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Semi-supervised Linear Discriminant Clustering
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Abstract—This paper devises a semi-supervised learning
method called semi-supervised linear discriminant clustering
(Semi-LDC). The proposed algorithm considers clustering and
dimensionality reduction simultaneously by connecting K-means
and linear discriminant analysis (LDA). The goal is to find a
feature space where the K-means can perform well in the new
space. To exploit the information brought by unlabeled examples,
this paper proposes to use soft labels to denote the labels of
unlabeled examples. The Semi-LDC uses the proposed algorithm,
called constrained-PLSA, to estimate the soft labels of unlabeled
examples. We use soft LDA with hard labels of labeled examples
and soft labels of unlabeled examples to find a projection matrix.
The clustering is then performed in the new feature space. We
conduct experiments on three data sets. The experimental results
indicate that the proposed method can generally outperform
other semi-supervised methods. We further discuss and analyze
the influence of soft labels on classification performance by
conducting experiments with different percentages of labeled
examples. The finding shows that using soft labels can improve
performance particularly when the number of available labeled
examples is insufficient to train a robust and accurate model.
Additionally, the proposed method can be viewed as a framework,
since different soft label estimation methods can be used in the
proposed method according to application requirements.

Index Terms—Clustering, linear discriminant
semi-supervised learning, soft label, text mining.

analysis,

I. INTRODUCTION

LUSTERING is one of the most frequently encountered

tasks of machine learning. The goal of clustering is to
automatically assign objects into groups so that objects from
the same cluster are more similar to each other than objects
from different clusters. It is also one of the most widely used
techniques for exploratory data analysis, since it can capture
the natural structure of the data. Additionally, clustering is
an unsupervised learning approach, so it does not require
labeled data during the course of clustering. The K-means is
a typical clustering algorithm, which aims at the minimization
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of the average squared distance between the objects and
the cluster centers. The K-means generally uses Euclidean
distance as the distance metric, explaining why it can have
a good performance on the data set with compact super-
sphere distributions, but tends to fail in the data organized in
more complex and unknown shapes [1]. In many applications
such as document classification and pattern recognition, each
object generally comprises thousands of features. One of
the problems with high-dimensional data sets is that not all
the measured variables are important for understanding the
underlying phenomena of interest. As a result, K-means does
not generally perform well on high-dimensional data sets. This
paper proposes to use dimensionality reduction technique to
improve K-means clustering performance. The goal is to find
an appropriate feature space where the K-means can perform
well in the new space. We propose a method called semi-
supervised linear discriminant clustering (Semi-LDC), which
connects K-means and linear discriminant analysis (LDA),
to consider clustering and dimensionality reduction simulta-
neously. The K-means is an unsupervised learning method,
while LDA is a supervised dimensionality reduction method.
The goal of LDA is to find a vector which can separate two
or more classes of objects, but LDA requires sufficient labeled
examples to obtain the projection vector. Labeling is a time-
consuming process, since it is typically done manually. Con-
versely, unlabeled data is relatively easy to collect, explaining
why the proposed method uses a few labeled examples and
enormous unlabeled examples in finding a feature space where
K-means can function well. The proposed method can be
applied to the situations where only a few labeled examples are
available. One typical example is to classify news documents
into different categories with a few labeled news documents.
Semi-supervised learning, learning from a combination of both
labeled and unlabeled data, has become a topic of significant
recent interest [2]-[7]. This paper proposes to use soft
labels to denote the labels of unlabeled examples due to the
uncertainty on the estimation. Compared with hard labels of
labeled examples, soft labels allow each object to belong to
all of the clusters with membership degrees or probabilities.
In text analysis, Hofmann [8] proposed probabilistic latent
semantic analysis (PLSA) for factor analysis of binary and
count data, such as text data collected by counting terms
occurring in documents with the bag-of-words representation
or images represented through feature counts. Notably, two
PLSA models are the aspect model and statistical clustering
model [8], [9]. One important characteristic of PLSA is that
it defines a proper generative data model and views the topic
as a latent variable, since topic is not directly observed but
is rather inferred from observed data. In PLSA aspect model,
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the latent variable z is introduced for each observation (x;, w;)
over a finite set Z = {z1,...,zx}, where the pair (x;, w;)
represents the occurrence of a term w; in a document X;. In
the clustering model for documents, PLSA clustering model
assumes that each document belongs to exactly one cluster
and it is only the finiteness of the number of observations
per document that induces uncertainty about a document’s
cluster membership. This paper uses the proposed constrained-
PLSA algorithm, which is an extension of PLSA clustering
model with a few labeled examples, to obtain soft labels of
unlabeled examples. The constrained-PLSA, an expectation
maximization (EM) algorithm [10], uses the available labeled
examples as constraints to bias the clustering toward a good
region of the search space. The output of constrained-PLSA
algorithm is a document-topic matrix, whose entry indicates
the probability of a document belonging to a specific cluster.
The proposed method uses the soft labels to find a projection
matrix by using soft LDA, and then clusters the data points
in the new feature space. The main contribution of this paper
is that this paper devises a semi-supervised algorithm called
semi-supervised linear discriminant clustering. Compared with
traditional methods, the proposed method considers clustering
and dimensionality reduction simultaneously to devise the
algorithm. Although this paper focuses on document clustering
problem, the proposed method connects K-means and LDA
seamlessly, making it feasible to extend the proposed method
to the other problem domains. Additionally, this paper also
shows that the proposed method can be mapped to a high-
dimensional feature space by means of kernel trick. We con-
duct experiments on three data sets, and experimental results
indicate that the proposed method generally outperforms other
semi-supervised learning methods. The rest of this paper is or-
ganized as follows. Section II presents related surveys of semi-
supervised learning and high-dimensional data. Section III
then introduces constrained-PLSA algorithm and Semi-LDC
algorithm. Next, Section IV summarizes the results of several
experiments. Conclusions are drawn in Section V.

