with ¢f? = ¥ and p — (m,n).
We may again set up a matrix equation by reorganizing (20)
and (21), given below

] | e ]
o=[Gn &) o

From (A11), the 2 and ¥ components of the electric field can
be written explicitly as

kln
GCL‘,’"”L(Z) 7'&1( )k'tj + $32L( )

27

kmm

ktmn

(29)

kmm, _ (2)( ) kyn )

mn\®

_eymm(’) = Uv(izL(7) (30)

k tmn k tinn

We collect each space harmonic of the transverse electric field
component and put them into a super-vector. The matrix equa-
tion is written below

[:M =4 Hgm (1)
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) (32)

- A, —Ay}
Parameter ¢;(z) is a column vector with each element equal
to €;.mn, Where the subscript j represents x or y. Parame-
ters A, and A, are diagonal matrices with kyp,/kim, and
kyn/kimy filled at their diagonal entry, respectively. Column
vector v(")(2) has the element ’U,(,’fgl(z), where £ = 1 for TE
polarization, and 2 for TM polarization. Similarly, the trans-
verse components of the magnetic field can also be expressed
in terms of the form similar to (31), given as follows:
k()] _ 4 [0
o] =led]
n, 2
The definition of h,(z), A, (z), iV(z), and i? (z) remains
the same as described previously.
The voltage and current vectors in the right-hand side of (31)
and (33), in fact, can be written in terms of the transmission-line
solution given below

(33)

_ [2P()
Q(Z = [7_}(2)(2)}

= fl'i(_L(g)(eXp [ik.z]) a + diag (exp[—ik.z]) b (34)
i(z) = [A(Q)EZ;]

=Y. {diag (cxp[ik,z]) a — diag (cxp[—ik,z]) b} . (35)

Where the notation diag(. . .) represents the diagonal matrix
with the diagonal entries equal to the vector inside the round
brackets. Parameter Y, is a diagonal matrix with its entry rep-
resenting TE and TM wave admittances given in (A15) and
(A16), respectively.

Parameter &, is a column vector with each entry representing
the z-direction propagation constant of each space harmonic, as

(1
k. = [lﬂ(z) ]
i k
Notice that Egl) and @2) are equal to each other in the uni-
form medium. The vectors ¢ and b are respectively taken as the
forward- and backward- propagation waves along the transmis-

sion line, each of which contains the TE- and TM-polarized
space harmonic amplitudes, as given below

(36)

o= [ziéi ] (37)
b= [225 } (38)

Substitution of (31) and (33) into (27), we obtain:
Ai(0%) — Ai(07) = CAw(0). (39)

From the electromagnetic boundary condition, the tangential
electric fields must be continuous at the interface (the graphene
grating sheet) between the two uniform dielectric mediums.
Therefore, we may have the equation given below

Au(0%)

= Av(07). (40)
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Notably, the matrix A remains the same for the two regions
above and beneath the graphene sheet due to the phase match
condition, i.., the transverse propagation vector, &, ,,,,, must be
continuous at the interface between the two adjacent dielectric

mediums.

C. Input-Output Relation of the 2-D Graphene-Based Grating
Monolayer: Generalized Scattering Matrix Method

By the electromagnetic boundary conditions at the graphene
monolayer, we obtain the relationship for the voltage and cur-
rent vectors therein, which are (39) and (40). With the voltage
and current vectors containing the incident and reflected vec-
tors at the interface in respective regions, we may determine
the input-output relation at the graphene interface in terms of
the commonly used generalized scattering matrix representation
[29]. Substitution of (34) and (35) into (39) and (40) and via a
intuitive derivation, we may obtain the generalized scattering
matrix defined at the graphene interface, which is given below

| _ & |@
[QJ =5 [%] @b
where
g I 177!
=y —a"ea v
- { 42
v +a%ea vO| @

where I is the identity matrix.

Moreover, for a general structure shown in Fig. 1, we may
first partition it into several constituent parts, each composed of
asingle 2-D graphene-based grating layer. The scattering matrix
corresponding to each graphene grating can be independently
determined via (42). By cascading all the generalized scattering
matrices, we obtain a global generalized scattering matrix and
determine the scattering characteristic of the overall structure.
The detail mathematical procedures can be found in [29], [31].

