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Abstract Process capability indices, Cp(u, v), including Cp,
Cpk , Cpm , and Cpmk , have been proposed in the manufactur-
ing industry to provide numerical measures on process potential
and performance for normal processes. Earlier studies consid-
ered a class of flexible capability indices, called CNp(u, v), for
processes with non-normal distributions where the tolerances are
symmetric. In this paper we consider an extension of CNp(u, v),
called C′′

Np(u, v), to handle non-normal processes with asym-
metric tolerances. The extension takes into account the important
property of the asymmetric loss function, which is shown to be
more sensitive to process shift and more accurate than CNp(u, v)

in measuring process capability, hence provides better manufac-
turing quality assurance. Comparisons between CNp(u, v) and
the extension C′′

Np(u, v) are provided. We propose a sample per-
centile estimator, and apply the bootstrap method to find the
lower confidence bound for testing manufacturing capability. We
also develop an integrated S-PLUS program to calculate the per-
centile estimator and the corresponding lower confidence bound.
As an illustration, the proposed approach is applied to capability
testing of home-theater speaker systems.

Keywords Asymmetric tolerances · Bootstrap method · Lower
confidence bound · Non-normal processes · Percentile estimator

1 Introduction

Process capability indices Cp(u, v), which include the two ba-
sic indices Cp and Cpk [1], and the two more advanced indices,
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Cpm and Cpmk [2, 3] as special cases, have been proposed in
the manufacturing industry to provide numerical measures on
process potential and process performance. The superstructure
indices Cp(u, v) are defined as the following [4]:

Cp(u, v) = d −u |µ−m|
3
√

σ2 +v(µ− T)2
, (1)

where µ is the process mean, σ is the process standard devia-
tion, d = (USL−LSL)/2 is half of the length of the specification
interval, m = (USL + LSL)/2 is the midpoint between the up-
per and the lower specification limits, T is the target value, and
u, v� 0. By setting u and v equal to 0 or 1, we obtain Cp(0, 0) =
Cp, Cp(1, 0) = Cpk , Cp(0, 1) = Cpm , Cp(1, 1) = Cpmk . Those
four indices have been investigated extensively by Kane [1],
Choi and Owen [5], Chan et al. [2], Pearn et al. [3, 6], and
Kotz et al. [7].

Applications of those indices include the manufacturing of
semiconductor products [8] head/gimbals assembly for mem-
ory storage system [9], jet-turbine engine components [10], flip-
chips and chip-on-board [11], rubber edge [12], wood prod-
ucts [13], aluminum electrolytic capacitors [14], audio-speaker
drivers [15], and Pulux surround [16]. Other applications of
those indices include performance measures on processes with
tool-wear problem [17], production process monitoring [18], and
many others.

Flexible capability indices CNp(u, v)

The indices Cp(u, v) are appropriate for normal and near-normal
processes, but have been shown to be inappropriate for non-
normal processes. Pearn and Chen [14] considered the general-
ization of Cp(u, v) defined in the following, called CNp(u, v),
which can be applied to processes with arbitrary distributions:

CNp(u, v) = d −u |M −m|
3

√[
P99.865−P0.135

6

]2 +v(M − T)2

. (2)
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In developing the generalization CNp(u, v), Pearn and Chen [14]
replaced the process mean µ by the process median, M (a more
robust measure for process central tendency), and the process
standard deviation σ by (P99.865 − P0.135)/6 calculated from the
distribution percentiles in the definition of the original indices
Cp(u, v). If the process follows the normal distribution, then
clearly CNp(u, v) reduces to the basic indices Cp(u, v). Pearn
and Chen [14] investigated the generalization CNp(u, v), and
considered a sample percentile method to calculate CNp(u, v).
But, their investigation was restricted to processes with symmet-
ric tolerances, and therefore may not be applied to processes with
asymmetric tolerances.