II. RELATED WORK
A. Semi-supervised Learning

Semi-supervised learning methods can be further classi-
fied into semi-supervised classification and semi-supervised
clustering methods. Semi-supervised classification employs
labeled data along with unlabeled data to construct a more
accurate classifier; while semi-supervised clustering uses a
few labeled data to bias the clustering of unlabeled data.
Various semi-supervised algorithms have been proposed, in-
cluding co-training [2], [5], semi-supervised naive Bayes [3],
transductive support vector machines (TSVM) [11], graph-
based approaches [12], [13], and clustering-based approaches
[14]-[16].

Transductive support vector machines (TSVM) [11], which
is an extension of standard support vector machines with unla-
beled data, is a typical semi-supervised classification method.
Unlike standard SVM, unlabeled examples are included
in TSVM model training. Although unsupervised learning
approaches do not need labeled data during the course of
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clustering process, proper seeding biases clustering toward a
good region of the search space [15]. Wagstaff et al. [14]
devised a semi-supervised variant of K-means called COP-
KMeans to use constraints in order to represent background
knowledge. Two constraints are must-link (i.e., two instances
must be together in the same cluster) and cannot-link (i.e.,
two instances must be in different clusters). These constraints
are used during clustering to generate a partition that satisfies
all given constraints. Basu et al. [15] introduced two semi-
supervised variants of K-means clustering that use initial
labeled data for seeding, and the experimental results indicated
that their proposed method outperforms COP-KMeans. Prac-
tically, a good initial labeled seeds provide guidance for semi-
supervised clustering methods to obtain reliable clustering
results. Nie er al. [17] proposed an actively self-training
clustering method, in which the samples are actively selected
as training set to minimize an estimated Bayes error, and then
explore semi-supervised learning to perform clustering.

Many semi-supervised learning methods use optimization
with constraints technique to view labeled examples as con-
straints. For instance, many clustering algorithms aim at
the minimization of the cost function, which involves dis-
tortion measure between the objects and the cluster rep-
resentatives. Besides the original objective function, semi-
supervised learning can formalize labeled examples as reg-
ularization terms. This technique has been widely used by
many researchers [18]-[20]. For instance, Bouchachia and
Pedrycz [21] developed a semi-supervised learning algo-
rithm, which extends the objective function of fuzzy c-means
(FCM) [22] to encode labeled data as an additional regular-
ization term. Miyamoto et al. [20] used the same technique in
fuzzy semi-supervised learning.

B. High-dimensional Data

High-dimensional data presents many mathematical chal-
lenges to machine learning tasks. One of the problems with
high-dimensional data is that not all the measured variables
are important for understanding the underlying phenomena
of interest [23]. The assessments on concepts of distance or
nearest neighbor are deteriorated in high-dimensional data
due to the curse of dimensionality problem. Outlier detec-
tion in the high dimensional space is a typical application,
since its goal is to identify the objects that considerably
deviate from the general distribution of the data. Thus,
Kriegel et al. [24] proposed a novel approach named angle-
based outlier detection and some variants assessing the vari-
ance in the angles between the difference vectors of a point to
the other points, since angles are more stable than distances
in high-dimensional space. To further reduce time complexity,
Pham and Pagh [25] used random projection technique to
propose a near-linear time algorithm to approximate the vari-
ance of angles for each data object. Besides outlier detection,
distance metrics are also crucial to many learning algorithms.
For instance, kNN classifier has to identify the set of labeled
examples that are closest to a given test example in the feature
space, which involves the estimation of a distance metric.
Therefore, metric learning is another popular approach to
process the high-dimensional data. Previous works [26]-[28]
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TABLE 1
NOTATION
[ Notation [ Meaning |

N The number of documents
M The number of features
K The number of clusters
N, The number of documents in the cth cluster (¢ = 1,..., K)
X; The ith document (z = 1,..., N)
ch) The ith document of cluster ¢ (i = 1,...,Necand c=1,..., K)
m. The mean of the cth cluster (c =1,..., K)
mg The total mean

have shown that appropriately designed distance metrics can
significantly improve performance compared to the standard
Euclidean distance. For instance, Goldberger et al. [26] pro-
posed neighborhood component analysis (NCA) algorithm for
learning a Mahalanobis distance metric to be used in the kANN
classifier by maximizing the leave-one-out cross validation.
Weinberger and Saul [27] proposed a distance metric learning
algorithm to learn a Mahalanobis distance metric for ANN
classification from labeled examples. The metric is trained
with the goal that the k-nearest neighbors always belong to the
same class while examples from different classes are separated
by a large margin.

Dimensionality reduction, which tries to find a lower dimen-
sional representation of the data according to some criterion,
is essentially to learn a distance metric without label informa-
tion [29]. Dimensionality reduction approaches assume that the
data of interest lies on an embedded linear subspace or nonlin-
ear manifold within the higher-dimensional space, and they are
commonly used techniques for visualization [30] and feature
extraction. Many dimensionality reduction algorithms have
been developed to accomplish these tasks. Random projec-
tions, projecting original high-dimensional data onto a lower-
dimensional subspace using a random matrix whose columns
have unit lengths, have recently emerged as a powerful method
for dimensionality reduction [31]. Besides randomized algo-
rithms, principal component analysis (PCA), LDA and multidi-
mensional scaling (MDS) are methods that provide a sequence
of best linear approximations to a given high-dimensional
observation. In order to resolve the problem of dimensionality
reduction in nonlinear cases, many recent techniques, includ-
ing Isomap [32], locally linear embedding (LLE) [33], and
Laplacian eigenmaps [34] have been proposed.

