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Simultaneous identification of the source location and release history in aquifers is complicated and time-consuming if the release
of groundwater contaminant source varies in time. This paper presents an approach called SATSO-GWT to solve complicated
source release problems which contain the unknowns of three location coordinates and several irregular release periods and
concentrations. The SATSO-GWT combines with ordinal optimization algorithm (OOA), roulette wheel approach, and a source
identification algorithm called SATS-GWT.The SATS-GWT was developed based on simulated annealing, tabu search, and three-
dimensional groundwater flow and solute transport model MD2K-GWT.The OOA and roulette wheel method are utilized mainly
to reduce the size of feasible solution domain and accelerate the identification of the source information. A hypothetic site with
one contaminant source location and two release periods is designed to assess the applicability of the present approach.The results
indicate that the performance of SATSO-GWT is superior to that of SATS-GWT. In addition, the present approach works very
effectively in dealingwith the cases which have different initial guesses of source location andmeasurement errors in themonitoring
points as well as problems with large suspicious areas and several source release periods and concentrations.

1. Introduction

The issues of identifying the source location and/or recov-
ering the release history of a groundwater contaminant
plume are getting more and more public concern recently.
In some countries, groundwater is an important source for
drinking water and agricultural use. If a site is found to
have groundwater contamination, the source information
including the location as well as release concentration and
period should be determined before taking remedial actions.
Site remediation is usually quite costly, so the responsible
parties for the contamination should be recognized via the
source identification works. In addition, incorrect infor-
mation on contaminant source may confuse or mislead
remediation plan.The technique for identifying contaminant
source location and its release history is therefore important
in dealing with the groundwater contamination problem.
Moreover, if the source release varies in time, the estimation
of the actual source information becomes rather complicated
and difficult. Thus, there is a need to develop an effective
approach for identifying the contaminant source location and
its release history based on the concentration measurements.

Identification of unknown contaminant sources in
groundwater is an inverse problem. Mathematically, the
processes of contaminant transport in groundwater are
irreversible and their inversion solutions are sensitive to
the errors in the observation data, especially when data are
sparse or missing (e.g., [1–6]). Atmadja and Bagtzoglou [1]
pointed out that the groundwater source identification is an
ill-posed problem because the solution may not be unique
and stable. They reviewed the available methods for source
location identification and the release history reconstruction
and classified them into four categories: optimization
approaches, probabilistic and geostatistical (GS) simulation
approaches, analytical solution and regression approaches,
and direct approaches. Tracking the contaminant source
location usually needs to run forward simulations with
an initial guess solution and then to search the best-fitted
solution via an optimization approach. Probabilistic and
GS simulation approaches employ several probabilistic
and statistical techniques to assess the probability of the
location of the sources (Sun [7]). Atmadja and Bagtzoglou
[1] indicated that this approach is applicable only when
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the location of the potential source is known in advance.
Regression approaches along with analytical solution can
estimate all the parameters simultaneously but work well
only for simple aquifer geometry and flow conditions.
Direct approaches reconstruct the release history by solving
governing equation directly.

The problems of identifying groundwater contaminant
source can generally be classified as (1) identifying source
location problems (e.g., [8–17]), (2) recovering the release
history problems (e.g., [5, 18–34]), and (3) identifying source
location and recovering the release history problems simul-
taneously (e.g., [2, 7, 35–42]).

For the third-type problem, Aral and Gaun [35] proposed
an approach called improved genetic algorithm (IGA) to
determine the information of source location, leak rate, and
release period. They showed that the results obtained from
the IGAmatchwith those obtained from linear and nonlinear
programming approaches. Later, they further developed an
iterative approach based on genetic algorithm (GA) algo-
rithm, defined as progressive genetic algorithm (PGA), in
conjunction with a finite element groundwater flow model
(Aral et al. [43]) to identify the coordinates of source
location and release history in a two-dimensional steady-
state groundwater flow system. In their case study, the source
release history was assumed to be over 180 months and
four monitor wells were installed at the downstream of the
source location.The contaminant concentrationwas sampled
at each well every 3 months. Therefore, there were totally
240 observation data used in identifying the source location
and reconstructing the release history. Mahar and Datta [2]
used an optimal source identification methodology based
on embedded optimization models to estimate the release
concentrations of multiple hypothetical contaminant sources
over discrete time intervals using breakthrough curve data.
Their study successfully identified the source information
for flow in both steady and transient states. Bagtzoglou [36]
modified the reversible-time particle tracking method by
introducing a variance minimization procedure to backtrack
groundwater solute concentration profiles and identify the
most probable source location. Bagtzoglou and Atmadja
[37] presented a comprehensive literature review on the
mathematical methods for hydrologic inversion and the
identifications of the contaminant source location and time-
release history. Neupauer and Lin [38] extended the work
of Neupauer and Wilson [44] by conditioning the backward
probability density functions of source location to measured
concentration data. Sun et al. [39] employed a constrained
robust least squares (CRLS) method to recover the release
history of a single source, and the results of CRLS in their
hypothetic example are better than several classic methods
(i.e., ordinary least squares (LS), standard total least squares
(TLS), and nonnegative least squares (NNLS)). In addition,
they further employed the CRLS combined with a branch-
and-bound global optimization solver for identifying source
locations and release histories (Sun et al. [40]). In their
numerical examples, a two-dimensional and steady-state flow
field was developed. Totally 57 sampled observation data
from eleven observationwells were utilized for release history
identification. Later, Sun [7] developed a robust version of

the GS approach, namely, the robust geostatistical (RGS)
approach, to explicitly illustrate the contaminant release
history identification in a 2D heterogeneous aquifer with
the hydraulic conductivity exhibiting spatially lognormal
distribution. Yeh et al. [15] constructed a source identification
model, SATS-GWT, by combining simulated annealing (SA),
tabu search (TS), and MF2K-GWT, to identify the constant
source release problem.Theirmodel can determine the infor-
mation of contaminant source with a constant release rate in
a three-dimensional (3D) transient groundwater flow system.
Ababou et al. [41] presented a new and stable methodology
for pollutant source identification in terms of unknown initial
position and past history based on the reverse antidiffusive
randomwalk scheme. Butera et al. [42] introduced the simul-
taneous release function and source location identification
(SRSI), which was capable of simultaneously identifying the
source location and release history of the contaminant in 2D
confined aquifers with strongly nonuniform flow fields.