2 The subwoofer speaker system

In this section we present a case on investigating the free air
resonance, Fo, of the speaker driver used in home-theater sub-
woofer speaker systems. The case we investigate is taken from
a speaker driver supplier in Taiwan, which manufactures various
types of speaker drivers including 3-inch tweeters, 3-inch and
4-inch full-ranges, 5-inch mid-ranges, 6.5-inch woofers, 8-inch,
10-inch, 12-inch, 15-inch, and 18-inch subwoofers. A standard
woofer or subwoofer driver, depicted in Fig. 1, consists of the
following components: edge, cone, dust cap, spider (also called
a damper), voice coil, lead wire, frame, magnet, front plate, and
back plate (also called a T-york). The edge (on the top) and the
spider (on the bottom) are glued onto the frame to hold the cone
during the piston movements, and the dust cap is glued onto the
center top of the cone, to cover the voice coil, which decouples
the noise from the musical signals.

One characteristic that critically determines the bass per-
formance, musical image, clarity and cleanness of the sound,
transparence, and compliance (excursion movement) of the mid-
range, full range, woofer, and subwoofer driver units, is the
free-air resonance, known as Fo. Some key factors determin-
ing the Fovalues include the hardness, thickness, and weight of
the damper, the hardness, thickness, and weight of the edge and

Fig. 1. A subwoofer driver

Fig. 2. A subwoofer system

Fig. 3. LMS drawing for impedance and phase curves

cone. Some typical ranges of Fo are 60–15 000 Hz for the full
ranges, 500–5000 Hz for the mid-ranges, 1000–18 000 Hz for
hard-dome tweeters, and 1500–20 000 Hz for soft-dome tweet-
ers. A typical subwoofer system with a front reflex tube, as
depicted in Fig. 2, plays an important role in most home-theater
applications.

A standard home-theater system contains two main speaker
systems (normally with tweeters, midranges, and woofers) for
the front channels, one speaker (normally with full ranges,
or tweeters and midranges) for the center channel, one sub-
woofer system, and two speakers for the (rear) background chan-
nels. One particular home-theater application we investigated
uses a subwoofer system with a 10-inch subwoofer driver. The
upper and lower specification limits, the USL and LSL, for
this subwoofer driver are set at 35 Hz and 20 Hz, respectively,
and the target value is set at T = 30 Hz. The LMS (Learn-
ing management system) is the computer software commonly
used in speaker driver manufacturing industry for measuring the
impedance, phase curve and other characteristics of the drivers
(shown in Fig. 3). This is the case where the manufacturing tol-
erance is asymmetric.

3 Capability measure for asymmetric tolerances

For asymmetric tolerances, the work of several researchers in-
cluding Kane [1], and Kushler and Hurley [19], simply shift the
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specification limits to make them symmetric around the target
value T. These methods obviously can severely understate or over-
state process capability and thus reflect process performance inac-
curately. To overcome the problem, Vännman [20] considered an
alternative method by adding a new term, |µ− T |, in the numera-
tor of the capability definitions, which has been defined as:

Cpa(u, v) = d −|µ−m|−u |µ− T |
3
√

σ2 +v(µ− T)2
, (3)

where u and v are non-negative parameters. The index Cpa(u, v)

has the advantage of having its maximum when µ = T , and it
decreases as µ shifts away from T in either direction.

Recently, Pearn and Chen [15] developed a new method to
generalize Cpk for asymmetric tolerance. Chen et al. [21], and
Pearn et al. [22] have applied the method to indices Cpm , and
Cpmk , respectively, for normal processes with asymmetric tol-
erance. Pearn et al. [23] also applied the method to Clements’
formula for calculating capability indices for non-normal pro-
cesses with asymmetric tolerance. The method takes into account
the important property of the asymmetric loss function, which is
shown to be superior to the other existing methods, and is an ap-
propriate method for asymmetric tolerances. We note, however,
that Clements’ formula requires the underlying process distri-
bution to be of the Pearson family type, and the computation
requires checking extensive percentile tables of the Pearson fam-
ily distributions. In the following, we apply the method shown
in [15] to extend the flexible indices CNp(u, v), which we refer
to as C′′

Np(u, v), to cover arbitrary distributions with asymmetric
tolerances. The extension C′′

Np(u, v) can be expressed as:

C′′
Np(u, v) = d∗ −u A∗

3

√(
P99.865−P0.135

6

)2 +vA2

, (4)

where A = max{d(M −T)/du , d(T − M)/dl}, A∗ = max{d∗(M −
T)/du , d∗(T − M)/dl}, du = USL − T , dl = T − LSL, d∗ =
min{du, dl}. We note that if T = m (tolerance is symmetric),
then A = A∗ = |M − T |, and the extension C′′

Np(u, v) reduces to
the original index CNp(u, v). By setting u and v equal to 0 or
1 we obtain C′′

Np(0, 0) = C′′
Np , C′′

Np(1, 0) = C′′
Npk , C′′

Np(0, 1) =
C′′

Npm , and C′′
Np(1, 1) = C′′

Npmk , which can be expressed as the

M C′′
Np C′′

Npk C′′
Npm C′′

Npmk M C′′
Np C′′

Npk C′′
Npm C′′

Npmk

100 1.482 0.000 0.220 0.000 110 1.482 0.741 0.426 0.070
130 1.482 0.000 0.220 0.000 125 1.482 0.741 0.426 0.070

102 1.482 0.148 0.244 0.005 112 1.482 0.889 0.520 0.117
129 1.482 0.148 0.244 0.005 124 1.482 0.889 0.520 0.117

104 1.482 0.296 0.273 0.013 114 1.482 1.037 0.663 0.198
128 1.482 0.296 0.273 0.013 123 1.482 1.037 0.663 0.198

106 1.482 0.444 0.310 0.024 116 1.482 1.185 0.889 0.331
127 1.482 0.444 0.310 0.024 122 1.482 1.185 0.889 0.331

108 1.482 0.593 0.359 0.042 118 1.482 1.333 1.233 0.516
126 1.482 0.593 0.359 0.042 121 1.482 1.333 1.233 0.516

Table 1. C′′
Np(u, v) for processes A, B, satis-

fying (MA − T)/du = (T − MB)/d�

following:

C′′
Np = d∗

3

√(
P99.865−P0.135

6

)2
,

C′′
Npk = d∗ − A∗

3

√(
P99.865−P0.135

6

)2
,

C′′
Npm = d∗

3

√(
P99.865−P0.135

6

)2 + A2

,

C′′
Npmk = d∗ − A∗

3

√(
P99.865−P0.135

6

)2 + A2

. (5)

The merit of the extension is that it takes into considera-
tion the asymmetric loss function that other existing methods
have not implemented. For processes with asymmetric toler-
ances, the corresponding loss function is also asymmetric to the
target value T. Consider the popular quadratic loss function de-
fined as L(x) = [(T − x)/(T −LSL)]2, for LSL < x ≤ T , L(x) =
[(x − T)/(USL − T)]2, for T ≤ x < USL, and L(x) = 1, other-
wise. Then, for x1 = (T + LSL)/2, and x2 = (T + USL)/2, the
corresponding loss can be calculated as L(x1) = L(x2) = 1/4.
Obviously, x1 and x2 have the same departure ratio k = (T −
x1)/dl = (x2 − T)/du = 1/2 (equal departure relative to the tol-
erance). Thus, a desired property for a capability index with
asymmetric tolerances is that the capability measures for shifted
processes with equal departure ratios are the same. While we do
not employ the quadratic loss function, the extension penalizes
processes with equal departure ratios equally.

Justification of the extension

To justify that the extension indeed possesses the important
property of the asymmetric loss function, we consider the follow-
ing example with asymmetric tolerance (LSL, T, USL) = (100,
120, 130) and fixed process variations P99.865 − P0.135 = 0.9d,
P99.865 − M = 0.55d, and M − P0.135 = 0.35d, where 100 �
M � 130. Table 1 displays the capability measures of those pro-
cesses using C′′

Np(u, v). The proposed extensions, C′′
Np(u, v),
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obtain their maximal values at the target value T = 120. It is
easy to verify that when M = T , we obtain that A = A∗ = 0,
and the equations defined in Eq. 4 are indeed maximized.
Table 1 displays the index values of the extension C′′

Np(u, v)

obtained for processes with equal departure ratios satisfying
the property (MA − T)/du = (T − MB)/dl). For example, con-
sider processes A and B with MA = 124 and MB = 112. It is
easy to verify that (MA − T)/du = (124− 120)/10 = 2/5, and
(T − MB)/dl = (120− 112)/20 = 2/5, thus satisfying (MA −
T)/du = (T − MB)/dl . Checking Table 1 the extensions give
same values for A and B.

