
DOI 10.1007/s00170-003-1870-0

O R I G I N A L A R T I C L E

Int J Adv Manuf Technol (2005) 25: 598–607

W.L. Pearn · Chien-Wei Wu · H.C. Chuang

Procedures for testing manufacturing precision Cpbased on (X̄, R) or (X̄, S)
control chart samples

Received: 31 March 2003 / Accepted: 8 July 2003 / Published online: 23 September 2004
 Springer-Verlag London Limited 2004

Abstract Process precision index Cp has been widely used
in the manufacturing industry for measuring process potential
and precision. Estimating and testing process precision based
on one single sample have been investigated extensively. In this
paper, we consider the problem of estimating and testing pro-
cess precision based on multiple samples taken from (X̄, R)or
(X̄, S )control chart. We first investigate the statistical proper-
ties of the natural estimator of Cp and implement the hypothesis
testing procedure. We then develop efficient MAPLE programs
to calculate the lower confidence bounds, critical values, and
p-values based on m samples of size n. Based on the test, we
develop a step-by-step procedure for practitioners to use in deter-
mining whether their manufacturing processes are capable of re-
producing products satisfying the preset precision requirement.

Keywords Critical value · Lower confidence bound · Process
precision index · p-value · Testing hypothesis

1 Introduction

Process precision index Cp has been proposed in the manufac-
turing industry for measuring process potential and precision
([1–4], among others). The precision index Cp is designed to
provide numerical measures on process potential (product qual-
ity consistency) in meeting the preset process precision (process
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variation relative to the manufacturing tolerance) requirements.
The precision index Cp is defined as

Cp = USL−LSL

6σ
(1)

where USL and LSL are the upper and the lower specification
limits, and σ is the process standard deviation of the quality
characteristic. The precision index Cp is primarily designed to
monitor process data that are taken independently, from a normal
process under statistical control. Using the index under other pro-
cess conditions, without proper modifications, would certainly
give severely inaccurate measurement on process precision.

The use of the precision index Cp and other capability indices
was first explored within the automotive industry. Ford Motor
Company initially used Cp to keep track of the process perform-
ance. Recently, the manufacturing industries have been making
an extensive effort to implement statistical process control (SPC)
in their plants and supply bases. Capability indices derived from
SPC have received increasing usage not only in capability assess-
ments, but also in the evaluation of purchasing decisions. Capabil-
ity indices are becoming the standard tools for quality reporting,
particularly, at the management level around the world. Proper
understanding and accurate estimating of capability indices are
essential for the company to maintain a capable supplier.

2 Estimating Cp based on control chart samples

For applications where the data are collected as one single sam-
ple, Pearn et al. [3] considered an unbiased estimator of Cp. They
showed that the unbiased estimator is the UMVUE (uniformly
minimum variance unbiased estimator) of Cp. They also pro-
posed an efficient test for Cp based on one single sample, and
showed that the test is the UMP (uniformly most powerful) test.
Kirmani et al. [5] considered the estimation of σ and the preci-
sion index Cp for cases where the data are collected as multiple
samples. Pearn and Yang [6] proposed an unbiased estimator of
Cp for multiple samples, and showed that the unbiased estima-
tor is the UMVUE of Cp, which is asymptotically efficient. Pearn
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and Yang [6] also developed an efficient test for Cp for cases with
multiple samples, and showed that the proposed test is indeed the
UMP test.

For applications where routine-based data collection plans
are implemented, a common practice on process control is to es-
timate the process precision by analyzing past “in control” data.
Consider m preliminary multiple samples (subgroups) each of
size n taken from the control chart samples. To estimate σ we
typically use either the sample standard deviation or the sample
range. The control chart can be used as a monitoring device or
logbook to show the effect of changes in the process perform-
ance. We note that a process may be in control but not necessarily
operating at an acceptance level. Thus, management interven-
tion is required either to improve the process capability, or to
change the manufacturing requirements to ensure that the prod-
ucts meet the minimum acceptable level. We remark that the
process must be stable in order to produce a reliable estimate of
process capability. If the process is out of control in the early
stages of process capability analysis, it will be unreliable to esti-
mate process capability. The top priority is to find and eliminate
the assignable causes in order to bring the process into an in
control state.

2.1 Estimating Cp based on (X̄, R) samples

If m samples each of size n from the (X̄, R) control chart are
available, let R1,n be the range of a sample of size n and R̄m,n

be the average range in m samples of each size n. Then the mean
and variance of the relative range R̄m,n/σ are given by

E
(

R̄m,n/σ
)

= E
(
R1,n/σ

) = d2 (2)

Var
(

R̄m,n/σ
)

= Var(R1,n)

mσ2 = d2
3

m
(3)

where d2 and d3 are functions of n, which are available in qual-
ity control books and literature (see Pearson’s Table A [7]). Thus,
the estimated process capability precision by the range method
can be expressed as

Ĉp(R) = USL−LSL

6σ̂R
, σ̂R = R̄m,n

d2
. (4)