Among these methods, PCA and LDA are two typical
linear dimensionality reduction methods, but they use different
criteria to reduce dimensionality. PCA is an unsupervised
learning method, and the goal is to perform dimensionality
reduction while preserving as much of the variance in the
high-dimensional space as possible. Conversely, LDA is a
supervised learning method, and the goal is to perform di-
mensionality reduction while preserving as much of the class
discriminatory information as possible. In other words, LDA
aims at finding a feature representation by which the within-
class distance is minimized and the between-class distance is
maximized. The two criteria lead to LDA objective function,
which can be further transformed into a generalized eigenvalue
problem.
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III. SEMI-SUPERVISED LINEAR DISCRIMINANT
CLUSTERING

A. Notation

The notations that will be used in the following sections are
listed in Table 1. Each document Xx; is represented as a feature
vector, whose length is M. There are N documents in the
collection, and the goal is to partition the document collection
into K clusters, each of which comprises N.,1 < ¢ < K,
documents. The cluster center or mean for each cluster ¢ is m,,
and the center for all of the documents is my. Additionally, we
use a matrix X to denote all document vectors as shown in (1)

X' =[x, %, ..., Xn]. (H

B. Linear Discriminant Clustering

The K-means is a typical clustering algorithm, which aims
at the minimization of the average squared distance between
the objects and the cluster centers. Equation (2) shows the
objective function of K-means. The K-means generally uses
Euclidean distance as the distance metric, explaining why it
can have a good performance on the data with compact super-
sphere distributions, but tends to fail in the data organized in
more complex and unknown shapes [1]. However, the analysis
on high-dimensional data sets becomes a topic of significant
recent interest due to the advances in data collection and
storage capabilities during the past decades.

The K-means objective function listed in (2) is performed
in the original input space. This paper proposes to use dimen-
sionality reduction technique to find an appropriate feature
space, so that the clustering can perform well in the new
feature space. We start the derivation from projecting data
points onto a line by using a projection vector a, and then
the original objective function of K-means can be represented
as the form listed in (3), where S, is %ZL SN (x —
mc)(xf-c) —m,)”. The goal becomes to find a projection vector
a to minimize the objective function listed in (3). Moreover,
Ding and He [35] have shown that the minimization of
K-means objective function implicitly implies that the average
between-class distances should be maximized. On the other
hand, the S, presented in (3) is equal to the within-class
scatter matrix of LDA. As a result, the derivation of (3) and
the between-class criterion can connect K-means and LDA.
Essentially, K-means and LDA have different objectives. The
K-means is a clustering algorithm; while LDA is generally
used for dimensionality reduction, aiming at finding a linear
combination of features which characterizes or separates two
or more classes of objects. The above derivation shows that
using a projection vector on K-means objective function and
considering between-class criterion in the new feature space
can connect K-means and LDA seamlessly. We call the above
processes as linear discriminant clustering (LDC), since it con-
siders dimensionality reduction and clustering simultaneously
K N.
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As an unsupervised learning method, the K-means does
not require labeled examples during the course of clustering.
Conversely, LDA is a supervised dimensionality reduction
method, meaning that sufficient labeled examples are required
in finding a projection vector which can separate two or more
classes of objects. Labeling must typically be done manually
and it is a time-consuming process obviously. In general,
unlabeled data is relatively easy to collect. Although unsuper-
vised dimensionality reduction methods do not require labeled
examples, they do not generally consider classification or clus-
tering criteria when performing dimensionality reduction. As a
result, this paper proposes an algorithm called semi-supervised
linear discriminant clustering (Semi-LDC) to use a few labeled
examples to find an appropriate feature space where K-means
can function properly. Essentially, using insufficient labeled
examples cannot determine a reliable discriminative projection
vector, explaining why we use soft labels to denote the labels
of unlabeled examples. Compared with hard labels of labeled
examples, soft labels allow each object to belong to all of the
clusters with different membership degrees or probabilities.
This paper uses the proposed constrained-PLSA method to
obtain soft labels of unlabeled examples.

C. Soft Label via Constrained-PLSA

Inspired by latent semantic analysis (LSA), Hofmann [§]
proposed PLSA for factor analysis of binary and count data.
PLSA comprises several important properties. First, it is an
unsupervised learning method, so it does not require labeled
data. Second, as a generative model, PLSA is based on a
mixture decomposition derived from a latent class model,
where the latent variable is discrete. Third, the latent variable
introduced by PLSA can infer more semantic information from
the observations. For instance, PLSA can handle polysemy
problem, namely, a word with many possible meanings.

The constrained-PLSA proposed in this paper is an exten-
sion of PLSA clustering model with a few labeled examples.
The main difference between the constrained-PLSA and the
conventional PLSA is that the conventional PLSA is an un-
supervised learning method, while the proposed constrained-
PLSA is a semi-supervised learning method, which extends
the PLSA by using the seeds to direct the clustering to toward
a good region of the search space. The constrained-PLSA
can estimate maximum likelihood in latent variable models
using the EM algorithm [10]. The E-step is to calculate the
probability of the latent variables, given the observed variables
and the current values of the parameters. Then the posterior
distribution is used to compute the expected complete data
log likelihood to estimate the new parameter value in the
M-step. Meanwhile, convergence is assured since the EM
algorithm is guaranteed to increase the likelihood at each
iteration. Equation (4) presents the E-step, where Q represents
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Algorithm 1: constrained-PLSA Algorithm
Input: A N x M document-term matrix X, the number
of topics K and the seeds S ={Si, ..., Sk}
Without loss of generality, S; represents the
document seeds for topic k (k=1,..., K).
Output: A N x K document-topic matrix Q.
1 begin
2 X,‘ <~

X; r .
Zlfxif’ fori=1,...,N;
3 ®k<—mzxiest,-,fork=l,...,K;

4 Initialize topic proportion components
P(zi)=...= P(zg) = #;

5 repeat

6 E-step: to compute latent variable posterior
probability Q according to Equation (4);

7 normalize Q;, fori=1,... ,N ;

8 stk<—landQS,<—Owherel#k for
k=1, ;

9 Normahze st,fork=1,... , K ;

10 M-step: to update proportion parameter P(z;) and
©; according to Equation (5) and Equation (6),
respectively, for k=1,... , K

11 until convergence ;
12 return Q
13 end

the posterior probability distribution of latent variable and
n(x;, w;) denotes the term frequency, that is, the number
of times w; occurred in x;. The probability matrix Q is a
N x K matrix, and each entry Q,; represents the probability
of document x; assigned to topic k. The topic-term distribution
matrix ® is a K x M matrix, where each row ®; represents
a topic and the entry value @y; represents the probability of
topic k generating term w;

Qi = Plzlx)

M
P(zi) exp() _ n(xi, w;) In Oy)).

