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Abstract—Recently, successful applications of independent com-
ponent analysis (ICA) to electroencephalographic (EEG) signals
have yielded tremendous insights into brain processes that underlie
human cognition. Many studies have further established the feasi-
bility of using independent processes to elucidate human cognitive
states. However, various technical problems arise in the building of
an online brain—computer interface (BCI). These include the lack
of an automatic procedure for selecting independent components
of interest (ICi) and the potential risk of not obtaining a desired
ICi. Therefore, this study proposes an ICi-ensemble method that
uses multiple classifiers with ICA processing to improve upon ex-
isting algorithms. The mechanisms that are used in this ensemble
system include: 1) automatic ICi selection; 2) extraction of fea-
tures of the resultant ICi; 3) the construction of parallel pipelines
for effectively training multiple classifiers; and a 4) simple process
that combines the multiple decisions. The proposed ICi-ensemble
is demonstrated in a typical BCI application, which is the moni-
toring of participants’ cognitive states in a realistic sustained-at-
tention driving task. The results reveal that the proposed ICi-en-
semble outperformed the previous method using a single ICi with
~ 7% (91.6% versus 84.3%) in the cognitive state classification.
Additionally, the proposed ICi-ensemble method that character-
izes the EEG dynamics of multiple brain areas favors the applica-
tion of BCI in natural environments.

Index Terms—Brain—computer interface (BCI), independent
component analysis (ICA), multiple classifier system.

I. INTRODUCTION

VER the last few decades, the electric field that is gen-
erated by the activity of the brain, monitored by an elec-
troencephalogram (EEG), has been proven to be a robust phys-
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iological indicator of human behaviors. Recent advances in al-
gorithms and the findings of computer science and neuroscience
[2] have led to advances in EEG-based brain—computer inter-
faces (BCI) [3] to the point that they now have a wide range
of applications such as for personal authentication or identifica-
tion [4], [5], assessment of emotional disorders [6], games [7],
and accident prevention [8]-[10]. However, suboptimal perfor-
mance that results from pervasive EEG contaminations (muscle
activity, blinks, eyes movement, and environmental noise) in
real operational environments still inhibits the transition of labo-
ratory-oriented neuroscience research to practical BCI devices.

Independent component analysis (ICA) [11], [12] is an ex-
tensively used method of separating brain signals from arti-
facts. Applying machine-learning approaches to assess the dy-
namics of task-related independent components (ICs) has been
demonstrated to enhance effectively the performance of BClIs
in estimating cognitive states of human subjects. For example,
the ICs of the posterior brain region can be used to predict
human driving performance [9], [13]; temporo-parietal ICs are
useful for determining intended directions of movement [14];
sensorimotor ICs can be used as important features for the task
of motion imagery EEG classification [15], and IC that is as-
sociated with event-related potentials can be used to construct
P300-BCI [16]. However, the proper operation of most of BCIs
requires manual intervention on selecting these ICs of interest
followed by ICA. First, most existing ICA-based models use a
predefined IC. Combining task-related brain processes to char-
acterize complex human behaviors intuitively appears to be a
more reasonable method than using only a few specific sig-
nals. Second, the order of ICs cannot be determined. Therefore,
an automatic IC selection method is required after ICA is per-
formed. One well-developed method is template matching [17],
[18]. Constructing templates of the desired IC has been proven
to be effective in selecting relevant ICs and discarding ICs with
artifacts [17]. Third, nonstationarity in measured EEG signals
can produce different results of ICA analysis [19]. ICs obtained
from different subjects might vary widely. That is, some ICs
can be found in recordings from one subject but not from an-
other. Most ICA-based BCI systems that use only one or two
specific ICs fail if none of the resultant ICs matches the targeted
ones. To solve these problems, this work proposes the incorpo-
ration of a multiple-classifier system [20] into the ICA-based
BCI.