Ho et al. [45] presented an approach called ordinal opti-
mization algorithm (OOA) which can solve complex opti-
mization problems, which usually require huge amount of
computing time in obtaining the optimal solution, effectively
and accurately. The OOA is suitable for solving optimization
problems with sifting the most possible solution for further
evaluations (e.g., [46–49]).

This study aims at developing a novel approach called
SATSO-GWT to identify the source location and release his-
tory in a 3D, heterogeneous, and transient groundwater flow
system. The approach combines the model MD2K-GWT for
simulating the groundwater flow and pollutant transport with
heuristic optimization techniques such as SA, TS, OOA, and
roulette wheelmethod.This new approach has the advantages
of avoiding possible trap in a local optimum and improving
the computational efficiency when the searching space of
problem becomes very large. A hypothetic case is design
to assess the applicability of the SATSO-GWT. In addition,
three cases are considered to assess the performance of
SATSO-GWT. They are (1) different initial guesses of source
location, (2) various measurement errors in the monitoring
points, (3) a large suspicious area with six release periods and
concentrations.

2. Methodology

2.1. Groundwater Flow and Transport Simulation. Darcy’s law
can be written as (Konikow et al. [50])
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where 𝑆
𝑠
is the specific storage [L−1], 𝑡 is time [T], and 𝑊

is the volumetric flux per unit volume (positive for inflow
and negative for outflow [1/T]). Equation (2) can be used to
predict the hydraulic head distribution in a 3D groundwater
flow system.

The governing equation for 3D solute transport in
groundwater can be written as (Konikow et al. [50])
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where 𝐶 is the contaminant concentration [M/L3], 𝐷
𝑖𝑗
is a

second-order tensor of the dispersion coefficient [L2/T], and
𝐶
󸀠 is the concentration of the source or sink fluid [M/L3].The

average linear velocity 𝑉
𝑖
can be determined by (1).

The computer model MF2K-GWT developed based on
(2) and (3) by the United State Geological Survey can be
used to simulate the groundwater flow and contaminant
transport simultaneously. This model combines the modular
3D finite-difference ground-water flow model, MODFLOW-
2000 (Harbaugh et al. [51]), and the 3D method-of-
characteristics solute-transport model (MOC3D) (Konikow
et al. [50]) to simulate groundwater flow field and spatial and
temporal plume distribution.

2.2. Simulated Annealing. Press et al. [52] mentioned that SA
is a technique suitable for solving large-scale optimization
problems. The concept of SA is based on an analogy to
crystallization of a solid annealing from a high temperature
state. If the temperature is cooled properly, amost stable crys-
talline structure of the solid will be obtained with minimum
energy state. The possible solution spaces for a problem to
be solved looks like different crystalline structures and the
optimal solution of the problem is equivalent to the most
stable crystalline structure.

In the SA, the Metropolis mechanism (Metropolis et al.
[53]) is employed to determine the acceptance of adjacent
solution. This mechanism dictates that the SA is capable of
accepting bad trial solution to avoid the problem of being
trapped in the local optimal solution. More details of the
introduction of SA are available in Metropolis et al. [53] or
Yeh et al. [15].The SA has been successfully applied to various
types of problems such as aquifer parameter estimation (e.g.,
[54–56]), pipe wall surface reaction rate (e.g., [57]), and
pumping source information (e.g., [58]).

2.3. Tabu Search. Glover [59] proposed two main concepts
of TS: memory and learning.Throughmemory and learning,
the TS is of more intensification and diversification in
algorithm. Memory means to memorize the past solutions
to avoid the repetition of evaluations. During the process
of learning, the result of next experiment infers from the
memorized prior result. A better result may encourage the
next trial to increase the accuracy of the obtained solution.
Then through the learning process, the succeeding search
can focus on better solutions but not wasting time on worse
solutions. According to these two ideas, TS utilizes the tabu

list and aspiration criterion to interdict or to encourage some
trial solutions during the iterative process. The utility of
the tabu list is to memorize some previously evaluated trial
solutions. The goal of the aspiration criteria is to release
some of the solutions memorized in the tabu list to avoid the
iteration cycling andmay finally be trapped in a local optimal
solution.

The TS has been successfully applied to solve groundwa-
ter problems such as the identification of optimal parameter
structure (Zheng and Wang [60]) and the determination
of spatial pattern of groundwater pumping rates (Tung and
Chou [61]). The iterative procedure of TS in Yeh et al. [15],
which contains the components of initial guess, candidate
solution and movement, tabu list, and aspiration criterion, is
adopted in this study.

2.4. Ordinal Optimization. Recently, the OOA has been
applied to many areas related to simulation-based complex
optimization problems. The OOA has two major tenets:
ordinal comparison and goal softening procedures. The first
procedure is to see if there is a relative relationship between
each solution because it ismuch easier to findbetter solutions.
The second procedure is to determine a reliable and good
enough solution instead of directly evaluating the optimal
solution in a complex optimization model. Therefore, this
procedure reduces the consumption of computation and
obtains the optimum solution from the feasible solution
space. To get top proportion solutions is much easier than
to find out the best one. Lau and Ho [47] showed that the
OOA ensures that top 5% solutions can be regarded as good
enough solutions and are of very high probability (≧ 0.95) to
be reliable.