J=1

“4)

Then, the Lagrangian function can be obtained based on
the expected complete log likelihood function and the prob-
ability constraints, Z,f:l P(z;) =1 and Z’}:l P(wjlzy) = 1.
Maximization of Lagrange function with respect to the prob-
ability mass functions leads to the following set of stationary
equations as shown in (5) and (6), where Q;; = P(zx|X;).
Meanwhile, (5) and (6) are the estimated parameters in M-step

P(z1) =t
P(zp |X;)

®)
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Algorithm 1 shows the constrained-PLSA algorithm. The
inputs of the constrained-PLSA include document term ma-
trix X, the number of topics K and the document seeds,
Si, ..., Sk. Without loss of generality, S; represents the
document seeds for topic k. The output of the constrained-
PLSA is the document-topic matrix Q as shown in (7). In the
algorithm, the initialization steps are listed in Line 2-4. Then,
using E-step and M-step described above to update parameters
until convergence

Q=1Q",Q%,...,

Q1 e R, ()

D. Soft LDA

On completion of constrained-PLSA algorithm, we can
obtain a document-topic matrix Q, which can be further
interpreted as the soft label matrix for the input documents.
This paper calls the LDA with soft labels as soft LDA, since
the original LDA only uses hard labels to compute projection
vector. Nie et al. [36] have extended the scatter matrices
defined in LDA to the soft label based scatter matrices,
inspiring this paper to use the same idea to use soft labels.

The soft labels obtained from Q do not belong to crisp set
any more, since each document can belong to more than one
cluster with probability. As a result, the number of data in
the cth cluster and total number of data have to be redefined
as shown in (8). Similarly, the mean of a cluster should
consider soft labels as well. Equation (9) shows the matrix
form representation. Additionally, we introduce two diagonal
matrices, D and B*/", where the diagonal entry D,. is the soft
number of data for cth cluster, and the diagonal entry Bmf !
is the sum of membership degrees for ith data. Equation (10)
and (11) show the definitions of D and B*/, respectively

K
N=Y"A. ®)
c=1
|
me. = KTC Z Qicxz
i=1
1 T
= =[x, X0, ..., Xn][Q1e Qoer - -+, Q]
1
= =—X'Q¥ )
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Next, we can follow the definition of between-class scatter
matrix to derive soft label one. The soft between-class scatter
matrix S, can be represented as a matrix form listed in (12)
by using the matrix form representation of m., in which
the soft total mean m, can be eliminated due to zero mean
normalization technique. Similarly, the soft within-class scatter
matrix can be represented as a matrix form listed in (13)

K -
S = > e,

— 1) (i1, — ri)”

1 T 1 T !
<N X Q(C)) (NX Q(C))
LQ((‘)Q(L‘)T X
N,

(12)

—m)(x; —m,)"

i 1 &
Sy = TZZQic‘(Xi
i=1

= %XT (B*" —QDQ") X (13)

Using matrix form to represent scatter matrices has several
advantages. First, matrix form provides an elegant way to
represent the formula in a compact form. Thus, it is easy to
formulate the soft LDA problem as an optimization problem
listed in (14). Classical LDA is not applicable for small sample
size problems due to the singularity of the within-class scatter
matrices involved [37], since the dimension of sample exceeds
the number of samples. Regularization techniques can be
applied to deal with the singularity problem of LDA by adding
a constant 4 > 0 to the diagonal elements of S,, as S, + ul,
where I is an identity matrix [38]-[40]. The optimization
problem can be transformed into a generalized eigenvalue
problem. Second, matrix is the basic data element in some
programming languages such as MATLAB, and vectorization
technique can be used in the programs to speed up the
code. Third, the soft LDA can be employed in a nonlinear
way by means of the kernel trick, which only requires dot
products between the vectors in feature space, and chooses
the mapping such that these high-dimensional dot products can
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be computed within the original space by means of a kernel
function

R a’S,a
4 = argmax

—_. 14
a aT (Sw + I’LI) a ( )

The extension to kernelized soft LDA can be achieved by
introducing a matrix @ as shown in (15), which denotes the
data in the feature space using the mapping function ¢. Then,
using @ to replace original data X leads to the kernelized
soft LDA formula as shown in (16). Moreover, the projection
vector a can be rewritten as the linear combination of data
as shown in (17). Replacing the projection vector a with the
matrix form listed in (17) can lead to (18) in which a kernel
matrix K can be used to replace the dot product of data, that
is, o’

o7 = [¢p(x1), p(x2), ..., p(Xy)] (15)
4= argmax % 2/QDQ"@a (16)
C e T (B*# — QDQT) @a
N
a= Zaiq&(xi) =0"q a7)
i=1
o = arem o' ®d"QDQ  dd
¢ T Y eeT (B — QDQT) ¢o e
T T
- argmax— % KQDQ Ka (18)

« oK (B - QDQ") Ko’

E. Semi-supervised Linear Discriminant Clustering

In information retrieval, document representation is often
based on the bag-of-words model, where a document is
represented as an unordered collection of words, disregarding
grammar and even word order. The bag-of-words approach
to document representation typically results in vectors of the
order of 5,000-20,000 components as the representation of
documents. Torkkola [41] has shown that LDA can be used to
reduce drastically the dimension of document representation
in classification tasks without sacrificing the accuracy with
a small number of discriminative features obtained from
latent semantic indexing (LSI) or PCA. Moreover, applying
PCA first for dimensionality reduction is also a method to
make the within-class scatter matrix nonsingular before the
application of LDA [42]. Consequently, this paper uses PCA
to reduce dimensions first, and then uses soft LDA with soft
labels obtained from constrained-PLSA to find discriminative
features. This paper further conducts experiments to analyze
the influence of different dimensionality reduction methods on
classification performance.