Table 1. Coefficients of distribution for multiple samples with m = 5(5)25, n = 2(1)10, and α = 0.01, 0.025, 0.05

m = 5 m = 10 m = 15 m = 20 m = 25
n d2 d3 c v c v c v c v c v

2 1.128 0.853 1.191 4.582 1.160 8.973 1.149 13.351 1.144 17.727 1.141 22.101
3 1.693 0.888 1.739 9.317 1.716 18.414 1.708 27.505 1.705 36.594 1.702 45.682
4 2.059 0.880 2.096 13.923 2.078 27.616 2.071 41.304 2.068 54.992 2.067 68.679
5 2.326 0.864 2.358 18.359 2.342 36.483 2.337 54.603 2.334 72.723 2.332 90.842
6 2.534 0.848 2.562 22.565 2.548 44.893 2.543 67.218 2.541 89.542 2.540 111.866
7 2.704 0.833 2.730 26.586 2.717 52.932 2.713 79.276 2.710 105.620 2.709 131.963
8 2.847 0.820 2.871 30.380 2.859 60.519 2.855 90.656 2.853 120.793 2.852 150.929
9 2.970 0.808 2.992 34.022 2.981 67.803 2.977 101.581 2.975 135.359 2.974 169.137
10 3.078 0.797 3.099 37.532 3.088 74.822 3.085 112.110 3.083 149.398 3.082 186.685

If m = 1, the cumulative distribution function of the range from
a normal distribution is

F(x) = P

(
R1,n

σ
≤ x

)

= n

∞∫
−∞

[Φ(x + t)−Φ(t)]n−1 φ(t)dt , for t > 0 (5)

where Φ(·) and φ(·) are the cumulative distribution function and
probability density function of the standard normal distribution
N(0, 1). Furthermore, using the first two moments of the average
range, Patnaik [8] has shown that R̄m,n/σ is distributed approxi-
mately as cχv/

√
v, where χ2

v is the chi-square distribution with v

degree of freedom and c and v are constants which are functions
of the first two moments of the range as follows:

E
(

R̄m,n/σ
)

= c√
v

√
2Γ

(
v+1

2

)
/Γ

(v

2

)
(6)

Var
(

R̄m,n/σ
)

= c2

v

{
v−2

[
Γ

(
v+1

2

)
/Γ

(v

2

)]2
}

. (7)

The values of the mean and variance in Eq. 2 and Eq. 3 are
known from the coefficients of the mean and variance of the aver-
age range, d2 and d3. By letting Eq. 6 equal Eq. 2 and Eq. 7 equal
Eq. 3, we obtain the values of c and v, which are solutions to
the above system of equations. Table 1 displays the values of d2

,and d3 and the corresponding c and v for multiple samples with
m = 5(5)25 and n = 2(1)10.

In the early days of control chart usage, the range method of
estimating σ was employed to simplify the arithmetic associated
with control chart operation. With modern computer software
and hand-held calculators for control chart operation, this is not
a consideration, and other methods could be used. If the sample
size is relatively small, the range method yields almost as good
an estimator of variance σ2 as does the usual sample variance S2.
The relative efficiency (RE) of the range method to S2 is shown
in Table 2 for various sample sizes [4]. For values of n ≥ 10, the
range method loses efficiency rapidly, since it ignores all the in-
formation in the sample between the maximum and minimum
values. However, for the small sample sizes often employed on
variables control charts (n = 4, 5, or 6), it is entirely satisfactory.
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Table 2. The relative efficiency of the range method to S2

n 2 3 4 5 6 10

RE 1.000 0.992 0.975 0.955 0.930 0.850

2.2 Estimating Cp based on (X̄, S ) samples

If m samples each of size n from the (X̄, S ) control chart are
available, Kirmani et al. [5] considered measuring the process
precision index Cp, and the natural estimator Ĉp defined as the
following:

Ĉp(S ) = USL−LSL

6σ̂S
, σ̂S = 1

εn−1
S̄ , where (8)

S̄ = 1

m

m∑
i=1

Si , Si =

 1

n −1

n∑
j=1

(
Xij − X̄i

)2




1/2

and

εn−1 =
√

2

n −1

Γ [n/2]
Γ [(n −1)/2] .

The X̄i and Si represent the sample mean and sample stan-
dard deviation of the ith sample, and εn−1 is denoted by c4 in the
general quality control literature. Kirmani et al. [5] showed that
under the normality assumption, the statistic S̄ is approximately
distributed as the normal distribution. That is,

S̄−√
n −1εn−1√

(n−1)
(
1−ε2

n−1

)
m

∼ N (0, 1) . (9)

This is particularly true in situations where reasonable tight
control of the process variability is needed so that moderately
large subgroups (n > 10) are required. In this case, the S-chart
is preferred to the R-chart. We note that the expressions for
the distribution of Ĉp(S ) obtained in Kirmani et al. [5], Kocher-
lakota [9], and Kotz and Lovelace [10] need to be modified. In
fact, they addressed the distribution of σ̂S as

σ̂S ∼
(

σ,
σ2

m

1− ε2
n−1

ε2
n−1

)
. (10)

Hence, we have

Ĉp(S ) ∼
[

1+ N

(
0,

1− ε2
n−1

mε2
n−1

)]−1

Cp : (11)

The estimator Ĉp(S ) is biased, and its probability density func-
tion (PDF) can be obtained, and expressed as the following, for
x > 0, which is a function of Cp.

g(x) = Cp√
2πk

x−2 exp

[
− (Cp/x −1)2

2k2

]
(12)

k =
√√√√1− ε2

n−1

mε2
n−1

, and εn−1 =
√

2

n −1

Γ(n/2)

Γ [(n −1)/2]
.

