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Suppression of the Boron Penetration 
Induced SUSi02 Interface Degradation 
by Using a Stacked-Amorphous-Silicon 

Film as the Gate Structure for pMOSFET 
Shye Lin Wu, Chung Len Lee, Tan Fu Lei, J. F. Chen, and L. J. Chen 

Abstract- This letter reports that the boron penetration 
through the thin gate oxide into the Si substrate does not only 
cause a large threshold voltage shift but also induces a large 
degradation in the Si iOZ interface. An atomically flat SilSiOz 
interface can be easily obtained by using a stacked-amorphous- 
silicon (SAS) Mm as the gate structure for p+ poly-Si gate MOS 
devices even the annealing temperature is as high as 1OOO" C. 

I. INTRODUCTION 
ECENTLY, p+ poly-Si has been widely used as the gate R material of pMOSFET to avoid the short-channel effects 

[1]-[3]. The BF2 ion implantation is typically used to form 
the p+ poly-Si gate as well as the shallow p+-n junction [3], 
Unfortunately, the F-incorporated p+ poly-Si gate enhances 
the boron penetration through the thin gate oxide into the Si 
substrate and subsequently results in  a large threshold voltage 
shift, a large charge trapping rate and a poor reliability of 
device [2]-[4]. Moreover, the more fluorine atoms pile up at 
the poly/Si/SiO2 and Si/SiO2 interfaces, the more serious the 
boron penetration effect occurs [5] .  

In this letter, from the observations of the high resolution 
transmission electron microscopy (HRTEM), it is found that 
the boron penetration through an ultra-thin gate oxide (5  7 
nm) into the Si substrate will also cause a drastic degradation 
in the Si/SiO2 interface even the annealing temperature is as 
low as 900" C. This letter also proposes a stacked-amorphous- 
silicon (SAS) structure as the gate material of the p+ poly-Si 
gate MOS device to suppress the boron penetration effect. An 
atomically flat Si/SiOz interface can still be obtained even the 
annealing temperature of the SAS gate is as high as 1000" C. 

11. EXPERIMENTAL PROCEDURES 

In this study, p+ poly-Si gate MOS capacitors were fab- 
ricated on n-type (100) Si wafers with a resistivity of 5-20 
0-cm. After a standard RCA cleaning process, all wafers were 
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Fig. 1. The SIMS profiles of (a) boron and (b) fluorine of the 900' 
C-annealing p+ SAS and ADP gate capacitors and the 900' C-annealing 
p+ SAS gate capacitor. 

dipped in a diluted HF solution (150) to remove the native 
oxide. The wafers were loaded into the furnace at 600' C to 
reduce the thermal stress and to minimize the native oxide 
growth [6]. The temperature was gradually raised to 900" C 
in an Nz ambient. After an N2 pre-annealing stage for 60 min, 
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Fig. 2. 
C annealing p+ SAS gate capacitor. 

The quasi-static and high-frequency CV characteristics of the 900' 

an ultra-thin oxide of about 7 nm was grown in a dry O2 
ambient followed by annealing at the same temperature for 15 
rnin in an N2 ambient. An LPCVD amorphous silicon (a-Si) 
film with a total thickness of about 3000 A was subsequently 
deposited at 550" C in three steps [7].  The deposition pressure 
and deposition rate were controlled at about 140-160 mtorr 
and 20 kmin ,  respectively. The thickness of each a-Si layer 
was about 1000 A. To make a comparison, the as-deposited 
poly-Si (ADP) film of about 3000 A was deposited at 625" C 
in one step. The deposition pressure and the deposition rate 
were about 18CL220 mtorr and 100 kmin ,  respectively. Then, 
BF2 ion implantation was performed at 50 keV with a dose 
of 6 x l O I 5  cm-2 and annealed at 800" C for 30 min in a 
dry 0 2  ambient followed by driving-in at 850, 900, 950" C, 
and 1000" C for 15 min in an N2 ambient. After aluminum 
metallization, all samples were sintered at 400" C for 20 min 
in an N2 ambient to form a good ohmic contact. 

The thickness of the ultra-thin oxide was determined by 
the high-frequency CV (HFCV) measurements by using the 
Keithley 590/595 CV analyzer and double checked by the 
HRTEM micrographs. The boron and fluorine profiles were 
analyzed by using a VG Ionex SIMS tool with an 0; beam. 
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Fig. 3. 
of the p+ SAS and ADP gate capacitors. 

The plot of the flat-band voltage ( V f b )  vs. the annealing temperature 

111. RESULTS AND DISCUSSIONS 

Figs. l(a) and (b) show the boron and fluorine profiles of the 
900" C-annealing p+ SAS and ADP gate capacitors and the 
950" C-annealing p+ SAS gate capacitor, respectively. For the 
p+ SAS gate capacitors, due to the dopant segregation at the 
stacked-Si layer boundaries, the amount of boron and fluorine 
diffusion to the poly-Si/SiO2 interface are less than that of the 
p+ ADP gate capacitors. This is turn causes the boron and 
fluorine penetration through the thin gate oxide into the Si 
substrate for the p+ SAS gate capacitors to be less than that 
of the p+ ADP gate capacitor. It is noted that the amount of 
boron and fluorine penetration into the Si substrate of the 950" 
C-annealing p+ SAS gate capacitor is even less than that of 
the 900" C-annealing p+ ADP gate capacitor. Fig. 2 shows 
the quasi-static and the high frequency CV characteristics for 
the 900" C p+ SAS gate capacitor. From these curves, it is 
seen that no gate depletion exists for this gate [8]. 

Fig. 3 shows the plot of the flat-band voltage (vfb) vs. the 
annealing temperature of the p+ SAS and ADP gate capacitors. 

(b) 

Fig. 4. 
SAS gate structure and (b) the 900° C-annealing ADP gate structure. 

The high-resolution TEM micrographs of (a) the 1000' C-annealing 

Due to the suppression of the boron and fluorine penetration 
into the ultra-thin gate oxide, the vfb value of the 900" C- 
and 950" C-annealing p+ SAS gate capacitors are 0.74 V and 
0.99 V, respectively, while that of the 900" C- and 950" C- 
annealing p+ ADP gate capacitors become 2.2 V and 8.6 V, 
respectively. 

Figs. 4(a) and (b) are the HRTEM micrographs of the 
Si/SiO2 interface of the 1000" C-annealing p+ SAS gate 
structure and the 900" C-annealing p+ ADP gate structure, 
respectively. It is seen that the Si/SiO2 interface of the p+ SAS 
gate structure is atomically flat. This result is consistent to that 
of the 900" C-annealing p+ SAS gate and the n+ poly-Si gate 
for the ultra-thin oxide prepared by using a low temperature 
wafer loading and N2 pre-annealing process [6]. In contrast, 
the 900" C-annealing p+ ADP gate structure has relatively 
rough Si/SiOz interface. Since both gate structures have the 
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same ultra-thin oxide, the rougher Si/SiO2 interface for the 
p+ ADP gate structure is believed due to a large amount of 
the boron and fluorine penetration through the ultra-thin oxide 
into the Si substrate, as shown in Fig. 1. 

IV. CONCLUSION 
through an ultra-thin oxide (E 7 nm) into the Si substrate 

cannot only cause a large flat-band voltage shift but also induce 
a drastic degradation in the Si/SiOz interface. An atomically 
flat Si/SiO2 interface can be obtained by using the stacked- 
amorphous-silicon (SAS) gate structure even the annealing 
temperature is as high as 1000° C. 
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