According to theOOA, all the possible trials are estimated
roughly and ranked quickly. The feasible solution domain
is divided into several different parts, and the possible
optimum solution located in subdomainmight be effortlessly
recognized. The optimum solution can then be obtained
while all the calculation efforts are focused on searching the
possible subdomain. A crudemodel should first be employed
to estimate and rank the solution, and the good solutions can
be separated from the bad ones.The goal softening procedure
then concentrates on the top proportion solutions in order to
find the optimum solution. Accordingly, the simulation time
can be considerably reduced.The OOA has been successfully
applied to many areas such as power system planning and
operation (Guan et al. [62]; Lin et al. [63]), electricity network
planning (Liu et al. [64]), and wafer testing (Lin and Horng
[65]).

2.5. Roulette Wheel Method. The roulette wheel method is
an important part of GA. The concept of GA is based
on the survival of the fittest by natural selection. Better
solutions have larger areas occupied on roulette wheel and
the corresponding solutions will have higher chance to be
selected. Through the procedure of not evaluating the bad
solutions, computer time can be considerably reduced.

2.6. SATSO-GWTModel. A newmodel called SATSO-GWT
is developed based on SATS-GWT, OOA, and the roulette
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Figure 1: Flowchart of SATSO-GWT. The OFV represents the objective function value, CALO represents the candidate location, and
OFVCULO represents the optimal OFV at current location.

wheel selection method. The objective function in SATSO-
GWT is to minimize the sum of square errors between the
simulated and observed concentrations and defined as

Minimize 𝑓 = 1

𝑛𝑚 × 𝑛𝑝
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∑
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𝑖𝑗,sim − 𝐶𝑖𝑗,obs)

2
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where 𝑛𝑚 is the total number of monitoring wells, 𝑛𝑝 is the
number of observed concentrationmeasured in amonitoring
well, 𝐶

𝑖𝑗,sim is the simulated concentration at 𝑗th terminated
time period in 𝑖th monitoring well, and𝐶

𝑖𝑗,obs is the observed
concentration sampled at 𝑗th terminated time period in 𝑖th
monitoring well. The value 𝑛𝑚 × 𝑛𝑝 is generally greater than
the number of unknowns (Yeh et al. [15]). Equation (4) is used
to calculate the objective function value (OFV) of the trial
solution generated by the present approach.

To use MF2K-GWT, the problem domain has to be
discretized into block-centered finite difference meshes. A
block including several finite difference meshes is then
chosen as a suspicious area which includes the contaminant
source. Figure 1 displays the flowchart of SATSO-GWTwhile
Figures 2 and 3 show the flowcharts of TS process and OOA
in SATSO-GWT, respectively. All meshes in the suspicious
area are called candidate source locations (CALOs). The first
step of SATSO-GWT is to calculate the initial OFV based
on the initial guesses of the source location, release peri-
ods, and release concentrations. The initial guess of source
location is considered as the current location (CULO) and
the initial OFV is set as the current global optimal objective
function value (OFVGO). Then SATSO-GWT generates one
CALO and 𝑁𝑆 trial solutions for the source release periods
and concentrations. For each set of trial solutions, MF2K-
GWT is employed to predict the simulated concentrations at
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Figure 2: Flowchart of TS process in SATSO-GWT.TheOFVGO represents the current global optimal OFV, OFVCULO represents the optimal
OFV at current location, GOLO represents the global optimal location, CALO represents the candidate location, and CULO represents the
current location.
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Figure 3: Flowchart of OOA in SATSO-GWT.

the monitoring points using (3) and the OFV corresponding
to each set of trial solution is then computed using (4). Each
CALO is regarded as one subdomain and the best combi-
nation of the source location and the release periods and
concentrations in the monitoring points, i.e., the least objec-
tive function value at each CULO (hereinafter referred to as
OFVCULO), is recorded at each subdomain. The TS process
(Figure 2) is then applied to determine whether the CULO
is in tabu list. If not, the CULO is moved to tabu list and
the OFVGO is replaced by OFVCULO if OFVCULO < OFVGO.
Otherwise, check the aspiration criterion (i.e., OFVCULO <

OFVGO). If OFVCULO < OFVGO, the OFVGO is replaced by
OFVCULO and the CULO is set as new CALO. On the other
hand, the global optimal location (GOLO) is assigned as new
CALO based on Metropolis criterion defined as

𝑃
𝐿
= exp(

OFVGO −OFVCULO
𝑇

) , (5)

where 𝑃
𝐿
is the acceptance probability of the trial location

and 𝑇 is the current temperature defined by SA. A random
number ranging from zero to one is generated to compare
with 𝑃

𝐿
. The GOLO will be rejected if 𝑃

𝐿
is less than the

random number.
Totally, 𝑁𝑇 CALOs are generated at each tempera-

ture; therefore, 𝑁𝑇 sets of the combinations are obtained.
After generating 3 times of CALOs, the top 5% best sub-
domains can be sifted by the OOA as demonstrated in
Figure 3 The roulette wheel method is then applied so that
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the better combinations (lower OFVs) regarding source
release information have larger probability to be chosen.
In reality, the real source location falls in the top 5% best
combinations. The algorithm is terminated when the OFVs
are less than 10−6 four times successively. Finally, the latest
updated solution, including the estimated location and the
release concentrations and time periods, is considered as the
final solution.

3. Results and Discussion

3.1. Hypothetic Contamination Site and Identification Results.
A hypothetic site shown in Figure 4 is designed to test the
applicability of SATSO-GWT for a source identification
problem. The domain of the site is divided into 27 × 27 × 4
finite difference meshes in 𝑥-, 𝑦-, and 𝑧-directions. Both
the grid width and length are 20m and the grid height
is 6m. Thus, the total length and width of the site are
both 540m, and the aquifer thickness is 24m. The site is
heterogeneous and divided into three different areas with the
hydraulic conductivities of 20m/day, 10m/day, and 30m/day
in areas I, II, and III, respectively. The aquifer porosity,
specific storage, and hydraulic gradient are 0.3, 10−4m−1,
and 0.009, respectively. The recharge rates are assumed to
be 120mm/year, 80mm/year, and 100mm/year in areas I, II,
and III, respectively, in the first 180 days. The contaminant
is assumed to be no decay and not adsorbed by the aquifer
media. The dispersion coefficients in 𝑥-, 𝑦-, and 𝑧-directions
are 40m2/day, 10m2/day, and 1m2/day, respectively.