Figures 1–4 display the PDF plots of Ĉp(S ) for various sam-
ple sizes of m = 10, 15, 20, 25, n = 5, with Cp = 1.00, 1.33, 1.50,
1.67, and 2.00 (from left to right in plot). Figures 5–8 display the
PDF plots of Ĉp(S ) for various sample sizes of m = 15, n = 3,
6, 9, 12, with Cp = 1.00, 1.33, 1.50, 1.67, and 2.00 (from left to
right in plot). We note that (i) for fixed sample size m and n, the
variance of Ĉp(S ) increases as Cp increases, (ii) for fixed n and

Fig. 1. PDF plot of Ĉp(S) with m = 10 and n = 5, for various values of Cp

Fig. 2. PDF plot of Ĉp(S) with m = 15 and n = 5, for various values of Cp

Fig. 3. PDF plot of Ĉp(S) with m = 20 and n = 5, for various values of Cp
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Fig. 4. PDF plot of Ĉp(S) with m = 25 and n = 5, for various values of Cp

Fig. 5. PDF plot of Ĉp(S) with m = 15 and n = 3, for various values of Cp

Fig. 6. PDF plot of Ĉp(S) with m = 15 and n = 6, for various values of Cp

Cp, the variance of Ĉp(S ) decreases as m increases, and (iii) for
fixed m and Cp, the variance of Ĉp(S ) decreases as n increases.

Lower confidence bound on Cp. Since Ĉp (denote either Ĉp(R)

or Ĉp(S )) is subject to sampling error, it is desirable to construct
a confidence interval to provide a range, which contains the true
Cp with high probability. For cases where multiple samples taken

Fig. 7. PDF plot of Ĉp(S) with m = 15 and n = 9, for various values of Cp

Fig. 8. PDF plot of Ĉp(S) with m = 15 and n = 12, for various values of Cp

from (X̄, R) control chart at various points in time are available,
by Patnaik’s approximate distribution of the average range, the
100(1−α)% lower confidence bound CL(R) can be constructed,
which satisfies

P
(
Cp ≥ CL(R)

) = 1−α

= P

(
σ̂R

σ
≥ CL(R)

Ĉp(R)

)

= P

(
R̄m,n

σ
≥ d2CL(R)

Ĉp(R)

)

� P

(
χv ≥

√
vd2CL(R)

cĈp(R)

)
. (13)

Thus, we can obtain that
√

vd2CL(R)

cĈp(R)

= χv,α , or the ratio

CL(R)

Ĉp(R)

= c√
vd2

√
χ2

v,α, (14)

where χ2
v,α is the lower α-th percentile of the chi-square distri-

bution with v degree of freedom. We notice that the ratio values
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of CL(R)/Ĉp(R) depends on v, c, d2, and α. The values of v, c,
d2 are determined from the number of samples m and sample
size n. We refer to this ratio CL(R)/Ĉp(R) as lower confidence
factors. Table 3 displays the lower confidence factors for multi-
ple samples with m = 5(5)25, n = 2(1)10, and α = 0.01, 0.025,
0.05. From Table 3 we observe that for fixed sample size n and
α, the lower confidence factors CL(R)/Ĉp(R) increases as the
number of samples m increases. As an example, for fixed n =
5, we have m = 5 with CL(R)/Ĉp(R) = (0.636, 0.689, 0.735),
m = 15 with CL(R)/Ĉp(R) = (0.784, 0.817, 0.845), and m = 25
with CL(R)/Ĉp(R) = (0.831, 0.857, 0.879). On the other hand,
for a fixed number of samples m and α, the lower confidence fac-
tors increase as the sample size n increases. This phenomenon
can be explained easily. Since the estimation is usually more
accurate as the total collected sample increases, we need only
a smaller penalty of Ĉp(R) to account for the smaller uncertainty
in the estimation.