4 Performance comparisons

In the following, we show that the proposed extension C′′
Np(u, v)

outperforms the original index CNp(u, v) in detecting process
shifting. We consider the following example with an on-target
process A, and three shifted processes A1, A2 and A3, where the
manufacturing tolerance (LSL, T, USL) is set to (100, 120, 130).
Table 2 displays the characteristics of the four processes A, A1,
A2, A3 the index values of CNp , CNpk , CNpm , CNpmk , and the
extensions C′′

Np , C′′
Npk , C′′

Npm , and C′′
Npmk .

We note that the index CNpm detects process shifts of A1,
A2 and A3. But, CNpm fails to differentiate the high quality pro-
cess A2 (with nearly 100% process yield) from the low quality
process A3 (with only 50% process yield), as CNpm = 0.140 for
both A2, and A3. Therefore, we consider CNpm inaccurate. On
the other hand, the extensions detect the shifts of A1, A2, A3,
and differentiate process A2 from process A3 by giving larger
values to A2 and smaller values to A3 (except for C′′

Np which
never takes into account the process median and the target value
hence provides no sensitivity to process departure at all). We
also note that for the extensions C′′

Npk , C′′
Npm , and C′′

Npmk , the
on-target process A receives larger index values than the other
three off-target processes A1, A2, and A3. But, for the original in-
dices CNpk the off-target process A1 receives larger index values
than the on target process A, and the capability measure is con-
sidered inaccurate. Since the generalization is proposed to han-

Table 2. Characteristics of processes A, A1, A2, A3, the corresponding in-
dex values of the original indices and extensions

A A1 A2 A3

M 120 119 110 130
P99.865 130 129 120 140
P0.135 115 114 105 125

CNp 2.000 2.000 2.000 2.000
CNpk 1.333 1.467 1.333 0.000
CNpm 2.000 1.765 0.140 0.140
CNpmk 1.333 1.294 0.093 0.000

C′′
Np 1.333 1.333 1.333 1.333

C′′
Npk 1.333 1.267 0.667 0.000

C′′
Npm 1.333 1.240 0.157 0.043

C′′
Npmk 1.333 1.178 0.078 0.000

dle non-normal processes with asymmetric tolerances, it has to
deal with a large number (theoretically an infinite number) of
arbitrary shapes of distributions, it can only reflect process qual-
ity approximately (often conservatively), and may not be very
accurate.

5 Percentile estimator of C′′
Np(u, v)

Pearn and Chen [14] considered a sample percentile estimator to
calculate the index CNp(u, v). The estimator essentially applies
the sample percentile along with interpolation for calculating the
sample percentiles, P99.865, P0.135, and the median M. The esti-
mator can be expressed as the following:

ĈNp(u, v) =
d − u

∣∣∣M̂ −m
∣∣∣

3

√(
P̂99.865− P̂0.135

6

)2 + v
(

M̂ − T
)2

,

P̂99.865 = X([R1]) +{R1 −[R1]}×{
X([R1]+1) − X([R1])

}
,

P̂0.135 = X([R2]) +{R2 −[R2]}×{
X([R2]+1) − X([R2])

}
,

M̂ = X([R3]) +{R3 −[R3]}×{
X([R3]+1) − X([R3])

}
,

R1 =
(

99.865n +0.135

100

)
, R2 =

(
0.135n +99.865

100

)
,

R3 =
(

n +1

2

)
. (6)

In this setting, the notation [R] is defined as the greatest in-
teger less than or equal to the number R, and x(i) is defined
as the ith order statistic. The sample percentile estimator for
the extension C′′

Np(u, v), therefore, can be easily obtained as
the following. We note that the percentile formula developed
in the following requires no assumption on the underlying pro-
cess distributions to be of the Pearson types, and the computa-
tion does not require any tables. Hence, the sample percentile
method is more general and convenient to use than Clements’
formula:

Ĉ′′
Np(u, v) = d∗ −u Â

∗

3

√ (
P̂99.865−P̂0.135

6

)2 + v Â
2
,

Â∗ = max

{
d∗(M̂ − T)

du
,

d∗(T − M̂)

dl

}
,

Â = max

{
d(M̂ − T)

du
,

d(T − M̂)

dl

}
. (7)

An S-PLUS computer program for calculating the percentile
formula was developed and is listed in the Appendix. The S-
PLUS program reads the sample data as an input, then out-
puts with the estimated values of the indices. Since the per-
centile method involves a complicated function of linear com-
binations of the order statistics and, given that the underlying
process distribution is unknown, the problem of finding an ex-
act distribution is analytically intractable. Approximation ap-
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proaches or bootstrap resampling methods (an effective simu-
lation technique for non-normal distributions) may be applied
to establish the lower confidence bound for capability testing
purposes.

6 Distribution plot of the percentile estimator

In the following, we apply a simulation approach to investigate
the distribution of the sample percentile estimator. We set the
asymmetric specification limits to (LSL, T, USL) = (8, 18, 23),
and the underlying process distribution to:

1. Normal distribution N(17,1), with probability density func-
tion f(x) =(

√
2π)−1e−(x−17)2/2, for −∞ < x < ∞,

2. Uniform distribution U(14, 20), with probability density
function f(x) = 1/6, for 14 < x < 20,

3. Weibull distribution W(2, 2) shifted for 17 units, with proba-
bility density function f(x) = 4xe−2x2

, for x > 0,
4. Gamma distribution G(289, 17), with probability density

function f(x) = 17289x289−1e−17x/Γ(289), for x > 0,
5. Beta distribution B(17, 1), with probability density function

f(x) = [Γ(18)/Γ(17)] x16, for 0 < x < 1,
6. Lognormal distribution LN(0.5, 1) shifted for 17 units,

with probability density function of LN(0.5, 1) as f(x) =
(
√

2π)−1x−1e−(ln x−0.5)2/2, for x > 0,
7. Chi-square distribution with degrees of freedom two shifted

for 17 units, where the probability density function of χ2
2 is

f(x) = e−x/2/2, for x > 0, and
8. t distribution, shifted 18 units and with eight degrees of

freedom, where the probability density function of t8 is,
f(x) = [Γ(9/2)/Γ(4)] (

√
8π)−1(1 + x2/8)−9/2 for −∞ <

Fig. 4. Distribution plot of C′′
Npmk for normal distribution N(17,1), with n =

50, 100, 250, 500, 1000 (bottom to top)

x < ∞. For each distribution, we randomly generate N =
15, 000 samples of sizes n = 50, 100, 250, 500, 1000, and
then calculate the estimated capability index
C′′

Npmk .

Figures 4–11 plot the distribution of C′′
Npmk for the eight

process distributions, normal distribution N(17, 1), uniform dis-
tribution U(14, 20), Weibull distribution W(2, 2) shifted for 17
units, gamma distribution G(289, 17), beta distribution B(17, 1),

Fig. 5. Distribution plot of C′′
Npmk for uniform distribution U(14,20), with

n = 50, 100, 250, 500, 1000 (bottom to top)

Fig. 6. Distribution plot of C′′
Npmk for Weibull distribution W(2,2), with n =

50, 100, 250, 500, 1000 (bottom to top)
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Fig. 7. Distribution plot of C′′
Npmk for gamma distribution G(289,17), with

n = 50, 100, 250, 500, 1000 (bottom to top)

Fig. 8. Distribution plot of C′′
Npmk for beta distribution B(17,1), with n = 50,

100, 250, 500, 1000 (bottom to top)

lognormal distribution LN(0.5, 1) shifted for 17 units, chi-square
distribution with degrees of freedom two shifted for 17 units, and
t8 distribution with degrees of freedom eight shifted for 18 units,
respectively. For moderate and large sample size n, the distribu-
tions of the estimated capability index all appear to be normal.
Therefore, for processes where large sample data may be col-
lected (product items may be inspected by automatic controlled
machines), normal approximations may be used for capability
testing.