Algorithm 2 shows semi-supervised linear discriminant
clustering (Semi-LDC) algorithm. The inputs include docu-
ment term matrix X, the number of clusters K and the seeds
S = {S1,..., Sk}. The algorithm uses constrained-PLSA to
obtain a soft label matrix Q as shown in Line 2. Line 3 shows
that we use PCA to reduce dimensions of input document term
matrix X due to the reason described above. Next, the proposed
algorithm uses soft LDA to estimate the best projection matrix
A in Line 4-8. The number of the reduced dimensions in LDA
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Algorithm 2: Semi-supervised Linear Discriminant Clus-
tering Algorithm

Input: A N x M document-term matrix X, the number of
clusters K and the seeds S = {Si, ..., Sx}. Without loss
of generality, Sy represents the document seeds for topic
k(k=1,...,K).

QOutput: A N x K clustering matrix U.

begin

Q «— constrained-PLSA(X, K, S) ;

X «— PCAX) ;

Construct matrix D using Equation (10) ;

Construct matrix B**/" using Equation (11) ;

Compute S, using Equation (12) ;

Compute S,, using Equation (13) ;

Solve generalized eigenvalue problem Sya = A(S,, + uDa

and use the first K — 1 eigenvectors a;,... ,ax_| as

columns to compose a projection matrix A, where their
corresponding eigenvalues are in descending order. ;

9 X« XA

@ N AN N AW N -

10 U «— constrained-KMeans(X, S)
11 return U
12 end

is K—1 conventionally, where K is the number of classes. This
paper follows the same scheme to determine the number of the
reduced dimensions in soft LDA. Then, the original documents
can be projected to a lower dimensional space in which the
classes are well separated as shown in Line 9. Finally, we
apply constrained-KMeans [15] to the data points in the new
space to obtain the final clustering results.

IV. EXPERIMENTS

This paper uses three data sets to assess system perfor-
mance. Besides, several semi-supervised learning algorithms
are applied to the data sets to compare with the proposed
approach. The experiments focus on semi-supervised learning
performance, explaining why only a few labeled examples
are used in the experiments. This paper randomly selected
examples as the labeled ones and the rest of examples are
unlabeled examples. To further evaluate the impact of the
number of labeled examples on system performance, different
percentages of labeled examples are used in the experiments.
Each evaluation runs ten times. We present the experimental
results by using the average with two standard deviations.
Additionally, some methods in the experiments use PCA to
reduce dimensions, and the number of dimensions should be
given in PCA operation. Instead of determining the number
of dimensions directly, we use the percentage of variance
explained as the criterion, since the eigenvalues obtained
from PCA are equal to the variance explained by each of
the principal components in decreasing order of importance.
The experiments retain the number of dimensions which can
account for 90% of the total variance.

A. Data Corpora

This paper uses three data sets in the experiments. The 20
Newsgroups and Reuters-21578 are popular corpora, which
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TABLE II
CITEULIKE CORPUS

| | Graphics | Databases | Programming Languages |

Number of papers 741 1,289 1,364
Number of terms in abstractions 65,372 115,346 110,184
Number of tags 2,013 3,126 4,983

TABLE III
TEN LARGEST CLASSES IN THE REUTERS-21578 COLLECTION

class | number of documents [[ class | number of documents |
earn 3,753 trade 449
acquisitions 2,131 interest 389
money-fx 601 ship 276
grain 528 wheat 264
crude 510 corn 207

are commonly used in text analysis experiments. Besides, this
paper employs the academic paper information collected from
CiteULike' to evaluate system performance.

1) The 20 Newsgroups data set is a collection of ap-
proximately 20,000 newsgroup documents, partitioned
(nearly) evenly across 20 different newsgroups. Some
of the newsgroups are very closely related to each
other, while others are highly unrelated. It has become a
popular data set for experiments in text applications of
machine learning techniques, such as text classification
and text clustering.

CiteULike is a social bookmarking web site and is
aimed to promote and to develop the sharing of scientific
references amongst researchers. Scientists can annotate
their interested academic papers with tags and share
the information with the other people. CiteUlike fuses
together two separated categories of software: the new
Web 2.0 breed of social bookmarking services and
traditional bibliographic management software. While
web bookmarks are simple URLs, citations are a bit
more complex and include meta-data like journal names,
authors, and page numbers. However, meta-data infor-
mation does not include paper category information,
which is necessary for this paper to assess performance.
This paper assigns papers to communities according to
their venues, using the classification system adopted by
Microsoft’s academic search service 2 that provides the
ranking of publications in different fields. For instance,
graphics field includes TOG (ACM Transactions on
Graphics), and CGA (IEEE Computer Graphics and
Applications). A paper published in the TOG would be
classified as graphics field. Above paper classification
mechanism is also used by Shi et al. [43]. Obviously,
some publications may belong to more than one field,
explaining why this paper only focuses on the fields that
are highly unrelated. This paper focuses on computer
science domain and collects 3,394 articles from three
fields. The paper’s full text is unavailable in CiteULike,
so the paper’s abstract and tags annotated by users

2)

I CiteULike: http://www.citeulike.org/
ZMicrosoft Academic Search: http://academic.research.microsoft.com

are considered as paper content. This corpus can be
downloaded from http://islab.cis.nctu.edu.tw/download/.
Table II summaries the information of the data set.
Reuters-21578 is one of the most widely used test
collections for text classification research. The data was
originally collected and labeled by Carnegie Group,
Inc. and Reuters, Ltd. in the course of developing the
CONSTRUE text categorization system. The ten largest
classes in the Reuters-21578 collection are used in the
experiments, as it has been used by many researchers in
recent years. Table III presents the number of documents
in the ten largest classes.