For cases where m multiple samples of size n are available
due to sampling from (X̄, S ) control chart at various point in
time, Kirmani et al. [5] constructed the 100(1−α)% lower con-
fidence bound as the following:

CL(S ) = Ĉp(S )


1+ Zα

√√√√1− ε2
n−1

mε2
n−1


 . (15)

Table 3. Lower confidence factors CL(R)/Ĉp(R) for multiple samples with m = 5(5)25, n = 2(1)10, and α = 0.01, 0.025, 0.05

m 5 10 15 20 25
n α 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05

2 0.327 0.406 0.482 0.495 0.563 0.624 0.578 0.637 0.690 0.630 0.683 0.730 0.667 0.715 0.758
3 0.503 0.570 0.631 0.637 0.689 0.735 0.700 0.744 0.783 0.738 0.777 0.811 0.765 0.800 0.831
4 0.586 0.645 0.697 0.700 0.744 0.783 0.753 0.790 0.822 0.785 0.817 0.845 0.807 0.836 0.862
5 0.636 0.689 0.735 0.738 0.777 0.811 0.784 0.817 0.845 0.812 0.841 0.865 0.831 0.857 0.879
6 0.670 0.718 0.760 0.763 0.798 0.829 0.805 0.834 0.860 0.830 0.856 0.879 0.848 0.871 0.891
7 0.695 0.740 0.779 0.781 0.814 0.843 0.820 0.847 0.871 0.843 0.867 0.888 0.860 0.881 0.900
8 0.714 0.756 0.793 0.795 0.826 0.853 0.831 0.857 0.879 0.853 0.876 0.895 0.869 0.889 0.906
9 0.729 0.769 0.804 0.706 0.835 0.861 0.840 0.865 0.886 0.861 0.883 0.901 0.876 0.895 0.911
10 0.741 0.780 0.813 0.815 0.843 0.867 0.848 0.871 0.891 0.868 0.888 0.906 0.882 0.900 0.916

Table 4. Lower confidence factors CL(S)/Ĉp(S) for multiple samples with m = 10(5)25, n = 2(1)15, and α = 0.01, 0.025, 0.05

m 10 15 20 25
α n 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05

2 0.443 0.532 0.607 0.545 0.618 0.679 0.606 0.669 0.722 0.648 0.704 0.751
3 0.615 0.676 0.728 0.686 0.735 0.778 0.728 0.771 0.808 0.756 0.795 0.828
4 0.689 0.738 0.780 0.746 0.786 0.821 0.780 0.815 0.845 0.803 0.835 0.861
5 0.733 0.775 0.811 0.782 0.816 0.846 0.811 0.841 0.866 0.831 0.858 0.881
6 0.762 0.800 0.832 0.806 0.836 0.863 0.832 0.858 0.881 0.849 0.873 0.894
7 0.783 0.818 0.847 0.823 0.851 0.875 0.847 0.871 0.892 0.863 0.885 0.903
8 0.800 0.832 0.859 0.837 0.863 0.885 0.858 0.881 0.900 0.873 0.894 0.911
9 0.813 0.843 0.868 0.847 0.872 0.892 0.868 0.889 0.907 0.882 0.901 0.917
10 0.824 0.852 0.876 0.856 0.879 0.899 0.876 0.895 0.912 0.889 0.906 0.921
11 0.833 0.860 0.882 0.864 0.886 0.904 0.882 0.901 0.917 0.895 0.911 0.926
12 0.841 0.866 0.888 0.870 0.891 0.908 0.888 0.906 0.921 0.900 0.916 0.929
13 0.848 0.872 0.893 0.876 0.896 0.912 0.893 0.910 0.924 0.904 0.919 0.932
14 0.854 0.877 0.897 0.881 0.900 0.916 0.897 0.913 0.927 0.908 0.922 0.935
15 0.860 0.882 0.901 0.885 0.904 0.919 0.900 0.916 0.930 0.911 0.925 0.937

Table 4 displays the lower confidence factors of Ĉp(S ) for
multiple samples with m = 10(5)25, n = 2(1)15, and α = 0.01,
0.025, 0.05. For example, with input parameters m = 10, n =
5, risk α = 0.05 and Ĉp(S ) = 1.520, the program gives the
lower confidence bound of Cp as 1.233. Or, by simply checking
Table 4, we obtain the lower confidence factor 0.811. Multiply-
ing the lower confidence factor 0.811 by the Ĉp(S ) = 1.520 we
obtain 1.233. Thus, it is ensured that with 95 percent confidence,
the process precision is no less than 1.233, or Cp ≥ 1.233. Other
values of Ĉp(S ) < CL(S ) will support the null hypothesis that
the process is incapable. Hence, the process is capable for any
value of the required Cp that is greater than the lower confidence
bound. It is noted that for fixed sample size n and α, the lower
confidence factors CL(S )/Ĉp(S ) increase as the number of sam-
ples m increases. And for a fixed number of samples m and α, the
lower confidence factors increase as the sample size n increases.
The results are consistent with the lower confidence bound ob-
tained by the range method, and the explanation is the same as
above.

An efficient MAPLE computer program for solving the
corresponding Eq. 15 and calculating the lower confidence
bound CL(S ) is listed below. The input parameters are set
to: the upper specification limit USL = 12, the lower spe-
cification limit LSL = 4, number of samples m = 10, the
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sample size n = 4, the collected data d[data], and the risk
α = 0.01. The program calculates the process precision Ĉp(S )

as 0.742, and finds the lower confidence bound as CL(S ) =
0.511.