I emphasize once again that all the 2-D gratings have the same
unit cell size but may have different unit cell patterns. For the
multiple gratings with different periods, the multiple periods
along the same direction result in more and more space har-
monics [30]. For example, let us consider two periods a and b
along the x-axis. The m*" space harmonic (with phase constant
k. + m2w /a) due to the grating “a” is incident into the grating
“bh,” enabling the new phase constant: (k, + m2n/a) + n2x /b,
where the index n belongs to the grating “b.” This problem is
more complicated and beyond the scope of this research. The
present paper focuses on 2-D gratings with the same unit cell
dimensions.

IV. NUMERICAL RESULTS

With the rigorous formulation outlined in Section III, the
plane-wave scattering characteristics of graphene-based 2-D
gratings can be systematically investigated. We have consider-
ably carried out numerical simulations to establish the validity
and accuracy of the analysis method employed. However, four
numerical examples were presented due to space limitations. In
the first three examples, the graphene conductivity is a scalar
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Fig. 5. Structure configuration (side view) and unit cell pattern of the period-
ically patterned graphene employed in the numerical calculation: (a) the free-
standing 1-D array of graphene strips, (b) the 2-D square graphene patches array
coated on a grounded dielectric slab, (c¢) the planar multilayer structure con-
sisting of two layers of periodically patterned graphene, and (d) the 2-D array
of rectangular apertures perforated on a freestanding graphene layer. The ground
plane shown in (b) and (c) is made of perfect electric conductor.

(electrostatic bias, no magnetostatic bias nor spatial dispersion)
with the conductivity o4(s.(F,)). The fourth example is for
the case of a tensor conductivity with both magnetostatic-
and electrostatic-bias (without spatial dispersion). The tensor
conductivity can be written as o,., = oy, = o4(p{E,), B,)
and o3y = —0y. = 0o(pe(E,), B,), with the formulas given
in Appendix B [7].

In the first example, the plane wave absorbance by the 1-D
graphene-strip grating shown in [18, Fig. 11] was taken as a
benchmark for checking the accuracy of our computer code. Re-
ferring to Fig. 5(a), a plane wave is normally incident on a free-
standing 1-D strip grating made of graphene. The period and
strip width along the x-axis are 70 p#m and 20 pm, respectively.
The graphene parameters are ji. = 0.39 eV and 7 = 1 ps at
room temperature 7' = 300°K. For the 1-D periodic structure,
our 2-D code can still work well when a very small period is
set along the y-axis (w, = d, = 0.01 pm, for example). Fig. 6
shows the numerical results on the absorption efficiency for both
TE- and TM-incident plane waves. The solid line indicates the
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Fig. 6. Plane wave absorption versus frequency for a 1-D graphene grating
shown in Fig. 5(a). The graphene parameters are . = 0.39 eVand 7 = 1 ps
at room temperature 7' = 300°K. The period and strip width along the x:-axis
are d, = 70 pm and w, = 20 pm, respectively.

curves calculated based on the code developed in this paper,
whereas the dashed line denotes the curves obtained by using the
commercial software CST Microwave Studio. In the numerical
simulation with CST, the surface impedance 7Z,(= 1/0,) was
used to model the graphene sheet with zero thickness. Appar-
ently, we obtained excellent agreement between the two results
for both TE and TM polarization. Notably, the results also co-
incide with those shown in [18, Fig. 11].

In the second example, we calculate the reflectance of a 2-D
periodically patterned graphene coated onto a grounded dielec-
tric slab, with the unit cell pattern depicted in Fig. 5(b). The
unit cell pattern is a square lattice with lattice constant 5 mm;
the width of the square graphene patch is 2.5 mm. The rela-
tive dielectric constant and thickness of the dielectric slab are
gs = 3.75 and t; = 1 mm. The graphene parameters are
te = 0.3eVandr = 1 psatroom temperature I’ = 300°K. The
plane wave is normally incident on the 2-D periodic structure
with E,-polarized. The reflectance of the fundamental space
harmonic, (0, 0)** order, are calculated. Referring to Fig. 7, the
curve in solid line and plus markers is obtained using our ap-
proach, whereas the curve in blue line is via the CST simulation.
Apparently, they generally agree except for a slight discrepancy.