The goal of this work is twofold. First, this study proposes
a multiple-classifier system, called an independent component
ensemble, with an automatic procedure for selecting ICs of in-
terest (ICi), a parallel learning pipeline for training classifiers,
and a fusion method for combining decisions. Second, this work
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Fig. 1. Schematic diagram of independent component ensemble. Black and red li

tests the feasibility of the proposed model on drowsy driving de-
tection.

II. INDEPENDENT COMPONENT ENSEMBLE

A. System Diagram of Independent Component Ensemble

Fig. 1 shows the schematic diagram of the independent com-
ponent ensemble. Following ICA decomposition, an automatic
method selects ICs of interest by measuring the similarity of
spatial maps between the extracted ICs and the reference ICi.
Then, the spectral profiles of the extracted ICs are extracted by
fast Fourier transformation and feature extraction. Finally, the
proposed ensemble embeds the spectral features of ICi into the
multiple-classifier system [20]. In Fig. 1, for example, the EEG
data from three subjects (Subjects A, B, and C) were used to
train a 5-ICi ensemble to test the remaining subject (Subject D).
In this example, four ICs from Subject D were found to resemble
three reference ICs (ICi 3, 4, and 5). Three classifiers yielded the
output decision (03, 04, 05, 05/ ). A decision fusion method was
then applied to obtain a final result. The parallel processing can
be conducted in the proposed ensemble to reduce the computing
time. Notably, the ensemble size varies with the number of ex-
tracted ICi. The following sections present the details.

B. Independent Component of Interest

The multi-channel EEG recordings are regarded as
mixtures of underlying brain sources and artificial sig-
nals. To obtain source components, n-channel EEG data
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density estimation

Feature space
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Decisions
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nes indicate training and testing procedures, respectively.

{03, 04, 05,05}

X = [X1,Xy,....X,]T were firstly decomposed into tem-
porally independent components U = [U;, Us,...,U,]T by
independent component analysis (EEGLAB toolbox [21]). The
relationship between X and U can be expressedas X = Ax U,
where A, xn iS a mixing matrix. The column of the mixing
matrix A; € R™ C A [Fig. 2(b)], representing the strengths
of projections of ICs onto each EEG sensor [Fig. 2(c)], can be
rendered as a 2-D spatial map to identify sources of independent
brain processes [21].

To design an ICA-based BCI to monitor the cognitive state
of a subject, five scalp maps [Fig. 2(d)] were predefined as the
spatial templates A = {A; € R"[j = 1,2,...,5} of ICi. These
selected maps of the frontal, central, motor, parietal, and oc-
cipital components, were strongly related to the changes in the
cognitive state [9], [22]-[24]. However, the ICA, applied to an
n-channel EEG, generated an unordered set of ICs. Addition-
ally, slight difference across subjects in the orientation of equiv-
alent dipoles for a set of equivalent ICs can produce different
IC scalp maps. To select ICi automatically, the similarity of the
scalp maps between the observed ICs {Aq, Az,.... A} C A
and the predefined ICi A j was calculated using Pearson’s cor-
relation, where j = 1,2,...,5. The ith observed IC was clas-
sified as jth ICi if |p(A;, A;)| > 0.8, where 0.8 is the empirical
threshold. Notably, the absolute value of the correlation coeffi-
cient p must be considered in selecting the ICi that may have
a reverse polarity [25]. Additionally, A; and A; were scaled in
the range of [—1, 1] before the correlation coefficient was cal-
culated. Fig. 2(e) and (f) shows the ICi selection, in which the
numbers of frontal, central, motor, parietal, and occipital com-
ponents are one, one, two, two, and three, respectively.
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Fig. 2. Creation of templates of scalp maps for ICi. (A) Channel locations of
30 electrodes; (B) inverse of unmixing matrix; (C) ICi weights; (D) left panel:
scalp topographies of five ICi; right panel: strengths of projections of frontal,
central, motor, parietal, and occipital components onto 30 electrodes. (E) Result
of ICi selection for subject 01. Similarity (correlation coefficient, p) between
IC and ICi templates. (F) Nine components with high correlation coefficients
abs(p) > 0.8 are used as ICi.
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C. Estimation of Power Spectral Density and Feature
Extraction