Maple program for lower confidence bounds CL(S ).

#input values of parameter U(USL), L(LSL), d[data], m, n, z;
#Shat:= Sigmahat; Cphat:= Ĉp(S ); CL:= lower confidence bound
>U:=12; L:=4; d[1]:=[10,5,7,9];
d[2]:=[5,8,7,7]; d[3]:=[7,6,6,8]; d[4]:=[5,7,9,5]; d[5]:=[6,5,8,9]; d[6]:=[10,9,11,4];
d[7]:=[4,5,10,6]; d[8]:=[6,6,7,9]; d[9]:=[8,10,6,7]; d[10]:=[9,6,11,8];

n:=4; m:=10; alpha:=0.01; z:=icdf[normal[0,1](alpha)];
v:=matrix([seq(d[i],i=1..10)]);
sample:=[seq([seq(v[i,j],j=1..4)],i=1..10)];
s:=evalf(sum(′describe[standarddeviation](t[i])′ ,i=1..10)/10):
epsilon:=evalf(( ((2/(n−1))ˆ(1/2))∗(GAMMA(n/2))/(GAMMA((n−1)/2)) )):
Shat:=evalf(s/epsilon);
Cphat:=evalf((U−L)/(6∗Shat));
CL:=evalf(Cp∗(1+z∗((1−epsilonˆ2)/(m∗epsilonˆ2))ˆ(1/2)));

The output is:
U:=12
L:=4
n:=4
m:=10
alpha:=0.01
Shat:=1.79692
Cphat:=0.74201
CL:=0.51129

3 Testing Cp based on multiple control chart samples

Cases where the data are collected as one single sample of size
n have been discussed by Kane [1]. In this case, Chou et al. [11]
give tables for lower confidence limit on Cp when σ is esti-
mated by the sample standard deviation S. When σ is estimated
by range divided by d2, Li et al. [12] also give tables for the
lower confidence limit on Cp. Now, we are interested in the
test of process precision Cp based on (X̄, R) or (X̄, S ) control
chart samples. To test whether the process meets the precision
requirement, we consider the following testing hypothesis with
H0: Cp ≤ C (the process is incapable), versus the alternative H1:
Cp > C (the process is capable). Thus, we may consider the test
φ∗(x) = 1 if Ĉp > C0, and φ∗(x) = 0, otherwise. The test φ∗ re-
jects the null hypothesis if Ĉp > C0, with type I error α(C0) = α,
the chance of incorrectly judging an incapable process as a capa-
ble one.

Table 5. Critical values C0(R) for Cp = 1.00, with m = 5(5)25, n = 2(1)10, and α = 0.01, 0.025, 0.05

m 5 10 15 20 25
n α 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05

2 3.058 2.463 2.075 2.020 1.776 1.603 1.730 1.570 1.449 1.587 1.464 1.370 1.499 1.399 1.319
3 1.988 1.754 1.585 1.570 1.451 1.361 1.429 1.344 1.277 1.355 1.287 1.233 1.307 1.250 1.203
4 1.706 1.550 1.435 1.429 1.344 1.277 1.328 1.266 1.217 1.274 1.224 1.183 1.239 1.196 1.160
5 1.572 1.451 1.361 1.355 1.287 1.233 1.276 1.224 1.183 1.232 1.189 1.156 1.203 1.167 1.138
6 1.493 1.393 1.316 1.311 1.253 1.206 1.242 1.199 1.163 1.205 1.168 1.138 1.179 1.148 1.122
7 1.439 1.351 1.284 1.280 1.229 1.186 1.220 1.181 1.148 1.186 1.153 1.126 1.163 1.135 1.111
8 1.401 1.323 1.261 1.258 1.211 1.172 1.203 1.167 1.138 1.172 1.142 1.117 1.151 1.125 1.104
9 1.372 1.300 1.244 1.416 1.198 1.161 1.190 1.156 1.129 1.161 1.133 1.110 1.142 1.117 1.098
10 1.350 1.282 1.230 1.227 1.186 1.153 1.179 1.148 1.122 1.152 1.126 1.104 1.134 1.111 1.092

3.1 Testing Cp based on (X̄, R) samples

When the estimated process capability precision by the range
method from the (X̄, R) control chart samples, the critical value
C0(R) can be obtained by finding the appropriate value satisfying
the following equation:

P
(

Ĉp(R) ≥ C0(R)|Cp = C
)

= α

= P

(
d

3σ̂R
≥ C0(R)

)

= P

(
R̄m,n

σ
≥ d2

C0(R)

d

3σ

)

� P

(
χv ≤

√
vd2

cC0(R)

C

)
. (16)

In fact, the critical value C0(R) can be found and expressed as the
following:

C0(R) =
√

vd2

c
√

χ2
v,α

C . (17)