Additionally, the planar multilayer structure consisting of
two graphene-based gratings and two uniform dielectric layers
was considered for calculating the plane-wave scattering prop-
erties. The structure configuration is shown in Fig. 5(c). Since
the structure is terminated by a metal ground plane (PEC),
only the reflection waves are observed. The chemical potential
(1) for the upper and lower graphene sheets are 0.3 eV and
0.1 eV, respectively; however, they share the same relaxation
time 7 = 1 ps at room temperature 7' = 300°K. Both gratings
have the same unit cell dimension (square lattice with lattice
constant 5 mm). The unit cell pattern is also shown in Fig. 5(c).
The dimension of the square apertures are 2.5 mm for the upper
graphene layer and 1 mm for the lower graphene layer, respec-
tively; the thickness and relative dielectric constant of the two
dielectric layers are: £1 = 3.75,%; = 0.5 mm (lower layer),
and g2 = 3.9, £ = 1.0 mm (upper layer). As shown in Fig. 8,
the curve with circle markers is obtained using the approach
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Fig. 7. Reflectance of the fundamental space harmonic against frequency for a
2-D graphene grating deposited on a grounded dielectric slab shown in Fig. 5(b),
under the normal incidence of a plane wave (£, -polarized). The graphene pa-

rameters are given below: ji. = 0.3 eV and 7 = 1 ps at room temperature
T = 300°K. The periods of the unit cell are d, = 5 mm and d, = 5 mm; the
unit-cell pattern is a square graphene patch with the widths #:,, = 2.5 mm and

w, = 2.5 mm. The relative dielectric constant and thickness of the dielectric
slabare e, = 3.75 and t, = 1 mm.
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Fig. 8. Reflectance of the fundamental space harmonic, (0, 0)*" -order, against

the frequency for the multilayered structure depicted in Fig. 5(c), under the
normal incidence of £, -polarized plane wave. The graphene parameters for the
upper layer are ¢, = 0.3 eV and 7 = 1 ps; the lower one has the parameters:
jte = 0.1eVand 7 = 1 ps, both are at room temperature 7' = 300°K. The
dimension of the square lattice is S mm for both gratings; the unit-cell pattern of
the graphene grating is also shown in Fig. 5(c). The dimension of the apertures
are 2.5 mm X 2.5 mm for the upper layer and | mm X 1 mm for the lower layer,
respectively; the relative dielectric constant and thickness of the two dielectric
layers are: 1 = 3.75,%1 = 0.5 mm (lower layer),ands» = 3.9,%, = 1.0 mm
(upper layer).

presented in this paper, whereas that in solid and blue line is
via CST simulation. The excellent agreement between the two
results prove that our approach indeed can handle the scattering
analysis of a structure composed of multiple graphene gratings.

Fig. 9 depicts the scattering characteristics, including the
reflectance and transmittance, of a magnetostatically and
electrostatically biased graphene, under normal incidence of
plane wave. Referring to Fig. 5(d), a freestanding graphene
layer is etched periodically to create a lattice of slots. Each
slot has the dimensions w, = 5 mm and w, = 1 mm. The
periods along both the x- and y-axes are d,, = d, = 10 mm.
The graphene parameter is 7 = 3 ps at room temperature
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(1) u=0.1eV, B,=0.025T, (2)p =0.26V, B =0.05T, (3) =0.5eV, B =0.1T
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Fig. 9. Scattering efficiency versus frequency for a freestanding 2-D graphene
grating, as shown in Fig. 5(d), under the normal incidence of a plane wave. The
chemical potential and biased magnetostatic field strength for the three cases
are given as follows: (1) . = 0.1eV B, =0.025 T, 2. = 0.2 eV B, =
0.05 T, and (3) yt. = 0.5 eV B, = 0.1 T. The relaxation time for the three
case all are 7 = 3 ps at room temperature I = 300°K. The periods along
the #- and y-axes are d,, = 10 mm, ¢,, = 10 mm, the slot widths along the
x- and y-axes w, = 5 mm and w, = 1 mm. In the legend, “Pr” and “Pt”
represent the reflected and transmitted power, respectively; they are normalized
to the incident power.