The time courses of the activations of all ICi were trans-
formed to the frequency domain by fast Fourier transforma-
tion (FFT). The resultant features of each spectrum were dis-
tributed into p frequency bins. To improve the efficiency of the
ensemble classification, a feature extraction (FE) procedure was
performed before the classifier was constructed. The informa-
tive features were extracted from the original space %7 into a
reduced space R?, where ¢ < p. Given a transformation matrix
A € RP*7 for the jth ICi, the FE performed a linear mapping on
V such that the transformed data W = A" x V preserved the rel-
evant information about task-related activity. The optimal could
be assessed using many approaches and measurements, such
as a heuristic search [26], the statistical variability of the data
[27], or class separability [27]. This study evaluated many fea-
ture extraction algorithms, including sequential forward selec-
tion (SFS) [26], principal component analysis (PCA) [27], linear
discriminate analysis (LDA) [27], and nonparametric weighting
feature extraction (NWFE) [28] to identify the optimal one.

To reduce the computing time, the feature that guaranteed the
optimal subset in SFS or the eigenvector had the largest eigen-

Trajectory
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Fig. 3. Driving simulator and experimental paradigm. (A) High-fidelity
VR-based driving environment. (B) nighttime driving scenario. (C) 30-channel
EEG cap with sintered Ag/AgCl electrode. (D) Event-related lane-departure
paradigm [1]. Deviation onset: time when car begins to deviate from center of
cruising lane; Response onset: time when subjects first use steering wheel to
compensate for driving error; Response offset: time when car returns to center
of cruising lane. (E) EEG segments of 1 s and 90 s of ICi data were used to
characterize task performance and vigilance state, respectively, in ¢-trial.

value in PCA, LDA, and NWFE was applied to train the classi-
fier.

D. Classifier Ensemble and Decision Fusion

The dimension-reduced data with a class-label was used to
train the parameters of the classifier. Notably, the ensemble size
, which is the number of the classifiers, equals the number of
ICi. This study used Gaussian classifier (GC), support vector
machine (SVM), and radial basis function neural network
(RBFNN) as a component classifier. PRTools [29] was utilized
to construct the GC, SVM with a radial basis function, and
RBFNN. In the decision fusion step, the ensemble system
yielded a final result from a simple majority vote. Notably, the
decision-making process randomly selects one of the classes to
break a tie if no class received the most votes.

III. EXPERIMENTAL DESIGN AND MATERIALS

This work demonstrated the feasibility of the proposed inde-
pendent component ensemble by using it in a BCI for moni-
toring the cognitive state of subjects who performed a realistic
sustained-attention driving task [9], [13].

A. Virtual Reality-Based Driving Simulator

Neurophysiological activity in response to complex driving
behaviors was studied in a virtual reality-based immersive
driving environment [24]. At the center of the laboratory, a
real car was mounted on a six-degree-of-freedom Steward
motion platform that simulated the movements of the vehicle
[Fig. 3(a)]. Seven personal computers rendered a synchronized
animation of a four-lane highway scenario [Fig. 3(b)] that was
projected onto the surrounding screens by seven projectors at
various viewing angles.

B. Experimental Paradigm

The event-related lane-departure paradigm [1] [Fig. 3(d)] was
implemented on the driving simulator to measure objectively
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and quantitatively both momentary brain dynamics following
lane-departure events and task performance fluctuations over
long periods. Lane-departure events were randomly introduced
every 8—12 s, causing drift toward a curb. The participants were
instructed to steer the car back to the center of the original lane
as quickly as possible after becoming aware of the deviation.
The virtual reality-based driving simulator emulated a 90-min
continuous car drive at a fixed speed of 100 km/h on a four-lane
freeway. The participants did not use the foot pedals to control
the speed of the car. All experiments were performed in the early
afternoon after lunch when sleepiness was at its peak based on
the relevant circadian rhythm [30].