Fig. 9. Distribution plot of C′′
Npmk for lognormal distribution LN(0.5,1), n =

50, 100, 250, 500, 1000 (bottom to top)

Fig. 10. Distribution plot of C′′
Npmk for chi-square distribution with d f = 2,

n = 50, 100, 250, 500, 1000 (bottom to top)

7 Bootstrap for manufacturing capability testing

In statistical analysis, the researcher is usually interested in ob-
taining not only a point estimate of a statistic but also an estimate
of the variation of this point estimate, and a confidence interval
for the true value of the parameter. For example, a researcher
may calculate not only a sample mean but also the standard
error of the mean and a confidence interval for the mean. Tra-
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Fig. 11. Distribution plot of C′′
Npmk for t distribution with d f = 8, and n =

50, 100, 250, 500, 1000 (bottom to top)

ditionally, researchers have relied on the central limit theorem
and normal approximations to obtain standard errors and confi-
dence intervals. These techniques are valid only if the statistic,
or some known transformation of it, is asymptotically normally
distributed. Hence, if the normality assumption does not hold,
then the traditional methods should not be used to obtain confi-
dence intervals. A major motivation for the traditional reliance
on normal-theory methods has been computational tractabil-
ity. Now, with the availability of modern computing power, re-
searchers need no longer rely on asymptotic theory to estimate
the distribution of a statistic. Instead, they may use resampling
methods, which return inferential results for either normal or
non-normal distributions. This is particularly useful in our case,
for small or moderate size of non-normal data.

Bootstrapping, as presented by Efron [24, 25] is a data based
estimation method for statistical inference that is effective, non-
parametric but also computationally intensive. In this method,
B new samples, each of the same size as the observed data, are
drawn with replacement from the available sample. The statis-
tic of interest is then calculated for each new set of resampled
data, yielding a bootstrap distribution for the statistic. The funda-
mental assumption of bootstrapping is that the observed data are
representative of the underlying population. By resampling ob-
servations from the observed data, the process of sampling obser-
vations from the population is mimicked. The merit, in its sim-
plest form, is that the nonparametric bootstrap does not rely on
any distributional assumptions about the underlying population.
Efron and Tibshirani [26] developed three types of bootstrap
confidence interval. Those include the standard bootstrap confi-
dence interval (SB), the percentile bootstrap confidence interval
(PB), and the biased corrected percentile bootstrap confidence
interval (BCPB). Franklin and Wasserman [27] investigated the
lower confidence bounds for the capability indices, Cp, Cpk and

Cpm using the three bootstrap methods. Some simulations were
conducted and a comparison was made among the results from
the three bootstrap methods against the known values of the ca-
pability indices. Their simulation results indicate that, for normal
processes, the bootstrap confidence limits perform equally well.
And for non-normal processes the SB method performed signifi-
cantly better than other methods. Furthermore, the proportion of
coverage of the SB method limits and confidence intervals are
closer to the desired value, whatever the underlying process dis-
tribution, and the lengths of the SB intervals are much shorter
than others. Therefore, the SB method is more useful in deter-
mining the value of the process index. In the following, we will
describe how to construct the bootstrap lower confidence bound
by means of the standard bootstrap method.

The bootstrap lower confidence bound

In our application, B = 10000 bootstrap resamples (each of the
same size as the available data) are drawn randomly from the ori-
ginal sample. A 100(1−α)% bootstrap lower confidence limit
of the SB method for C′′

Np(u, v) is constructed. If the calculated
bootstrap lower confidence limit is found to be smaller than the
specified index value, we would judge the process as incapable.
Quality improvement activities will be initiated. Otherwise, the
process is considered to be capable. From the 10000 bootstrap
estimates, the sample average can be calculated as:

Ĉ′′
Np(u, v) = 1

10000

10000∑
i=1

Ĉ′′
Np(i)(u, v),

and the sample standard deviation of the Ĉ′′
Np(u, v) can be ob-

tained as:

SĈ′′
Np(u,v)

=
√√√√ 1

10000−1

10000∑
i=1

(
Ĉ′′

Np(i) (u, v)− Ĉ′′
Np(i) (u, v)

)2
.