The boundary conditions for the flow system are illustrated
in Figure 4. The slash grids represent no flow boundary.
The origin of the vertical coordinate is taken at the land
surface.The source S1 is located at coordinates (110m, 270m,
−9m) and the rate of source release (𝑄) is 1m3/day with
the concentrations of 100 ppm and 50 ppm over first and
second 180 days, respectively. There are seven unknowns
to be determined including three coordinates of the source
location and two release periods and release concentrations.
Yeh et al. [15] mentioned that the number of sampling
points should be greater than the number of unknowns.
Accordingly, eight sampling points, i.e., points A to H shown
in Figure 4, with various depths are considered. The A2
represents that the concentration measurement is sampled
from second layer below the ground surface at point A.
The concentration measurements at these sampling points
are listed in Table 1. The groundwater transport model
MF2K-GWT is utilized to generate the concentrations at
these monitoring wells and the SATSO-GWT is used to
determine the source information.

Before the source is identified, a block with 3 × 3 × 4
meshes is delineated as a suspicious area which contains the
contaminant source. Thus, there are 36 candidate sources
within the block and one of the candidates is the real source.
The lower and upper bounds of the release period are taken
as 0 day and 400 days, respectively, and the lower and upper
bounds of the release concentration are considered 0 ppmand
200 ppm, respectively. If the measures of release period and
concentration have the accuracy to the first decimal place,
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Table 1: The sampling points and concentration measurements.

Sampling point
Concentration
measurement

(ppm)
A2 2.231𝐸 − 01

B1 1.536𝐸 − 01

C2 1.930𝐸 − 01

D4 1.215𝐸 − 01

E3 6.441𝐸 − 02

F2 1.195𝐸 − 01

G1 1.675𝐸 − 01

H3 1.213𝐸 − 01

the feasible solution domain will be 36 × 40002× 20002. Such
a solution space is very huge and poses a large computa-
tional burden to find the contaminant source information.
Therefore, the OOA is adopted in SATSO-GWT in the
identification process. Once the SATSO-GWT generates the
CALOs for 3 times, the top 5% combinations with different
source locations can be sifted. To statemore specifically, there
are 2 best locations (36 × 0.05 = 1.8 ≈ 2) that can be
sifted. The obtained results of the sifted locations from eight
different initial locations are listed in Table 2 indicating that
the real source location (110m, 270m, −9m) already falls
within the top 2 best locations and, thus, the solution space
is largely reduced. Note that the parameters 𝑁𝑆, 𝑁𝑇, initial
temperature, and reduce temperature factor are taken as 20,
10, 0.5, and 0.7, respectively, in this case study.

Table 3 shows the identification results of the case study
using SATS-GWT and SATSO-GWT. The same SA param-
eter values and initial location, i.e., at coordinates (290m,
130m, −21m) are used for these two approaches. The SATS-
GWT obtains correct source location but has deviated results
for the release period and concentration. In contrast, the
information of contaminant source is accurately identified
by SATSO-GWT. Moreover, SATS-GWT takes about 1 day
and 10 hours to obtain the result while SATSO-GWT only
consumes about 12 hours and 36 minutes performing on
a personal computer with Intel 3.3 G E3-1230v2 CPU and
16GBRAM. From this table, the performance of SATSO-
GWT is much superior to that of SATS-GWT.

To further assess the performance of SATSO-GWT, the
following three cases are considered: (1) different initial
guesses of source location; (2) various measurement errors
in the monitoring points; and (3) a large suspicious area with
various source release periods and concentrations.

3.2. Different Initial Guesses of Source Location. In this case,
eight scenarios with different initial locations are considered.
Eight different source locations, situated at the corners of the
area, are chosen to investigate the influence of different initial
locations. Table 4 shows the identified results of the source
location as well as two release periods and concentrations.
Figure 5 displays the temporal concentration distribution
of eight scenarios observed at monitoring well A2. The
predicted results exhibit excellentmatchwith the observation

Estimated concentration of 8 scenarios at A2
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Figure 5: The temporal concentration distribution at monitor well
A2 with 8 different initial guesses of source location.

data within 360 days. In these eight cases, the estimated
source locations are all correct. In addition, the estimated
release periods and concentrations are fairly good when
compared with the real release data.

3.3.Measurement Errors in theMonitoring Points. Thesecond
case is to assess the performance of SATSO-GWT when
the simulated sampling concentrations containmeasurement
errors. The disturbed observed concentrations are expressed
as (Mahar and Datta [2])

𝐶
󸀠

𝑖,obs = 𝐶𝑖,obs × (1 + Er × RD
1
) , (6)

where 𝐶󸀠
𝑖,obs is the disturbed observed concentration, Er is

defined as the level of measurement error, and RD
1
is a

random standard normal deviate generated by the routine
RNNOF of IMSL [66]. Three different values of Er, 1%, 5%,
and 10%, are considered for this problem.

The predicted results shown in Table 5 indicate that the
source locations of those three scenarios are all correctly
identified. When Er = 1%, the optimal OFV is 0.490 ×
10−7. As Er = 10%, the OFV is 13.04 × 10−7. The predicted
release periods and concentrations are slightly deviated from
the target values in scenario 3 but still are acceptable. Figure 6
shows the temporal concentration at monitoring well A2
predicted by SATSO-GWT. The results indicate that even
though the sampling concentrations contain measurement
errors whose level is up to 10%, the proposed SATSO-GWT
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Table 2: Results of 8 scenarios for sifting the top two locations.