C. Subjects and Acquisition of EEG Data

Ten subjects with normal or corrected-to-normal vision par-
ticipated in a 90 min driving experiment. None of them had a
history of psychiatric or sleep disorders. The EEG data were
recorded at a sampling rate of 500 Hz with 16-bit quantiza-
tion using a Scan NuAmp Express system (Compumedics Ltd.,
VIC, Australia). Thirty electrodes were arranged on a quick-cap
[Fig. 3(c)] consistent with a modified version of the interna-
tional 10-20 system (standard electrode positioning nomencla-
ture, American Encephalographic Association). The impedance
of each electrode was kept under 5 k€2 during the experiment.
To reduce the data size and remove noise, the EEG data were
down-sampled to 250 Hz and filtered using a band-pass FIR
filter (1-50 Hz) before further analysis.

D. Categorization of EEG Trials

As presented in Table I, in each trial two measures of the
subject’s reaction time (RT)—local RT (RT;) and global RT
(RT,)—were used to quantify momentary task performance
(high or low) and a putative cognitive state (alert or drowsy),
respectively. RT; was defined as the time between the onset of
deviation and the onset of response. The task performance was
high when the subject could minimize the deviation distance and
keep the car cruising in the original lane (RT; < 0.7 s). In con-
trast, if the subject did not respond promptly and allowed the ve-
hicle to hita curb (RT; > 2.1s), the performance was low. RT,,
was used to evaluate the arousal state as a relatively long-term
change, calculated as the mean of all RT; of the trials in a 90-s
window. Long periods of high (RT, < 0.7 s) and low (RT, >
2.1 s) task performance were interpreted as states of relative
alertness and relative drowsiness, respectively. The results of
the EEG trials were assigned to one of four classes—*alert state
with high performance,” “drowsy state with low performance,”
“alert state with low performance,” and “drowsy state with high
performance”—based on both RT; and RT,. Class A and Class
D represent two typical types of behavior, revealing that an alert
state is associated with high task performance and a drowsy
state is associated with low task performance. Class B and Class
C represent an alert subject with low task performance and a
drowsy subject with high task performance, respectively. Pre-
sumably, the former class is associated with momentary distrac-
tion of subject’s attention from driving task while subject never-
theless remains alert. The latter may be associated with sudden
rousing of a drowsy subject by sensing of vehicle motion, and
his or her quick response to such an event. The total number of

TABLE I
CLASS LABELS FOR EEG TRIALS

Measurement: global RT

Class label
Alert state Drowsy state
Class A: Class B:
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Fig. 4. Block diagram for EEG power spectrum analysis.

trials in Classes A, B, C, and D are 681, 323, 283, and 334, re-
spectively.

E. EEG Spectral Features

As shown in Fig. 4, the frequency responses of IC activa-
tions were calculated using a 250-point moving window with
125 overlapping points. Each 250 points (1 s) of data were fur-
ther subdivided into several 128-point sub-windows advanced
in a 25-point step. Windowed 128-point epochs were extended
to 256 points by zero-padding to calculate the power spectra
using a 256-point FFT (Welch’s method), yielding an estimate
of the power spectral density with 30 frequency bins from 0.98
to 30.3 Hz (an interpolated frequency resolution: ~ 1 Hz). The
power spectra of these sub-windows were then averaged and
converted to a logarithmic scale to form a log power spectrum
for each 250-point epoch of the data. Since the periods of the
cyclic fluctuations of drowsiness exceeded four minutes [31],
the resulting EEG power time series were smoothed using a 90
s square moving-average filter that advanced in a step of 1 s to
eliminate variance at cycle lengths of shorter than 1 min.

Following the EEG categorization, the frequency responses
of ICi activations within a 1-s window before the onset of the
deviation [9] [Fig. 3(e)] were averaged to yield a power spectral
density Vi, which captured the momentary state of the brain
in response to events. Additionally, the frequency responses of
ICi activations within a 90-s window (from 45 s before to 45
s after the onset of the deviation) [Fig. 3(e)] were averaged to
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Fig. 5. Results of ICi selection for ten subjects. Notably, the polarity of the
spatial map and the activation may oppose those of the ICi template.

yield a power spectral density Vggs which described gradually
changing brain dynamics. Then, these two power spectra were
averaged to generate an input dataset V; € R for the ICi-
ensemble, where p = 30.