where Ĉ′′
Np(i)(u, v) is the ith bootstrap estimates and by set-

ting u, v = 0, 1, we obtain Ĉ′′
Np(0, 0) = Ĉ′′

Np , Ĉ′′
Np(1, 0) = Ĉ′′

Npk ,

Ĉ′′
Np(0, 1) = Ĉ′′

Npm , and Ĉ′′
Np(1, 1) = Ĉ′′

Npmk . Thus, the 100(1−
α)% SB lower confidence bound (LCB) for C′′

Np(u, v) can be
constructed as:

LCB = Ĉ′′
Np(u, v)− Zα × SĈ′′

Np(u,v)
. (8)

In order to make use of the methodology more convenient
and accelerate the computation time, an integrated S-PLUS com-
puter program has been developed (see Appendix). The practi-
tioners only need to input the manufacturing specifications, USL,
LSL, target value T, a specified quality level of C′′

Np(u, v) and

a collected sample data of size n. The estimated value Ĉ′′
Np(u, v)

and the SB lower confidence bound of C′′
Np(u, v) may be eas-

ily obtained. Thus, whether or not the process is capable may be
determined.
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28 28 26 32 28 27 29 25 25 28 28 26 27
31 27 26 32 29 27 26 26 26 30 25 27 29
27 31 30 30 27 31 27 25 30 28 26 27 31
27 34 27 28 32 33 25 29 28 28 29 29 25
29 29 30 31 28 28 30 28 26 28 28 25 29
28 29 31 28 28 27 30 27 25 30 25 29 26
26 27 33 29 26 31 32 27 26 29 26 28 30
26 29 28 29 25 30 27 28 32

Table 3. The 100 sample observations

The collected data (a total of 100 observations) are displayed
in Table 3. Proceeding with the calculations by running the inte-
grated S-PLUS program with 95% of confidence, we obtain the
values of the sample percentile estimators and the corresponding
bootstrap lower confidence bound (LCB) as:

Ĉ′′
Np = 1.35, with LCB = 1.25,

Ĉ′′
Npk = 1.20, with LCB = 1.10,

Ĉ′′
Npm = 1.18, with LCB = 1.08,

Ĉ′′
Npmk = 1.05, with LCB = 0.94.

We note that the estimated index values for all the four ex-
tensions are greater than 1.00. In fact, all 100 observations fall
within the specification interval (LSL, USL) with one observa-
tion (34) fairly close to the upper specification limit (35). Check-
ing the corresponding lower confidence bounds, 1.25, 1.10, 1.08,
and 0.94, we may only conclude that the process is marginally
capable, with 95% of confidence.

8 Concluding remarks

Process capability indices are practical and powerful tools for
measuring process performance. Many quality engineers and
statisticians have proposed methodologies for assessing prod-
uct/process quality but limited their proposals to the inspection
of data that are normally distributed where the manufacturing
tolerances are symmetric. In this paper, we considered an exten-
sion of the existing capability index, called C′′

Np(u, v), to handle
non-normal processes with asymmetric tolerances. The exten-
sion takes into account the important property of the asymmetric
loss function, which is shown to be more sensitive to process
shift and more accurate than the existing ones in measuring pro-
cess capability, and hence provides better quality assurance. We
also presented a percentile estimator to calculate the asymmetric
process capability with non-normal data.

Since the proposed percentile method involves a complicated
function of linear combinations on the order statistics and, given
that the underlying process distribution is unknown, the prob-
lem of finding an exact distribution is analytically intractable.
We applied the nonparametric bootstrap method to establish the
lower confidence bound for capability testing purposes. We also
developed an integrated S-PLUS computer program to calculate
the percentile estimator and the corresponding lower confidence
bound. The practitioners only need to input the manufacturing
specifications, USL, LSL, target value T, a specified quality level

of C′′
Np(u, v) and the collected sample data. The estimated value

Ĉ′′
Np(u, v) and the SB lower confidence bound of C′′

Np(u, v) may
be applied to determine whether the process is capable or not.