Scenario

Initial guess
value Sifted results

Guess source
location
(m)

First source
location
(m)

Current
objective

function value
(×10−5)

Second source
location
(m)

Current
objective

function value
(×10−5)

1 (250, 90, −3) (110, 270, −9) 2.408 (90, 270, −9) 7.418
2 (250, 90, −21) (110, 270, −9) 2.068 (90, 270, −9) 8.217
3 (250, 130, −3) (90, 270, −9) 3.628 (110, 270, −9) 5.354
4 (250, 130, −21) (110, 270, −9) 0.503 (90, 270, −9) 13.106
5 (290, 90, −3) (90, 270, −9) 1.739 (110, 270, −9) 3.448
6 (290, 90, −21) (110, 270, −9) 0.345 (90, 270, −9) 2.393
7 (290, 130, −3) (110, 270, −9) 1.977 (90, 270, −9) 5.492
8 (290, 130, −21) (90, 270, −9) 2.582 (110, 270, −9) 3.276
Note that the real source is located at (110m, 270m, −9m).

Table 3: The identified results using SATS-GWT and SATSO-GWT.

Methodology

Results

Source location
(m)

First release
period
(day)

First release
concentration

(ppm)

Second release
period
(day)

Second release
concentration

(ppm)
Computer time

Objective
function value

(×10−9)

SATS-GWT (110, 270, −9) 192.18 144.60 49.47 200.27 1 day
10 hours 1057.7

SATSO-GWT (110, 270, −9) 180.19 99.90 179.58 50.02 12 hours
36 minutes 4.145

Table 4: Results of 8 scenarios with different initial guesses of source location.

Scenario

Initial guess
value Results

Objective
function value

(×10−9)
Guess source
location
(m)

Source location
(m)

First release
period
(day)

First release
concentration

(ppm)

Second release
period
(day)

Second release
concentration

(ppm)
1 (250, 90, −3) (110, 270, −9) 178.90 100.14 180.04 49.99 6.035
2 (250, 90, −21) (110, 270, −9) 180.25 99.65 179.41 49.92 6.053
3 (250, 130, −3) (110, 270, −9) 177.38 100.91 180.14 50.01 7.483
4 (250, 130, −21) (110, 270, −9) 179.86 99.99 180.11 49.97 2.031
5 (290, 90, −3) (110, 270, −9) 180.01 99.92 180.10 50.07 2.165
6 (290, 90, −21) (110, 270, −9) 180.14 99.80 179.55 49.91 4.520
7 (290, 130, −3) (110, 270, −9) 179.38 99.76 178.53 49.78 9.155
8 (290, 130, −21) (110, 270, −9) 180.19 99.90 179.58 50.02 4.145
Note that the real source is located at (110m, 270m, −9m); real release concentration is 100 ppm over the first 180 days and 50 ppm over the second 180 days.

Table 5: Results of three scenarios when observed concentrations have measurement errors with different levels.

Scenario Error level
(%)

Results
Optimal objective
function value

(×10−7)
Source location

(m)

First release
period
(day)

First release
concentration

(ppm)

Second release
period
(day)

Second release
concentration

(ppm)
1 1 (110, 270, −9) 179.55 99.77 177.14 49.29 0.490
2 5 (110, 270, −9) 185.51 98.27 174.49 46.29 3.452
3 10 (110, 270, −9) 189.21 95.04 168.23 43.48 9.835
Note that the real source is located at (110m, 270m, −9m); real release concentration is 100 ppm over the first 180 days and 50 ppm over the second 180 days.
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Figure 6: The temporal concentration distribution at monitor well
A2 with 3 measurement error levels.

still gives fairly good results in reconstructing the release
history and identifying the source location.

3.4. Larger Suspicious Area with Six Release Periods. In
Section 3.1, it has been shown that SATSO-GWT can reduce
the feasible solution domain based on OOA for a complex
source information identification problem.Thus, the SATSO-
GWT is applied to the case of a large suspicious area which
has 100 candidate source locations (5 rows × 5 columns
× 4 layers) delineated by the dashed lines as shown in
Figure 7.This case considers six source release periods within
a year and each period has an interval of two months.
The concentrations in those six release periods are assumed
to be 100 ppm, 200 ppm, 150 ppm, 50 ppm, 100 ppm, and
70 ppm. Therefore, there are fifteen unknowns involved in
this case (i.e., three coordinates of the source location, six
release periods, and six release concentrations).Thus, sixteen
sampling data from wells A to H at 360 days and 390 days are
considered and listed in Table 6.

The parameter 𝑁𝑇 associated with the generated loca-
tions by TS process at each temperature is taken as 25
to accommodate larger candidate locations. Because the
number of the total CALOs is modified as 100, there are
5 best locations (5%) chosen by OOA. The upper part of
Table 7 displays the top 5 best locations and the rank number
1 of sifted location exactly matches the real one. In Table 7,
SATSO-GWT gives correct identification of source location
and the predicted source release history is very close to
the target one. This case has fifteen unknowns and the
SATSO-GWT takes about 12 hours to obtain the results when

Table 6: The sampling points and concentration measurements in
third case.

Sampling point Concentration measurement (ppm)
At 360 (day) At 390 (day)

A2 3.467𝐸 − 01 2.981𝐸 − 01

B1 2.124𝐸 − 01 1.997𝐸 − 01

C2 2.882𝐸 − 01 2.496𝐸 − 01

D4 1.586𝐸 − 01 1.553𝐸 − 01

E3 9.521𝐸 − 02 9.418𝐸 − 02

F2 1.710𝐸 − 01 1.608𝐸 − 01

G1 2.103𝐸 − 01 1.998𝐸 − 01

H3 1.671𝐸 − 01 1.587𝐸 − 01

performing on a personal computer with Intel 3.3 G E3-
1230v2 CPU and 16GB RAM. Obviously, the SATSO-GWT
works very well in identifying the source information even
when the suspicious area is large and the release pattern is
rather irregular.