F. Performance Validation

The leave-one-subject-out cross-validation method was used
to obtain reliable accuracy (Fig. 1). In each step of the cross-
validation, the classifier was trained using EEG data from nine
subjects and tested on the remaining subject. This procedure was
repeated such that every subject provided the test dataset. All of
the parameters of the FE and the classifiers were calculated from
the training data and applied to the testing data. Equal amounts
of data were sampled from all of the classes for cross-validation
to prevent performance bias.

IV. RESULTS

A. Ensemble Size

Fig. 5 presents the results of the selected ICi across ten sub-
jects. The averaged correlation coefficients between selected
maps and template maps were 0.978, 0.957, 0.925, 0.943, and
0.853 for the frontal, central, motor, parietal, and occipital com-
ponents, respectively. The results for the occipital component
exhibited the largest standard deviation (0.11) because the ICi
included left-, right-, middle-, and bilaterally oriented maps.
Additionally, different subjects returned different numbers of
components, as expected. Therefore, the sizes of the ensembles
for the ten subjects were nine, five, six, five, nine, two, five, six,
six, and eight, respectively.

B. Spectral Characteristics of ICi

Fig. 6 presents the ICi spectral dynamics in response to
changes in the global RT. The power spectra of all of the ICi
increased as the degree of arousal declined. The spectral powers
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Fig. 6. Spectral dynamics of five ICi co-varied with arousal state, as measured
by the global RT, in (A) frontal component, (B) central component, (C) motor
component, (D) parietal component, and (E) occipital component. Blue and red
traces represent mean power spectra in alert and drowsy states. Asterisk indi-
cates a statistically significant difference between two traces (Mann—Whitney
U test, p < 0.05). (E) Difference between two power spectra (red trace minus
blue trace in A, B, C, D, and E).

of the drowsy group were significantly higher (Mann—Whitney
U test, p < 0.05) than those of the alert group over the
frequency range of 1-12 Hz across five ICi; moreover, the
central and motor components revealed a significant difference
between the beta-band (20-30 Hz) activities in the two states.
Fig. 6(f) plots the power differences between the alert and
drowsy trials: the delta and theta powers in the frontal, central
and motor components were larger in the drowsy state than that
in the alert state, and the delta, theta and alpha powers in the
parietal and occipital components were larger in the drowsy
state than that in the alert state. This evidence reveals that the
spectral power from various regions of the brain can be used to
estimate the cognitive states of a subject.