T = 300°K. The three different applied bias electrostatic and
magnetostatic fields are given as follows: (1) p, = 0.1 eV
and B, = 0.025 T, 2) 4. = 0.2eV and B, = 0.05 T, and
(3) po = 0.5 eV and B, = 0.1 T. The tensor conductivity
of graphene corresponding to each condition can be obtained
through (B.1) and (B.2) in Appendix B. The electric field vector
is along the y-axis for the TE incident plane wave and along the
x-axis for TM wave. Here, we demonstrate the reflectance and
transmittance of the dominant space harmonic, (0, 0)*" order.
Apparently, the scattering property was altered by changing
the electrostatic and magnetostatic bias. Compared with a PEC
sheet equipped with the same slots array, the phenomenon of
extraordinary transmission through a sub-wavelength holes
array was observed (the resonance transmission peak for the
PEC slotted array counterpart occurs at 25.35 GHz). This is
due to the well-known slow-wave propagation associated with
graphene plasmonic modes. Moreover, drastic changes in the
reflectance occur at 29.979 GHz and 42.397 GHz; they are due
to the onset of the first higher-order ((0,+1) or (£+1,0)) and
second higher-order ((1,+1) or (—1,+£1)) space harmonics,
respectively. Because they are related to the periodicity rather
than to the graphene parameters, the cutoff frequencies of the
three cases are consistent.

Notably, the numerical convergence in the scattering anal-
ysis against the truncated number of space harmonics has been
investigated thoroughly in the previous examples. Due to space
limitations, only the convergence test for the first case around
the transmission peak (20 GHz) in Fig. 9 is shown. In Fig. 10,
the vertical axis represents the scattering efficiency of the TE-
or TM- polarized plane wave under normal incidence, whereas
the horizontal axis represents the number of truncated space
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Fig. 10. Scattering efficiency versus truncated number of space harmonics em-
ployed for numerical calculation for the first case in the previous example (op-
eration frequency is 20 GHz). The chemical potential and biased magnetostatic
field strength are . = 0.1 eV B, = 0.023 T. The graphene parameter is
7 = 3 ps at room temperature 7' = 300°K. The periods along the x- and

y-axes are d, = 10 mm and d;, = 10 mm; the slot dimensions along the -

and y-axes are w, = 5 mm and w, = 1 mm. In the legend, ‘Pr’ and ‘Pt’

mean the reflected and transmitted power, respectively, which are normalized
to the incident power. The polarization of the input and output wave are indi-
cated in the format of Pr (input-output); for example, Pt (TM-TE) calculates
the cross-polarization efficiency of the incident TM-polarized plane wave.

harmonics. The cross-polarization coupling observed in this
figure is due to the off-diagonal entries of the tensor conduc-
tivity (6,4, = —04, = +0,) caused by the magnetostatic
field bias. For instance, the incident £, -polarized electric field
induces the F,-polarized electric field (TM-polarized wave)
through o,.,. Returning to Fig. 10, apparently, the reflectance
and transmittance converge (the variance is within 0.1%) as the
number of space harmonics is greater than 3000 (1500 TE and
1500 TM space harmonics, respectively).

V. CONCLUSION

In summary, we have presented a rigorous formulation for
dealing with the plane wave scattering by 2-D graphene-based
gratings. The boundary conditions on the electromagnetic fields
at the interface of a periodically patterned graphene layer is set
up via the conductivity tensor of graphene. The mode-matching
technique is then employed for determining the input-output
relation therein. Significantly, for a planar multilayer structure
comprised of a finite stack of 2-D graphene-based grating layers,
each of which can be analyzed independently for determining
their generalized scattering matrices. After successively cas-
cading the generalized scattering matrices, the scattering prop-
erties of the overall structure can be determined accordingly.
A good agreement was obtained between the results of this ap-
proach and those of the CST Microwave Studio in terms of the
scattering analyses of the prescribed 1-D and 2-D graphene grat-
ings with scalar conductivity. Moreover, a scattering analysis of
the graphene grating with tensor conductivity due to magneto-
static field bias was also carried out.
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APPENDIX A
EIGEN-WAVE IN A UNIFORM DIELECTRIC MEDIUM IN THE
PRESENCE OF 2-D PERIODICITY

We first substitute electric- and magnetic- field components
in (1) and (2) into Faraday’s law of induction, with the curl op-
erator and field vector decomposed into the transverse and lon-
gitudinal components, such as V. = V; + z,0/dz and F =
Py + 2y F,, where Vi = 2,0/0x +y 0/dy and I = E or H.
We obtained the two equations given below

E

t,mn X Qt mn('7) - w/J’thnnn(Z) (Al)

and

X e

iktﬁm,n =z, mn(z) + Z(AJ,[Joht mﬂ( ) (A2)

X e
dz =0 " tmn
Substituting electric- and magnetic- field components in (1)
and (2) into the Ampere’s law with Maxwell modification, we
obtain the following two equations corresponding to the trans-
verse and longitudinal components of the vector fields, respec-
tively