4. Concluding Remarks

A novel identification approach, SATSO-GWT, is developed
to combine the model MD2K-GWT for simulating the
groundwater flow and pollutant transport MD2K-GWTwith
heuristic optimization approaches such as SA, TS, OOA,
and roulette wheel method. This new approach is capable
of simultaneously identifying the pollution source location
and release history in a 3D, heterogeneous, and transient
groundwater flow system. A hypothetic contamination site
consisted of 27 × 27 × 4 finite difference meshes along
with a suspicious area of having 3 × 3 × 4 meshes is
designed to assess the capability of the present approach.The
site is divided into three different areas and each area has
different hydraulic conductivity and surface recharge rate.
The contaminant source is continuously released over two
periods with different concentrations. The present approach
successfully identifies the source location and corresponding
release periods and concentrations. Moreover, the results
obtained from the same problem indicate that the perfor-
mance of SATSO-GWT is much superior to that of SATS-
GWT.

Three cases are designed to further assess the perfor-
mance of SATSO-GWT.These are (1) different initial guesses
of source location; (2) various measurement errors in the
monitoring points; and (3) a large suspicious area with var-
ious source release periods and concentrations. The SATSO-
GWT gives exact identification in source location and accu-
rate predictions of release periods and concentrations in eight
scenarios with different initial guess locations. In addition,
the SATSO-GWT gives fairly good results when the sampling
concentration having measurement errors, even when the
error level is up to 10%. For a large suspicious area with six
release periods and concentrations, the SATSO-GWT can
also give excellent results which demonstrate its capability of
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Figure 7: A larger suspicious areas delineated by the broken lines with totally 100 suspicious areas (5 rows × 5 columns × 4 layers). The
hydrogeological conditions of the flow system are the same as those shown in Figure 4.

Table 7: Results of the larger suspicious areas with six release periods and concentrations.

(a)

Initial guess source location Sifted results Real source location
(m)Rank Sifted location (m) Current objective function value (×10−4)

(150, 310, −21)

1 (110, 270, −9) 0.371

(110, 270, −9)
2 (90, 270, −9) 3.277
3 (130, 270, −9) 4.650
4 (90, 270, −3) 10.61
5 (90, 250, −9) 12.77

(b)

Final result

Estimated
source
location

First release
period
(day)

Second
release period

(day)

Third release
period
(day)

Fourth
release period

(day)

Fifth release
period
(day)

Sixth release
period
(day)

Optimal
objective

function value
(×10−7)

Computer
time

(110, 270, −9) 60.012 56.509 66.845 55.070 61.556 60.587
First release
concentra-

tion
(ppm)

Second
release con-
centration
(ppm)

Third release
concentra-

tion
(ppm)

Fourth
release con-
centration
(ppm)

Fifth release
concentra-

tion
(ppm)

Sixth release
concentra-

tion
(ppm)

105.53 194.59 147.29 56.852 97.929 70.829 8.191 12 hours
Note that the real release concentration is 100 ppm over the first 60 days, 200 ppm over the second 60 days, 150 ppm over the third 60 days, 50 ppm over
the fourth 60 days, 100 ppm over the fifth 60 days, and 70 ppm over the sixth 60 days.
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dealing with complex optimization problems. The SATSO-
GWT has been shown to be an efficient tool in solving the
complicated groundwater source identification problems.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This study was partly supported by the Ministry of Science
and Technology under the Grants NSC 101-2221-E-009-105-
MY2 and 102-2221-E-009-072-MY2. The authors would like
to thank the editor and two anonymous reviewers for their
valuable and constructive comments.

References

[1] J. Atmadja and A. C. Bagtzoglou, “State of the art report
on mathematical methods for groundwater pollution source
identification,” Environmental Forensics, vol. 2, no. 3, pp. 205–
214, 2001.

[2] P. S. Mahar and B. Datta, “Optimal identification of ground-
water pollution sources and parameter estimation,” Journal of
Water Resources Planning and Management, vol. 127, no. 1, pp.
20–29, 2001.

[3] B. Datta, “Discussion of “Identification of contaminant source
location and release history in aquifers” by Mustafa M. Aral,
Jiabao Guan, and Morris L. Maslia,” Journal of Hydrologic
Engineering, vol. 7, no. 5, pp. 399–400, 2002.

[4] R. M. Singh and B. Datta, “Artificial neural network modeling
for identification of unknown pollution sources in groundwater
with partially missing concentration observation data,” Water
Resources Management, vol. 21, no. 3, pp. 557–572, 2007.

[5] Z. Li and X.-Z. Mao, “Global multiquadric collocation method
for groundwater contaminant source identification,” Environ-
mental Modelling and Software, vol. 26, no. 12, pp. 1611–1621,
2011.

[6] M. Jha and B. Datta, “Three-dimensional groundwater contam-
ination source identification using adaptive simulated anneal-
ing,” Journal ofHydrologic Engineering, vol. 18, no. 3, pp. 307–317,
2013.

[7] A. Y. Sun, “A robust geostatistical approach to contaminant
source identification,” Water Resources Research, vol. 43, no. 2,
Article IDW02418, 2007.

[8] S. M. Gorelick, B. Evans, and I. Remson, “Identifying sources
of groundwater pollution: an optimization approach,” Water
Resources Research, vol. 19, no. 3, pp. 779–790, 1983.

[9] J. C. Hwang and R. M. Koerner, “Groundwater pollution source
identification from limited monitoring well data. Part 1. Theory
and feasibility,” Journal of Hazardous Materials, vol. 8, no. 2, pp.
105–119, 1983.

[10] National Research Council, Groundwater Models—Scientific
and Segulatory Applications, National AcademyPress,Washing-
ton, DC, USA, 1990.

[11] A. C. Bagtzoglou, D. E. Dougherty, and A. F. B. Tompson,
“Application of particle methods to reliable identification of
groundwater pollution sources,”Water Resources Management,
vol. 6, no. 1, pp. 15–23, 1992.