Appendix

Integrated S-PLUS computer program

#-----------------------------------------#
# Input the specification limits, USL, LSL,
# and the target value T
#-----------------------------------------#
USL<-35
LSL<-20
Target<-29

#-----------------------------------------#
# Store the input of the original sample data
# of size n =100
#-----------------------------------------#
data0<-c( 28,28,26,32,28,27,29,25,25,28,
28,26,27,31,27,26,32, 29,27,26,26,26,30,25,
27,29,27,31,30,30,27, 31,27,25, 30,28,26,27,
31,27,34,27,28,32,33,25,29,28, 28,29,29,25,
29,29,30,31,28,28,30,28,26,28,28,25,29,28,
29,31, 28,28,27,30,27,25,30,25,29,26,26,27,
33,29, 26,31,32, 27,26,29,26,28,30,26,29,28,
29,25,30,27,28, 32)

#-----------------------------------------#
# The function to calculate the estimated
# C’’_Np (u, v) based on the given data
#-----------------------------------------#
CNp.hat<-function(u,v,data){
data.order<-sort(c(data))
n<-length(data)
R1<-(99.865*n+0.135)/100
R2<-(0.135*n+99.865)/100
R3<-(n+1)/2

P99.865hat<-data.order[floor(R1)]
+(R1-floor(R1))*(data.order[floor(R1+1)]
-data.order[floor(R1)])

P0.135hat<-data.order[floor(R2)]
+(R2-floor(R2))*(data.order[floor(R2+1)]
-data.order[floor(R2)])
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Mhat<-data.order[floor(R3)]
+(R3-floor(R3))*(data.order[floor(R3+1)]
-data.order[floor(R3)])

du<-USL-Target
dl<-Target-LSL
d<-(USL-LSL)/2
dstar<-min(du,dl)
Ahat.star<-max(dstar*(Mhat-Target)
/du,dstar*(Target-Mhat)/dl)

Ahat<-max(d*(Mhat-Target)/du,
d*(Target-Mhat)/dl)

CNp.return<-(dstar-u*Ahat.star)
/(3*sqrt(((P99.865hat-P0.135hat)/6)^2
+v*Ahat^2))

}

#-----------------------------------------#
# Calculate the estimated C’’_Np (u, v)
# based on the original data
#-----------------------------------------#
CNp.est<-CNp.hat(0,0,data0)
CNpk.est<-CNp.hat(1,0,data0)
CNpm.est<-CNp.hat(0,1,data0)
CNpmk.est<-CNp.hat(1,1,data0)

#-----------------------------------------#
# Generate 10000 bootstrap resamples from
# the original sample of n = 100
#-----------------------------------------#
m<-10000

CNp.boot<-rep(0,m)
CNpk.boot<-rep(0,m)
CNpm.boot<-rep(0,m)
CNpmk.boot<-rep(0,m)

for (i in 1:m){
dataB<-sample(data0,100,replace=T)
CNp.boot[i]<-CNp.hat(0,0,dataB)

CNpk.boot[i]<-CNp.hat(1,0,dataB)
CNpm.boot[i]<-CNp.hat(0,1,dataB)
CNpmk.boot[i]<-CNp.hat(1,1,dataB)

}

#-----------------------------------------#
# Calculate the lower confidence bound based
# on the bootstrap resampling
#-----------------------------------------#
CNp.boot.95lowerbound<-mean(CNp.boot)
-qnorm(0.95)*var(CNp.boot)^0.5

CNpk.boot.95lowerbound<-mean(CNpk.boot)
-qnorm(0.95)*var(CNpk.boot)^0.5

CNpm.boot.95lowerbound<-mean(CNpm.boot)
-qnorm(0.95)*var(CNpm.boot)^0.5

CNpmk.boot.95lowerbound<-mean(CNpmk.boot)
-qnorm(0.95)*var(CNpmk.boot)^0.5

#-----------------------------------------#

The output of sample program based on the above settings:

1. The estimated C′′
Np(u, v) based on the original data are:

> CNp.est = 1.353432
> CNpk.est = 1.20305
> CNpm.est = 1.178897
> CNpmk.est = 1.047908

2. The bootstrap lower confidence bound of C′′
Np(u, v) are:

> CNp.boot.95lowerbound = 1.250352
> CNpk.boot.95lowerbound = 1.104946
> CNpm.boot.95lowerbound = 1.084890
> CNpmk.boot.95lowerbound = 0.9366828
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