C. Accuracy of Classification

Table II presents the comparative classification results (av-
erage and standard deviation of accuracy) obtained using dif-
ferent FE processes and different classifiers. The final column
in the table presents the classification results that were obtained
using the ICi-ensemble. An asterisk indicates significant im-
provement (x: p — value < 0.05, #x: p — value < 0.01 in
the Mann—Whitney U test) over the highest accuracy obtained
using the single classifier. The best accuracies achieved using
spectral information from the frontal, central, motor, parietal,
and occipital components were 80.2 £ 2.1%(NWFE + GC),
80.0 £ 2.2%(NWFE + SVM), 81.2 £ 2.7%(NWFE + GC),
84.3 + 2.4%(NWFE + SVM), and 82.8 + 2.8%(NWFE +
SVM), respectively. Statistical analysis reveals that the pro-
posed ensemble system significantly outperformed the use of
single ICi in most cases. For example, when NWFE with SVM
was used, the accuracy increased from 79.5% (frontal), 80.0%
(central), 80.9% (motor), 84.3% (parietal), and 82.8% (occip-
ital) to 91.6% (ensemble), and the standard deviation decreased
from 2.2-4.0% to 1.1%. Table III presents the average confu-
sion matrix and average sensitivity and specificity of each class,
obtained using the best single-ICi method (parietal component)
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TABLE II
MEAN CLASSIFICATION ACCURACY FOR SINGLE IC1 AND PROPOSED ENSEMBLE
. . ICi
Feature extraction Classifier Frontal Central Motor Parietal Occipital Ensemble
GC 65.1+2.3 66.5£2.9 70.3+4.6 71.2+4.7 64.0+£3.2 77.8+£2.1
None RBFNN 75.4+7.4 78.0+4.5 74.9+5.3 78.5+£3.9 77.6+£3.6 85.9+1.9 *
SVM 51.3+1.2 53.1+1.1 52.3+1.3 53.5+£2.7 51.9+1.3 54.4+0.1
GC 73.4+7.9 71.9+9.4 69.8+8.7 77.9+£5.2 79.2+5.7 85.7+£1.4%*
SFS RBFNN 78.1£6.9 72.6+9.2 75.6+8.4 84.1£8.0 77.2+£7.7 88.1£1.5%*
SVM 74.2+7.0 62.5+8.9 69.2+8.5 78.9+8.4 74.3+8.7 84.6+£1.3%*
GC 65.2+3.6 57.243.3 56.0£3.2 72.8£3.3 60.3+6.5 75.3+£2.2
PCA RBFNN 67.9+7.3 62.9+4.6 54.1+4.5 69.2+4.7 64.9+8.4 75.9+2.9
SVM 64.7+4.7 62.9+3.9 57.5+4.9 62.4+6.8 52.6+9.3 70.7£2.2 *
GC 66.3+5.6 68.9+4.9 65.4+5.9 65.6+6.0 68.3+4.2 78.9+£].5%*
LDA RBFNN 64.7+3.9 69.9+5.6 65.7+5.3 68.2+5.6 65.7£2.9 79.7+£1.4%*
SVM 61.9+4.1 63.8+4.7 65.8+5.9 64.3+5.1 64.0+5.0 71.1£1.7%*
GC 80.2+2.1 79.6+2.1 81.2+2.7 83.8+2.3 82.5+£2.0 90.9+1.2%*
NWFE RBFNN 79.5£3.7 80.0+2.2 80.9+4.0 84.3+2.4 82.8+2.8 91.6+1.1%*
SVM 78.5+2.1 78.6+3.0 77.3+£3.4 80.7+2.9 79.4+3.6 86.3+1.0**

Each cell represents classification accuracy + standard deviation (in %). Asterisk denotes significant difference between mean classification accuracies
obtained using one ICi (with highest accuracy) and using proposed ensemble, where *: p-value<0.05, **: p-value<0.01 according to Mann—Whitney U test.

TABLE III
AVERAGE CONFUSION MATRIX, SENSITIVITY, AND SPECIFICITY OBTAINED USING NWFE AND SVM BY SINGLE-IC1 METHOD AND ICI-ENSEMBLE

Single-ICi method (using parietal component)

ICi-ensemble

Class A Class B Class C Class D Class A Class B Class C Class D
Class A 33.8% 3.7% 1.8% 0.7% Class A 38.9% 1.0% 1.1% 0.0%
Class B 3.0% 11.8% 0.6% 1.9% Class B 1.6% 14.9% 0.3% 0.4%
Class C 3.9% 1.6% 13.8% 1.4% Class C 1.4% 0.1% 14.5% 0.0%
Class D 1.2% 2.8% 1.4% 16.7% Class D 0.1% 2.9% 1.5% 21.3%
Sensitivity 80.7% 59.3% 78.4% 80.7% Sensitivity 92.6% 78.8% 83.3% 98.2%
Specificity 72.7% 80.2% 75.5% 74.8% Specificity 87.4% 92.1% 90.2% 87.2%