[12] A. Sciortino, T. C. Harmon, and W. W.-G. Yeh, “Inverse
modeling for locating dense nonaqueous pools in groundwater
under steady flow conditions,”Water Resources Research, vol. 36,
no. 7, pp. 1723–1735, 2000.

[13] G. Mahinthakumar and M. Sayeed, “Hybrid genetic
algorithm—local search methods for solving groundwater
source identification inverse problems,” Journal of Water
Resources Planning and Management, vol. 131, no. 1, pp. 45–57,
2005.

[14] E. Milnes and P. Perrochet, “Simultaneous identification of
a single pollution point-source location and contamination
time under known flow field conditions,” Advances in Water
Resources, vol. 30, no. 12, pp. 2439–2446, 2007.

[15] H. D. Yeh, T. H. Chang, and Y. C. Lin, “Groundwater con-
taminant source identification by a hybrid heuristic approach,”
Water Resources Research, vol. 43, no. 9, 2007.

[16] B. Datta, D. Chakrabarty, and A. Dhar, “Simultaneous identifi-
cation of unknown groundwater pollution sources and estima-
tion of aquifer parameters,” Journal of Hydrology, vol. 376, no.
1-2, pp. 48–57, 2009.

[17] M. T. Ayvaz, “A linked simulation-optimization model for solv-
ing the unknown groundwater pollution source identification
problems,” Journal of Contaminant Hydrology, vol. 117, no. 1–4,
pp. 46–59, 2010.

[18] B. J. Wagner, “Simultaneous parameter estimation and contam-
inant source characterization for coupled groundwater flow and
contaminant transport modelling,” Journal of Hydrology, vol.
135, no. 1–4, pp. 275–303, 1992.

[19] T. H. Skaggs and Z. J. Kabala, “Recovering the release history of
a groundwater contaminant,”Water Resources Research, vol. 30,
no. 1, pp. 71–79, 1994.

[20] T. H. Skaggs and Z. J. Kabala, “Recovering the history
of a groundwater contaminant plume: method of quasi-
reversibility,”Water Resources Research, vol. 31, no. 11, pp. 2669–
2673, 1995.

[21] T. H. Skaggs and Z. J. Kabala, “Limitations in recovering
the history of a groundwater contaminant plume,” Journal of
Contaminant Hydrology, vol. 33, no. 3-4, pp. 347–359, 1998.

[22] A. D. Woodbury and T. J. Ulrych, “Minimum relative entropy
inversion: theory and application to recovering the release his-
tory of a groundwater contaminant,”Water Resources Research,
vol. 32, no. 9, pp. 2671–2681, 1996.

[23] M. F. Snodgrass and P. K. Kitanidis, “A geostatistical approach to
contaminant source identification,” Water Resources Research,
vol. 33, no. 4, pp. 537–546, 1997.

[24] A. Woodbury, E. Sudicky, T. J. Ulrych, and R. Ludwig, “Three-
dimensional plume source reconstruction using minimum
relative entropy inversion,” Journal of Contaminant Hydrology,
vol. 32, no. 1-2, pp. 131–158, 1998.

[25] L. Chongxuan and W. P. Ball, “Application of inverse methods
to contaminant source identification from aquitard diffusion
profiles at Dover AFB, Delaware,”Water Resources Research, vol.
35, no. 7, pp. 1975–1985, 1999.

[26] R.M. Neupauer and J. L.Wilson, “Adjointmethod for obtaining
backward-in-time location and travel time probabilities of
a conservative groundwater contaminant,” Water Resources
Research, vol. 35, no. 11, pp. 3389–3398, 1999.

[27] R. M. Neupauer and J. L. Wilson, “Adjoint-derived location and
travel time probabilities for a multidimensional groundwater
system,”Water Resources Research, vol. 37, no. 6, pp. 1657–1668,
2001.



12 Mathematical Problems in Engineering

[28] R. M. Neupauer, B. Borchers, and J. L. Wilson, “Comparison
of inverse methods for reconstructing the release history of a
groundwater contamination source,”Water Resources Research,
vol. 36, no. 9, pp. 2469–2475, 2000.

[29] J. Atmadja and A. C. Bagtzoglou, “Pollution source identifica-
tion in heterogeneous porousmedia,”Water Resources Research,
vol. 37, no. 8, pp. 2113–2125, 2001.

[30] A. C. Bagtzoglou and J. Atmadja, “TheMarching-Jury backward
beam equation and quasi-reversibility methods for hydrologic
inversion: application to contaminant plume spatial distribu-
tion recovery,”Water Resources Research, vol. 39, no. 2, pp. 1038–
1051, 2003.

[31] I. Butera andM. G. Tanda, “A geostatistical approach to recover
the release history of groundwater pollutants,”Water Resources
Research, vol. 39, article 1372, no. 12, 2003.

[32] S. Shlomi and A. M. Michalak, “A geostatistical framework for
incorporating transport information in estimating the distri-
bution of a groundwater contaminant plume,”Water Resources
Research, vol. 43, no. 3, Article IDW03412, 2007.

[33] N. M. Muhammad, K.-Y. Kim, C.-H. Huang, and S. Kim,
“Groundwater contaminant boundary input flux estimation in a
two-dimensional aquifer,” Journal of Industrial and Engineering
Chemistry, vol. 16, no. 1, pp. 106–114, 2010.

[34] A.D.Koussis, K.Mazi, S. Lykoudis, andA.A.Argiriou, “Reverse
flood routing with the inverted Muskingum storage routing
scheme,” Natural Hazards and Earth System Science, vol. 12, no.
1, pp. 217–227, 2012.

[35] M. M. Aral and J. Guan, “Genetic algorithms in search of
groundwater pollution sources,” Advances in Groundwater Pol-
lution Control and Remediation, vol. 9, pp. 347–369, 1996.

[36] A.C. Bagtzoglou, “On the nonlocality of reversible-timeparticle
tracking methods,” Environmental Forensics, vol. 4, no. 3, pp.
215–225, 2003.