3)

In the preprocess stage, the stop words are removed from these
data sets, since they fail to provide sufficient information for
the analysis task. Additionally, punctuation marks are removed
and all English letters are converted into lower case. Finally,
stemming process is applied to the words.

B. Evaluation Measurements

For each class, the correctness of a classification can be as-
sessed by calculating the number of correctly recognized class
examples (true positives), the number of correctly recognized
examples that do not belong to the class (true negatives), and
examples that either were incorrectly assigned to the class
(false positives) or were not recognized as class examples
(false negatives) [44]. Equation (19) shows the definition
of precision, recall and F; score, where TP represents the
number of true positives, TN the number of true negatives,
FP the number of false positives, and FN the number of false
negatives. Meanwhile, numerous classification tasks employed
in the experiments are multiclass problems, so the evaluation
should consider the prediction results for every class. Macro-
average F), which is the average of the F| scores of all the
classes, is used to assess system performance. Equation (20)
shows the definition of the macro-average F; score, where K
denotes the number of classes and Fj; represents the F; score
of the ith class

. TP
Precision = ———
TP + FP
TP
Recall = ———
TP+ FN
2 x Precision x Recall
F = — (19)
Precision + Recall
K
K Fi;
Macro-average F|; = @ (20)

K

C. Comparison Methods

1) Graph-Based Semi-Supervised Learning

Graph-based approach has been widely used in
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3)
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TABLE IV

EXPERIMENTAL RESULTS ON COMPUTER NEWSGROUPS (FIVE NEWSGROUPS)

7, JULY 2014

C-KMeans

PCA +
C-KMeans

Label Propagation

0.2838 £ 0.0582

0.3015 £ 0.0517

0.3901 £ 0.0574

0.3084 £ 0.0789

0.3207 £ 0.0742

0.4434 £ 0.0461

0.3096 £ 0.0489

0.3300 £ 0.0366

0.4721 £ 0.0297

0.3257 £ 0.0395

0.3296 £ 0.0551

0.4999 £ 0.0196

0.3388 £ 0.0276

0.3357 £ 0.0395

0.5219 £ 0.0353

A%

EXPERIMENTAL RESULTS ON TALK NEWSGROUPS (FOUR NEWSGROUPS)

C-KMeans

PCA +
C-KMeans

Label Propagation

0.3734 £ 0.0854

0.3757 £ 0.0203

0.5012 £ 0.0439

0.3992 £ 0.0745

0.3382 £ 0.1075

0.5680 £ 0.0284

0.3944 £0.0113

0.3840 £ 0.0152

0.6172 £ 0.0410

0.3952 £ 0.0114

0.3619 £ 0.0646

0.6357 £ 0.0225

Semi-LDC Graph-based TSVM
1% | 0.5321+£0.0791 | 0.2842 4 0.0561 | 0.3622 £ 0.0559
2% | 0.6467 £ 0.0505 | 0.3800 £ 0.0756 | 0.4789 £ 0.0736
3% | 0.671040.0402 | 0.4456 £0.0314 | 0.5167 £ 0.0514
4% | 0.7091 £0.0189 | 0.4710 4+ 0.0466 | 0.5716 £ 0.0337
5% | 0.7150+£0.0184 | 0.4862 4 0.0513 | 0.6132 £ 0.0411
TABLE
Semi-LDC Graph-based TSVM
1% | 0.6402 £0.1107 | 0.3051 +0.1617 | 0.4794 4 0.0549
2% | 0.7328 £0.0611 | 0.5118 +0.0629 | 0.5546 £ 0.0843
3% | 0.7660 +0.0382 | 0.5317 £ 0.0633 | 0.6197 &+ 0.0580
49% | 0.7840 £ 0.0201 | 0.6061 4 0.0380 | 0.6249 £ 0.0584
5% | 0.7928 +0.0157 | 0.6080 4 0.0541 | 0.6745 £ 0.0211

0.3972 £ 0.0066

0.3596 £ 0.1011

0.6442 £ 0.0402

semi-supervised learning methods, so this paper uses
graph-based method in the experiments to compare with
the proposed method. The one used in the experiments
is proposed by Goldberg et al. [45]. Similar to the
other graph-based semi-supervised learning approaches,
their approach uses a graph to represent labeled and
unlabeled data. Each document is a node in the graph,
and each node is connected with an observed node
called dongle. The edge weight between a labeled
document and its dongle is a large number M, while
the weight between an unlabeled document and its
dongle is 1. Each unlabeled document x; connects to
k nearest labeled documents and k' nearest unlabeled
documents. Different weight coefficients are given in
the above two cases. Then, the original problem can
be transformed into an optimization with constraints
problem. Goldberg et al. [45] used support vector re-
gression (SVR) in their proposed graph-based semi-
supervised learning approach to perform an initial pre-
diction. However, our experimental results show that
graph-based semi-supervised with support vector ma-
chines (SVM) outperforms graph-based semi-supervised
with SVR, explaining why this paper employs graph-
based semi-supervised with SVM. This paper conducts
graph-based semi-supervised learning experiments using
libsvm [46] package with radial basis function (RBF)
kernel function. Moreover, the value of £’ is 5, and k is
the number of seeds divided by 10 in the experiments.
SVM

TSVM is an extension of standard SVM with unlabeled
data. This paper employs SVMlight [11] with the RBF
kernel function to conduct experiments. For multiclass
classification, one-against-all approach is used in the
experiments. The TSVM is a state-of-the-art method in
semi-supervised learning, explaining why TSVM is used
in the experiments.