and the proposed ICi-ensemble. The single-ICi method yielded
average of sensitivities (specificities) of Classes A, B, C, and D
of 80.7% (72.7%), 59.3% (80.2%), 78.4% (75.5%), and 80.7%
(74.8%), respectively. For the proposed ICi-ensemble, the av-
erage sensitivities (specificities) of Classes A, B, C, and D were
92.6% (87.4%), 78.8% (92.1%), 83.3% (90.2%), and 98.2% (87.
2%), respectively. The proposed ICi-ensemble evidently out-
performed the single-ICi model for all classes. Fig. 7(a) shows
the classification accuracies of GC, SVM, and RBFNN, ob-
tained by SFS-based and PCA-based features in the proposed
ICi-ensemble, which were not significantly different from each
other. When the original, LDA-based, or NWFE-based features
were used, GC and SVM significantly outperformed RBFNN. In
Fig. 7(b), FE improved the accuracy by 10%—-20%, particularly
in GC and RBFNN (as determined by ANOVA with post-hoc
multiple comparison tests, p — value < 0.05). Overall, using
NWFE maximized the accuracy from ~ 80% to ~ 84%. A max-
imal classification accuracy of over 90% was achieved using the
proposed ICi ensemble with NWFE and GC or SVM.

V. DISCUSSION

A. Multiple Brain Regions and Cognitive States

This work demonstrates that the EEG activities in multiple
brain regions correlated with human cognitive states in a sus-
tained-attention driving task. The frontal component is located
close to both the anterior cingulate cortex and the prefrontal
cortex, which are the regions that typically perform executive

functions, attention, and decision-making [32], [33]. The sig-
nificantly increasing delta and theta powers of the frontal com-
ponent associated with poor performance [Fig. 6(a)] are con-
sistent with the results of earlier studies that involve reduced
levels of attention [34], severe driving errors [8], and sleep-de-
prived driving [35]. The central and motor components are lo-
cated across the motor and sensory cortices, which are the re-
gions widely used for motion-imagery BCI [36]. The results
that are presented in Fig. 6(b) and (c¢) provide physiological evi-
dence of the correlation between increases in EEG power (1-12
Hz) and worsening motor performance [8], [37]. The parietal
and occipital components are located in the posterior cingulate
cortex and the occipital cortex, respectively. Increasing powers
in the delta, theta, and alpha ranges [Fig. 6(d) and (e)] have been
shown to be highly correlated with poor task performance, fa-
tigue, or drowsiness [38]. This physiological evidence verifies
that complex human behaviors involve a large cortical region
that spans frontal, central, motor, parietal, and occipital areas.
Thus, it is reasonable to develop an ensemble technique that in-
tegrates the informative features from distributed brain regions
for real-world applications.

B. Ensemble Classification

This study demonstrates that the independent component en-
semble system (Fig. 1) more effectively than the conventional
BClI classifies a subject’s cognitive states. Most importantly, the
proposed method can solve the inherent problems of ICA for
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Fig. 7. Statistical comparison of accuracies of classification achieved using
various combinations of feature extraction and classifiers in proposed ICi-en-
semble (ANOVA and post-hoc multiple comparison tests, p — value < 0.05).
(A) Comparison of performance of classifiers using various feature extractions.
(B) Comparison of performance of feature extractions using various classifiers.

BCIs. The advantages of this proposed system are summarized
as follows.

Artifact-free and independent brain signals: Ensemble
learning has been proven to improve EEG signal classification
in a mental imagery task [39] and a motor imagery task [40].
However, these channel-based frameworks may be unsuitable
for the ICA-processed data, which varied among EEG record-
ings (Fig. 5). Additionally, the EEG signals often accompany
pervasive motion artifacts in an operating environment. Using
the informative ICi might mitigate artifact contamination and
thereby improve classification performance. The diversity
of the members of an ensemble is an important concept in
ensemble classification theory [41]. Using the ICs to build
classifiers can guarantee high diversity among the classifiers
[42].