_Etjmn X ht mn( ) = WEQESL, mn(z) (A3)
and
d .
kt ,mn Xﬁ~ mn( )+ d_é(] Xﬁt.mn = TUWENEsEy mn (’Z) (A4)
[z ' ’
Substituting (A3) into (A2) and eliminating e, ,,,,,, We obtain
the differential equation give below
d
dZ (é[) X Qt,mn) C ht mn (AS)
kQI + ]/‘ mnk mn
¢= LI (A6)
= WEDE 5

where [ is the 2-D unit dyadic and ¢ is a 2-D dyadic. The phase
relation of the F loquet modes (plane-wave solutions) satisfies
k*+ K}, = kics, where k, jmn = KamZo + kyny, .

t,mn
Substitution of (Al)into (A4) by eliminating /.. ,,,,,, the other
differential equation can be determined as follows:
dz }—]t ,mn 2 : (é() X Qt,mn) (A7)
. kgg-f‘£ - Et mnEt mn
e (A8)
= Wity

where n is a 2-D dyadic.

By solving the eigenvalues ()\mn and AS,%L and associated
eigenvectors (gn?,, and g,(m,,), the 2-D dyadic ¢ can be spanned
using the previous two eigenvectors written as

¢ =200, + A202,02.

TIL!L "L’L—TIL’L II’LI’L—"LIL—’H.IL

(A9)

Similarly, the 2-D dyadic 7 is expanded using the two eigen-
vectors written as B

() 1) o) 5(2) (2) ,(2)

/)7 pmn—mn—m 'mn_mn_mn :

(A10)
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The transverse components of the electric- and magnetic-field
vector can then be spanned using the two prescribed eigenvec-
tors, which are written as

1 1 2 2
20 X Co mn(2) = v (2)aky), + 050 (2)al)

=mn
h

t,mn('z) = an,21(7) Srll) + 1(2) (7) (2)

(A1)
(A12)

/Kt mn and QE?L)" = zy X gg,lbl Moreover,
the voltage and current waves, v}, and i\, satisfy the trans-

mission-line equation along the z-axis, given below

Aol (2)

1)
where Oégnn - kt mn

T IVAS)) Al

{]/}4 =1 Van( ) ( 3)

dilh), (2 .

Hmnl2) 'l'(‘) = ik Y @) (2) (Al4)
az

where the superscript 7 = 1 represents TE-wave and j = 2 for
TM-wave, respectively. Notably, the wave impedances of TE-
and TM- wave are

1 Wt
7(1) (: W) = 0 (A15)
1 k
2 = -
Z <_ Y(2>) = (A16)

APPENDIX B
GRAPHENE TENSOR CONDUCTIVITY

By applying the Kubo formula, graphene tensor conductivity
due to magnetostatic field bias is characterized using a semi-
classical quantum mechanical method as follows [2], [7]:

O'd(,u'c(Eo)aBo)
e2v? |eB,| (w+ir 1) h
T
fa(My)—fa(Mpy1)+fa(—Mug1)—fa(—
(Myp—1—Mp)? —(wtir—1)2n2
‘ AZ 1
- (1 - MnMnfl) L e
XD falaty) Fa(My )+ fu(— M)~ Fa(My) o
n=0 (M y1+M,)? —(wtir—1)2n2

M,)

X

(B.1)

1
L+ 57 \LLH) A
oo(11c(Eo), Bo)
e 7)FPB

™

[fd(Mn) f( n+1) fd( n+1)+fd(_Mn)]X

1— 2 L +
M, Muy1 ) (M, 1 -M,)? —(wtir—1)2h2

D3

n=0

A2 1
I+ M,,M,,,H) (Mup1+M,)? —(wtit—1)°k2
B.2)

where

M, = \/AQ + 2nv% |eB, | h. (B.3)

Function f4(¢) is the Fermi-Dirac distribution give below

fole) = —

. 4
exp(“T )—l—l (B4)




HWANG: RIGOROUS FORMULATION OF THE SCATTERING OF PLANE WAVES BY 2-D GRAPHENE-BASED GRATINGS

Parameter ¢ is the energy, —e is the charge of an electron,
and 5 is the reduced Plank constant. Parameters . is the chem-
ical potential determined by the electrostatic bias voltage or
achieved by chemical doping, 7’ is the temperature, T is the elec-
tron relaxation time, vF = 10° m/s is the electron energy-in-
dependent velocity, and A is an excitonic energy gap (it is ap-
proximately equal to zero at room temperature).
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