Table 5 displays the critical values C0(R) for precision re-
quirement Cp = 1.00 with m subgroups of size n, and various
risks α = 0.01, 0.025, and 0.05. We see that the critical value
C0(R) is proportional to the precision requirement C. Hence, we
need only to calculate C0(R) for the Cp = 1.00 case. For general
Cp = C (common requirements as 1.33, 1.67, 2.00), we obtain
the corresponding critical values by multiplying C to the critical
values C0(R) with Cp = 1.00. For instance, if the required preci-
sion requirement C, is set to 1.33, with m = 10 subgroups of size
n = 5, and various risks α = 0.01, 0.025, and 0.05, then the cor-
responding critical values are C∗

0(R)
= (1.355, 1.287, 1.233)×

1.33 = (1.802, 1.712, 1.640). It is noted that for fixed α and sam-
ple size n, the critical value C0(R) increases as the number of
samples m decreases, and for fixed α and m the critical value
C0(R) increases as the n decreases. It can be understood in-
tuitively, since the estimation error is potentially larger as the
total sample size m ×n is smaller. It is reasonable that we need
a larger C0(R) to claim that the process is capable. Under the
same conditions, the p-value corresponding to ĉp(R), a specific
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value calculated from the sample data, can be calculated as

p-value = P
(

Ĉp(R) ≥ ĉp(R)|Cp = C
)

= P

(
R̄m,n

σ
≥ d2

ĉp(R)

d

3σ

)
� P

(
χv ≤

√
vd2

cĉp(R)

C

)

= G

([ √
vd2

cĉp(R)

C

]2
)

, (18)

where G(·) is the cumulative distribution of the chi-square distri-
bution with v degree of freedom.

3.2 Testing Cp based on (X̄, S ) samples

If the (X̄, S ) control chart is available, then the critical value
C0(S ) can be obtained by finding the appropriate value satisfying
the following equation:

P
(

Ĉp(S ) ≥ C0(S )|Cp = C
)

= α

= 1−
c0∫

0

Cp√
2πk

x−2 exp

[
− (Cp/x −1)2

2k2

]
dx . (19)

In fact, the critical value C0(S ) can be found and expressed as
the following, with Zα representing the lower 100α% percentage
point of the standard normal distribution, N(0, 1),

C0(S ) = C

1+ Zα

√
1−ε2

n−1

mε2
n−1

, where

εn−1 =
√

2

n −1

Γ [n/2]
Γ [(n −1)/2] . (20)

An efficient MAPLE computer program is developed to cal-
culate Eq. 20 , thereby obtaining the critical value C0(S ) for given
m, n, α. The program is listed below, with input parameters set
to: C = 1.00, m = 10, n = 10, and α = 0.01. The program gives
the critical value C0(S ) = 1.213.

Table 6. Critical values C0(S) for Cp = 1.00, m = 10(5)25, n = 2(1)15, and α = 0.01, 0.025, 0.05

m 10 15 20 25
α n 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05

2 2.256 1.881 1.647 1.833 1.619 1.473 1.649 1.495 1.385 1.543 1.421 1.331
3 1.626 1.472 1.373 1.459 1.360 1.285 1.374 1.297 1.238 1.322 1.258 1.208
4 1.451 1.354 1.281 1.340 1.272 1.218 1.282 1.227 1.184 1.245 1.198 1.161
5 1.365 1.290 1.233 1.279 1.225 1.182 1.233 1.189 1.154 1.204 1.166 1.136
6 1.313 1.251 1.202 1.241 1.196 1.159 1.202 1.165 1.135 1.177 1.145 1.119
7 1.277 1.223 1.181 1.215 1.175 1.143 1.181 1.148 1.121 1.159 1.130 1.107
8 1.250 1.202 1.165 1.195 1.159 1.130 1.165 1.135 1.111 1.145 1.119 1.098
9 1.230 1.187 1.152 1.180 1.147 1.121 1.152 1.125 1.103 1.134 1.110 1.091
10 1.213 1.174 1.142 1.168 1.137 1.113 1.142 1.117 1.096 1.125 1.103 1.085
11 1.200 1.163 1.133 1.158 1.129 1.106 1.134 1.110 1.091 1.118 1.097 1.080
12 1.189 1.154 1.126 1.149 1.122 1.101 1.126 1.104 1.086 1.112 1.092 1.076
13 1.179 1.146 1.120 1.142 1.116 1.096 1.120 1.099 1.082 1.106 1.088 1.073
14 1.171 1.140 1.115 1.135 1.111 1.092 1.115 1.095 1.079 1.102 1.084 1.070
15 1.163 1.134 1.110 1.130 1.107 1.088 1.110 1.091 1.075 1.097 1.081 1.067

Maple program for critical value C0(S ).