Constrained-KMeans: (Abbreviated as C-KMeans)
Basu et al. [15] proposed two semi-supervised vari-
ants of KMeans clustering that use initial labeled data

for seeding. These two algorithms are Seeded-KMeans
and constrained-KMeans. Their experimental results
showed that constrained-KMeans outperforms Seeded-
KMeans. Meanwhile, constrained-KMeans also outper-
forms COP-KMeans [14]. The proposed algorithm uses
constrained-KMeans to cluster the data points in the re-
duced feature space, so this paper conducts experiments
with constrained-KMeans in the original input space to
see whether the proposed method can benefit from the
proposed dimensionality reduction steps.

4) PCA + constrained-KMeans: (Abbreviated as PCA
+ C-KMeans)
As described above, document collection is generally
a high-dimensional data set, and many machine learn-
ing methods may benefit from dimensionality reduction
process. As a result, this method uses PCA to reduce
dimensions and then uses constrained-KMeans to cluster
documents in the new space.

5) Label Propagation
Label propagation is a commonly used technique
in many graph based semi-supervised learning algo-
rithms [47], [48], so this paper uses label propagation
algorithm in the experiments and compares with the
proposed algorithm. The label information is propa-
gated from labeled examples to unlabeled ones itera-
tively. The experiments use the algorithm proposed by
Nie et al. [36].

D. Semi-supervised Learning Experiments

The first data set is 20 Newsgroups data set. This paper
focuses on the newsgroups which are highly related. Two
combinations of newsgroups are used in the experiments,
including computer subject and talk subject. The purposes of
the experiments focus on two issues. The first one focuses
on whether these methods can function well on multiclass
problems. Some algorithms are designed for binary class
classification or clustering, so these experiments can be used to
evaluate whether these methods can be extended to multiclass
problems. For instance, TSVM is a binary classifier, and this
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TABLE VI
EXPERIMENTAL RESULTS ON CITEULIKE

C-KMeans

PCA +
C-KMeans

Label Propagation

0.4676 = 0.1921

0.5447 £ 0.0767

0.6357 £ 0.0681

0.5320 +£0.1623

0.5653 £ 0.0073

0.6959 £ 0.0472

0.5022 +0.1143

0.5695 £ 0.0068

0.7205 £ 0.0467

0.4795 £ 0.0067

0.5737 £ 0.0059

0.7379 £ 0.0298

0.5111 +£0.1616

0.5764 £ 0.0071

0.7465 £ 0.0303

EXPERIMENTAL RESULTS ON REUTERS-21578

TABLE VII

C-KMeans

PCA +
C-KMeans

Label Propagation

0.3035 + 0.1166

0.2398 £+ 0.0794

0.4939 £+ 0.0331

0.3472 +0.1262

0.2584 4+ 0.0786

0.5088 +0.0184

0.3791 £+ 0.1544

0.2385 £ 0.0362

0.5428 £+ 0.0322

Semi-LDC Graph-based TSVM
1% | 0.8056 +0.0822 | 0.4944 4+ 0.2208 | 0.8460 + 0.0226
2% | 0.8590 + 0.0569 | 0.6220 + 0.0830 | 0.8701 + 0.0231
3% | 0.8845 4 0.0449 | 0.6953 +0.0531 | 0.8831 +0.0116
4% | 0.8990 +0.0135 | 0.7146 +0.0692 | 0.8890 + 0.0159
5% | 0.8991 4+ 0.0227 | 0.7449 +0.0662 | 0.8961 + 0.0126
Semi-LDC Graph-based TSVM
1% | 0.5460 £+ 0.0735 | 0.3082 + 0.0352 | 0.4870 + 0.0561
2% | 0.5788 +0.0842 | 0.3854 £+ 0.0486 | 0.5640 £ 0.0429
3% | 0.5975 4 0.0449 | 0.3980 £+ 0.0178 | 0.5769 £ 0.0318
4% | 0.6127 +0.0144 | 0.4307 +0.0322 | 0.5688 4+ 0.0497
5% | 0.6243 +0.0369 | 0.4426 4+ 0.0183 | 0.5907 £ 0.0367

0.4188 +0.2115

0.2703 £ 0.0690

0.5607 £+ 0.0219

0.4086 +0.1182

0.2931 £ 0.0985

0.5570 £+ 0.0372
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paper employs one-against-all scheme for multiclass problems.
The second one is to evaluate whether these methods can
function properly when the boundaries among clusters are
unclear. Tables IV and V present the experimental results on
computer subject and talk subject, respectively.

The second data set is CiteULike, including three categories.
The content of each document includes paper abstract and
the tags annotated by researchers. The abstract is similar to
the summary of a paper; while tags can be thought of as the
keywords of a paper. Thus, abstract and tags can be viewed
as condensed information of a paper. The purpose of this
experiment focuses on whether these methods can perform
well on the data set in which only condensed information is
available. Table VI summaries the experimental results.

The final data set is Reuters-21578, including the ten largest
classes in the collection. It is apparent that this is a multiclass
and imbalanced data set as shown in Table III. As a result,
the purpose of this experiment focuses on whether the methods
can perform well on the data set with imbalanced cluster sizes.
Experimental results are listed in Table VII.