Automatic ICi selection: There are several reasons to de-
velop an automatic ICi selection for ICA-based BCls. First, ICs
are usually ordered in decreasing order of variance accounted
for by their projections onto the scalp. However, the order of
the components cannot be known in advance and the random
weight matrix used in repeated ICA trainings may lead to a
different ICA result. Second, EEG is inherently nonstationary
because the properties of the underlying independent processes
vary over time. Some low-frequency contributions (< 1 Hx),
caused by sweating artifacts etc., may add spatially nonsta-
tionary signals to the EEG and consequently have an adverse
effect on outcome of ICA [43]. Due to EEG’s nonstationarity,
ICs obtained from different subjects and sessions may vary
widely [19]. Third, the spatial maps of ICA provide spatial
information concerning source localization and reconstruction
[21], but slight difference across subjects in the orientation
of equivalent dipoles for a set of equivalent ICs can produce
different IC scalp maps. Users can define the spatial templates
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of ICi based on their current knowledge of the target problem.
Although the threshold of the correlation coefficient was set to
0.8 herein, an empirical analysis reveals that it can be increased
to 0.9 for frontal, central, motor, and parietal components. The
absolute value of the correlation coefficient is used to select
the ICi that may have a reverse polarity [25]. However, ICi
and artifact component may have reverse polarity, causing the
model to misclassify some ICs. To minimize this selection bias,
the location of a 3-D equivalent dipole [21] must be included
in the automatic ICi selection.

Multi-ICi strategy: The authors’ previous ICA-based sys-
tems [13], [23], [24] and most ICA-based algorithms [14]-[16]
search only for a single component of interest in the building
of BCIs. However, not every subject (EEG dataset) is assumed
to have the target ICi (as revealed by the results in Fig. 5).
The proposed ICi-ensemble seeks components that match any
of the user-defined ICi in the training step, and automatically
constructs a subject-dependent model (Fig. 1) to combine the
decisions. The multi-ICi strategy therefore ensures that the BCI
system works even when only a single ICi can be extracted.
Constructing ICi-ensemble classifiers and then combining their
outputs seems to be a viable means of reducing the risk of failing
to obtain any desired component or of selecting an irrelevant
component. Additionally, the spectral dynamics and the classi-
fication results that are presented in Fig. 6 and Table II support
the idea that using an ensemble system to capture information
from multiple brain regions can markedly improve classification
performance. Such a scheme will be useful in many studies that
depend on the fusing multiple brain activities from distributed
regions, such as brain imaging [44], monitoring of motivated
natural behavior [45] and the diagnosis of brain disorders [46].
If none of the observed ICs matches any of the templates of ICi,
the BCI system can be easily changed from an ICA-based en-
semble to a channel-based ensemble.

Learning in parallel: Each classifier can be regarded as a
BCI subsystem that can learn the unique patterns of brain ac-
tivities from distributed regions. A fusion method based on ma-
jority voting herein integrates all the decisions made by all clas-
sifiers to yield a final result. Instead of using separate classifica-
tions, some methods [47], [48] concatenate data from all brain
regions to form a high-dimensional dataset and use it to con-
struct a single classifier. However, the number and type of ICi
vary among subjects and EEG data (Fig. 5), reducing the appli-
cability of BCI to real world. Additionally, a potential problem
of high-dimensional data is that finding the optimal solution of
the learning model is difficult, particularly in a problem with a
small sample [28]. Improperly setting the initial values or using
improper search methods can cause the learning algorithm to
find local optima [20]. Based on this computational reasoning,
an ensemble method can yield a better approximation to the op-
timal solution than any individual classifier [20]. A real-time
ICA processing system is expected to be useful for further im-
proving the practical applicability of an online ICA-based BCI.

VI. CONCLUSION

This work proposed an independent component ensemble
that integrates informative features identified from multiple
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independent brain processes. This method exploits ICA de-
composition to generate noise-free signals and overcomes the
subject variability in extracted components. The neurophys-
iology of brain dynamics verifies that a large brain region
spanning the frontal, central, motor, parietal, and occipital areas
is involved in changes in complex human behaviors. In sum-
mary, an ICA-based BCI system for real-world applications can
automatically and effectively be constructed as a combination
of ICA, automatic ICi selection, feature extraction, a classifier
ensemble, and the fusion method.
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