> #input parameter values C, n, m, z, alpha.
#C0:= critical value;
with (statevalf):
C:=1.00;
n:=10;
m:=10;
alpha:=0.01;
z:=icdf[normal[0,1](alpha)];
epsilon:=((2/(n−1))ˆ(1/2))∗(GAMMA(n/2))/(GAMMA((n−1)/2));
C0:=evalf(C/(1+z∗((1−epsilonˆ2)/(m∗epsilonˆ2))ˆ(1/2)));

The output is:
C:=1.00
n:=10
m:=10
alpha:=0.01
z:=−2.326
epsilon:=0.972659
C0:=1.213075

It can be seen that the critical value C0(S ) is proportional
to the precision requirement C. Hence, we tabulate the critical
values C0(S ) with m = 10(5)25, subgroups of size n = 2(1)15,
and various risks α = 0.05, 0.025, and 0.01 for the preci-
sion requirement Cp = 1.00 case, displayed in Table 6. For
general Cp = C (common requirements as 1.33, 1.67, 2.00),
we obtain the corresponding critical values by multiplying
C to the critical values C0(S ) with Cp = 1.00. For instance,
if the required precision requirement C, is set to 1.33, with
m = 15 subgroups of size n = 10, and various risks α = 0.01,
0.025, and 0.05, then the corresponding critical values are
C∗

0(S )
= (1.168, 1.137, 1.113)×1.33 = (1.553, 1.512, 1.480). It

is noted that for fixed α and sample size n, the critical value
C0(S ) increases as the number of samples m decreases, and
for fixed α and m the critical value C0(S ) increases as n de-
creases. Again, it can be explained that since the estimation
error is potentially larger based on the smaller total sample size,
we need a larger C0(S ) to claim that the process is capable.
Under the same conditions, the p-value corresponding to ĉp(S ),



605

a specific value calculated from the sample data, can be ex-
pressed as

p-value = P
(

Ĉp(S ) > ĉp(S )|Cp = C
)

(21)

= 1−
ĉp(S )∫
0

Cp√
2πk

x−2 exp

[
− (Cp/x −1)2

2k2

]
dx ,

where

k =
√√√√1− ε2

n−1

mε2
n−1

, εn−1 =
√

2

n −1

Γ [n/2]
Γ [(n −1)/2] .

An efficient MAPLE computer program is developed based
on Eq. 21 , to calculate the p-value corresponding to the hypoth-
esis test, H0: Cp � C versus H1: Cp > C. For given sample data
of m subgroups of size n, and a specific value of Ĉp calculated
from the sample data, the program reads the input (an example)
with m = 15, n = 8, C = 1.00, and Ĉp(S ) = 1.204; the program
gives the p-value = 0.00785.

Maple program for the p-value.

> #input parameter values Cphat, C, n, m;
> # Cphat=Ĉp(S );
Cphat:=1.204; C:=1.00; m:=15; n:=8;
epsilon:=((2/(n−1))ˆ(1/2))∗(GAMMA(n/2))/(GAMMA((n−1)/2));
b:=((1−epsilonˆ2)/(m∗epsilonˆ2))ˆ0.5;
f(x):=C∗(exp(−((C/x−1)ˆ2)/(2∗bˆ2)))/((2∗Pi)ˆ0.5∗b∗(xˆ2));
p_value:=1−int(f(x),x=0..Cp);

The output is:
p_value:=0.00785

A procedure for testing process precision. To judge if a given
process meets the preset precision requirement we first deter-
mine the value of C, the preset precision requirement, and the
α-risk (the chance of wrongly concluding an incapable pro-
cess as capable). Checking the appropriate table (or running the
program), we may obtain the critical value C0 based on given
values of α-risk, C, and m samples of size n. If the estimated
value Ĉp is greater than the critical value C0 (Ĉp > C0), then
we may conclude that the process meets the precision require-
ment Cp > C. Otherwise, we do not have sufficient informa-
tion to conclude that the process meets the present precision
requirement. In this case, we would believe that Cp ≤ C. In
the following, we develop a practical step-by-step procedure for
testing process precision. The practitioners (engineers) can use
the procedure in their in-plant applications to obtain reliable
decisions.

Step 1: Decide the definition of “capable” (common requirement
values of C include 1.00, 1.33, 1.50, 1.67, and 2.00),
and the α-risk (normally set to 0.01, 0.025, or 0.05), the
chance of wrongly concluding an incapable process as
capable.

Step 2: Estimate the process precision Cp from the past “in con-
trol” data by using either the sample range defined in
Eq. 4 or the sample standard deviation method defined
in Eq. 8.

Step 3: Check the appropriate table (or run the attached com-
puter program) to find the critical value C0 based on the
specified α-risk, C, and m samples of size n.

Step 4: Conclude that the process is capable (Cp > C) if Ĉp

value is greater than the critical value C0 (i.e., Ĉp > C0).
Otherwise, we do not have enough information to con-
clude that the process is capable.

4 An application to chip resistors

Consider a resistor manufacturing process making certain types
of chip resistors. The chip resistor is developed applying the sur-
face mount technology, which impels the electronic component
to be made like a chip. Designed for surface mount applications,
this style is generally mounted with the resistor element face up.
Attachment may be made by use of conductive epoxy or sol-
der. For a solder attachment, pre-tinned chips with nickel barriers
are recommended. For an epoxy attachment, terminations are
generally Pd/Ag or Pt/Ag alloys and Au terminations are avail-
able upon request. The additional surface area provided by the
wraparound style offers improved mechanical performance, as
well as better thermal efficiency.