E. Discussion

This paper conducts experiments on three data sets, and the
experimental results indicate that the proposed method gener-
ally outperforms the other methods. Even though the cluster
boundaries are unclear, the proposed method can perform well.
We further analyze and discuss the experiments in this section.
Although Torkkola [41] has shown that the combination of
PCA and LDA can improve classification performance, and the
experimental results presented above conform to his conclu-
sion. We further analyze whether clustering can benefit from
the dimensionality reduction performed by PCA. Tables VI
and VII present the experimental results. The combination
with PCA + C-KMeans outperforms C-KMeans on CiteULike
data set. However, the experiments show different results
on Reuters-21578 data set. Although PCA can preserve as
much of the variance in the reduced space as possible when
performing dimensionality reduction, clustering in the reduced

space may fail to perform well. The main reason is that the
PCA does not consider classification or clustering criteria
when reducing dimensions.

As PCA considers second order moments only, it lacks
information on higher order statistics. Independent component
analysis (ICA) is a data analysis technique accounting for
higher order statistics [49]. ICA has great potential in applica-
tions such as the separation of sound signals, in telecommu-
nication or in biomedical engineering [50], [51]. This paper
applies ICA to text analysis problem. In the experiments, it is
hard to estimate the number of independent components for
ICA, so we use the number of principal components used in
PCA as the criterion. Fig. 1(a) and (b) presents experimental
results on CiteULike and Reuters-21578 data sets, respectively.
The experimental results indicate that the two methods can
have almost identical performance results. As a result, ICA
can also be used in the proposed algorithm.

Practically, the constrained-PLSA used in the proposed
algorithm can be replaced by the other algorithms. This paper
focuses on text analysis problem and PLSA model is derived
from text analysis problem, making it appropriate to use
constrained-PLSA to obtain soft labels. Nie et al. [36] devised
a label propagation algorithm to obtain soft labels, so we
conduct experiments using Semi-LDC with different soft label
computation methods for performance comparison. Fig. 2(a)
and (b) summarizes the experimental results on CiteULike
and Reuters-21578 data sets, respectively. The Semi-LDC
with constrained-PLSA outperforms Semi-LDC with label
propagation on the two data sets. The experimental results
indicate that constrained-PLSA is a better choice than label
propagation in text analysis problem. Practically, the proposed
method can use the other soft label computation methods
according to different application requirements.

This paper further analyzes soft label impact on classi-
fication performance with different percentages of labeled
examples. We use LDA as the comparison method, meaning
that the dimensionality reduction performed by LDA only uses
hard labels of labeled examples to find the projection vector.
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Fig. 2. Semi-LDC Classification Performance with Different Soft Label Computation Methods. (a) Classification Performance on CiteULike Data Set.

(b) Classification Performance on Reuters-21578 Data Set.

We call the comparison approach as Semi-LDC with hard
labels, since LDA can only use hard labels. Fig. 3(a) and
(b) summarizes the experimental results on CiteULike and
Reuters-21578 data sets, respectively. The two experiments
exhibit similar results, namely, the proposed method with
soft labels can perform very well when only a few labeled
examples are available. The experimental results conform to
the research results presented in semi-supervised learning, that
is, the semi-supervised learning can use unlabeled data with
model assumptions and available labeled examples to improve
performance in certain problems. The experimental results also
indicate that hard label approach and soft label approach can
achieve almost identical performance when the number of
labeled examples is sufficient for LDA to find an appropriate
projection vector.

The proposed method is a framework, which involves sev-
eral algorithms, including PCA, constrained-PLSA, soft LDA
and constrained-KMeans. As described above, the PCA in the
proposed method is mainly for dimensionality reduction so

as to make the within-class scatter matrix nonsingular before
soft LDA process, so the PCA can be viewed as a preprocess
step to make the whole framework robust. The previous
experiments also indicate that the PCA can be replaced by
ICA. The goal of the proposed framework is to use dimension-
ality reduction technique to find an appropriate feature space,
so that the clustering can perform well in the new feature
space. Meanwhile, the soft LDA relies on constrained-PLSA
to obtain the soft labels of unlabeled examples, so constrained-
PLSA is a critical process in the framework. Practically,
different application domains may require different soft label
estimation algorithms. The previous experiments also indicate
that although label propagation can replace constrained-PLSA,
label propagation method degrades clustering performance in
text analysis domain. The main reason is that constrained-
PLSA is derived from PLSA, explaining why it outperforms
label propagation in text analysis problems. Additionally, the
soft LDA aims at finding a feature representation by which
the within-class distance is minimized and the between-class
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distance is maximized. In other words, the goal is to perform
dimensionality reduction while preserving as much of the class
discriminatory information as possible. When the dimension-
ality reduction performs well, clustering in the new feature
space becomes an easy task. The framework uses constrained-
KMeans, which is derived from K-means, but other clustering
algorithms can function properly.

V. CONCLUSION

This paper devises a semi-supervised learning algorithm,
which connects K-means and LDA seamlessly, to consider
clustering and dimensionality reduction simultaneously. The
K-means is an unsupervised learning method, while LDA is a
supervised learning method. Central to the proposed method is
using soft LDA with soft labels of unlabeled examples to find
an appropriate feature space, in which we argue text classifi-
cation performance can be improved effectively in the reduced
space. The proposed method can be viewed as a framework,
since different soft label estimation methods can be used in
the framework according to application requirements. The
experimental results indicate that the proposed method can
generally outperform several alternative methods. This paper
also demonstrates that the proposed method can benefit from
soft label representation particularly when only a few labeled
examples are available.

Although the proposed framework is a semi-supervised
learning method, the implementation assumes that a com-
plete data set is given in advance, and the learning process
is carried out in one batch. In many application domains,
data is presented as a data stream, so we often confront
difficult situation where a complete set of data set is not
given in advance. The future work is to incorporate online
learning in the proposed framework. Moreover, latent Dirichlet
allocation [52] has been successfully applied to text analysis
problem, but it is an unsupervised learning. Another research
direction is to investigate how to devise an effective semi-
supervised latent Dirichlet allocation algorithm to replace the
proposed constrained-PLSA in the framework.
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