The chip resistor is made with a metal glaze layer screened
on a high ceramic body. Its miniature size can be made compact
on printed circuit board, and it has excellent mechanical strength
and electrical stability. We investigate a specific chip resistor
process taken from a factory located in Taiwan, with manufac-
turing specifications of USL = 12.0 Ω, and LSL = 11.5 Ω. Sup-
pose the minimal precision requirement for this process is set to
Cp = 1.33. The collected data of 15 subgroups of size 10 are dis-
played in Table 7. Figure 9 shows the individual observation plot
of each sample with respect to the two-sided specifications.

Fig. 9. Individual observation plot of each sample
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Table 7. The collected 15 samples each of 10 observations

Sample 1 11.709 11.809 11.693 11.806 11.740 11.806 11.736 11.789 11.661 11.793
Sample 2 11.715 11.650 11.719 11.774 11.797 11.766 11.867 11.757 11.733 11.774
Sample 3 11.873 11.714 11.745 11.765 11.743 11.788 11.753 11.772 11.708 11.749
Sample 4 11.713 11.743 11.746 11.773 11.819 11.741 11.719 11.724 11.777 11.739
Sample 5 11.730 11.695 11.752 11.767 11.809 11.748 11.760 11.743 11.698 11.756
Sample 6 11.672 11.720 11.724 11.700 11.765 11.739 11.792 11.759 11.727 11.637
Sample 7 11.780 11.684 11.825 11.750 11.756 11.685 11.695 11.760 11.777 11.729
Sample 8 11.741 11.784 11.682 11.721 11.800 11.759 11.691 11.678 11.724 11.736
Sample 9 11.800 11.757 11.794 11.812 11.736 11.683 11.776 11.774 11.817 11.749
Sample 10 11.673 11.819 11.680 11.774 11.740 11.685 11.749 11.748 11.685 11.702
Sample 11 11.710 11.684 11.744 11.655 11.725 11.667 11.734 11.838 11.686 11.743
Sample 12 11.741 11.709 11.807 11.829 11.678 11.847 11.737 11.751 11.868 11.755
Sample 13 11.765 11.732 11.694 11.743 11.805 11.655 11.774 11.687 11.811 11.692
Sample 14 11.726 11.719 11.842 11.681 11.751 11.697 11.675 11.723 11.794 11.654
Sample 15 11.752 11.767 11.727 11.782 11.768 11.829 11.611 11.833 11.800 11.716

As mentioned earlier, in order to make the estimation of these
capability indices meaningful, it is necessary to check whether
the manufacturing process is under statistical control. For these
collected 15 samples with each of sample size n = 10, the rela-
tive efficiency of the range method is about 85%. Therefore,

Fig. 10. a X̄ control chart of the process, b S control chart of the process

we suggested using the (X̄, S ) chart for retrospectively test-
ing whether the process is in control, which are displayed in
Fig. 10a,b. The (X̄, S ) control charts show that all the sample
points are within the control limits without any special pattern,
and the process is justified to be well in control. Therefore, we
consider the process stable and so we proceed with the capability
measurement.

The overall sample mean
=
X = 11.7448 and the sample

standard deviation S̄ = 0.0490 are first calculated. Then, the
value of the estimated σ̂S = S̄/c4 = 0.0504 and Ĉp(S ) = (USL−
LSL)/

(
6× σ̂S

) = 1.6534 are calculated from the 15 samples
of each size 10. With risk α = 0.01, the minimal precision
requirement for this process is set to Cp = 1.33. We check
Table 6 and find the corresponding critical value as 1.168×
1.33 = 1.553. Therefore, in this case the estimated value Ĉp(S ),
based on the S-chart sample data, is 1.6534, which is greater
than the obtained critical value, 1.553. The corresponding p-
value is also found to be 0.00075. We therefore conclude
with 99% confidence that the chip resistors manufacturing
process satisfies the requirement of Cp > 1.33, which is con-
sidered satisfactory and reliable in terms of product quality
(originally set by the product designers or the manufacturing
engineers).

5 Conclusions

Process precision index Cp has been widely used in the manu-
facturing industry for measuring process potential and product
precision. Estimating and testing process precision based on one
single sample has been investigated extensively. In this paper, we
considered the problem of estimating and testing process preci-
sion based on multiple samples taken from the (X̄, R) or (X̄, S )

control charts. We investigated the statistical properties of the
natural estimator of Cp (use either the sample standard deviation
or the sample range method), and implemented the statistical hy-
pothesis testing. We also developed efficient MAPLE programs
to calculate the lower confidence bounds, the critical values, and
the p-values based on m samples of size n. Based on the test, we
developed a practical procedure for the practitioners to use for
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their applications. Engineers can use the proposed testing pro-
cedure to determine whether their manufacturing processes are
capable of reproducing products satisfying the preset precision
requirement.
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