[37] A. C. Bagtzoglou and J. Atmadja, “Mathematical methods for
hydrologic inversion: the case of pollution source identifica-
tion,” inWater Pollution, vol. 3 ofTheHandbook of Environmen-
tal Chemistry, pp. 65–96, Springer, Berlin, Germany, 2005.

[38] R. M. Neupauer and R. Lin, “Identifying sources of a conser-
vative groundwater contaminant using backward probabilities
conditioned on measured concentrations,” Water Resources
Research, vol. 42, no. 3, Article IDW03424, 2006.

[39] A. Y. Sun, S. L. Painter, and G. W. Wittmeyer, “A constrained
robust least squares approach for contaminant release history
identification,” Water Resources Research, vol. 42, no. 4, Article
IDW04414, 2006.

[40] A. Y. Sun, S. L. Painter, andG.W.Wittmeyer, “A robust approach
for iterative contaminant source location and release history
recovery,” Journal of Contaminant Hydrology, vol. 88, no. 3-4,
pp. 181–196, 2006.

[41] R. Ababou, A. C. Bagtzoglou, andA.Mallet, “Anti-diffusion and
source identification with the “RAW” scheme: a particle-based
censored randomwalk,” Environmental FluidMechanics, vol. 10,
no. 1, pp. 41–76, 2010.

[42] I. Butera, M. G. Tanda, and A. Zanini, “Simultaneous identifi-
cation of the pollutant release history and the source location in
groundwater by means of a geostatistical approach,” Stochastic
Environmental Research and Risk Assessment, vol. 27, no. 5, pp.
1269–1280, 2013.

[43] M. M. Aral, J. Guan, and M. L. Maslia, “Identification of
contaminant source location and release history in aquifers,”
Journal of Hydrologic Engineering, vol. 6, no. 3, pp. 225–234,
2001.

[44] R. M. Neupauer and J. L. Wilson, “Backward probability
model usingmultiple observations of contamination to identify
groundwater contamination sources at the Massachusetts Mil-
itary Reservation,” Water Resources Research, vol. 41, no. 2, pp.
1–14, 2005.

[45] Y. C. Ho, R. S. Sreenivas, and P. Vakili, “Ordinal optimization of
DEDS,” Discrete Event Dynamic Systems, vol. 2, no. 1, pp. 61–88,
1992.

[46] Y. Ho andM. E. Larson, “Ordinal optimization approach to rare
event probability problems,” Discrete Event Dynamic Systems:
Theory and Applications, vol. 5, no. 2-3, pp. 281–301, 1995.

[47] T. W. E. Lau and Y.-C. Ho, “Universal alignment probabilities
and subset selection for ordinal optimization,” Journal of Opti-
mization Theory and Applications, vol. 93, no. 3, pp. 455–489,
1997.

[48] Y.-C. Ho, “An explanation of ordinal optimization: soft comput-
ing for hard problems,” Information Sciences, vol. 113, no. 3-4, pp.
169–192, 1999.

[49] M. C. Fu, “Optimization for simulation: theory vs. practice,”
INFORMS Journal on Computing, vol. 14, no. 3, pp. 192–215,
2002.

[50] L. F. Konikow, D. J. Goode, and G. Z. Hornberger, “A three-
dimensional method of characteristics solute-transport model
(MOC3D),” U.S. Geological SurveyWater-Resources Investiga-
tions Report 96-4267, 1996.

[51] A. W. Harbaugh, E. R. Banta, M. C. Hill, and M. G. McDon-
ald, “MODFLOW-2000, the U.S. Geological survey modular
ground-water model—user guide to modularization concepts
and the ground-water flow process,” U.S. Geological Survey,
Open File Rep, 2000.

[52] W.H. Press, B. P. Flannery, S. A. Teukolsky, andW. T. Vetterling,
Numerical Recipes, Cambridge University Press, Cambridge,
UK, 2nd edition, 1992.

[53] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, “Equation of state calculations by fast
computing machines,” The Journal of Chemical Physics, vol. 21,
no. 6, pp. 1087–1092, 1953.

[54] Y.-C. Huang and H.-D. Yeh, “The use of sensitivity analysis in
on-line aquifer parameter estimation,” Journal of Hydrology, vol.
335, no. 3-4, pp. 406–418, 2007.

[55] H.-D. Yeh and Y.-J. Chen, “Determination of skin and aquifer
parameters for a slug test with wellbore-skin effect,” Journal of
Hydrology, vol. 342, no. 3-4, pp. 283–294, 2007.

[56] H. Yeh, Y. Lin, and Y. Huang, “Parameter identification for
leaky aquifers using global optimizationmethods,”Hydrological
Processes, vol. 21, no. 7, pp. 862–872, 2007.

[57] H. Yeh and Y. Lin, “Pipe network system analysis using
simulated annealing,” Journal of Water Supply: Research and
Technology—AQUA, vol. 57, no. 5, pp. 317–327, 2008.

[58] Y.-C. Lin and H.-D. Yeh, “Identifying groundwater pumping
source information using optimization approach,”Hydrological
Processes, vol. 22, no. 16, pp. 3010–3019, 2008.

[59] F. Glover, “Future paths for integer programming and links to
artificial intelligence,”Computers &Operations Research, vol. 13,
no. 5, pp. 533–549, 1986.

[60] C. Zheng and P. Wang, “Parameter structure identification
using tabu search and simulated annealing,” Advances in Water
Resources, vol. 19, no. 4, pp. 215–224, 1996.

[61] C. Tung and C. Chou, “Pattern classification using tabu search
to identify the spatial distribution of groundwater pumping,”
Hydrogeology Journal, vol. 12, no. 5, pp. 488–496, 2004.



Mathematical Problems in Engineering 13

[62] X. Guan, Y. C. Ho, and F. Lai, “An ordinal optimization based
bidding strategy for electric power suppliers in the daily energy
market,” IEEE Transactions on Power Systems, vol. 16, no. 4, pp.
788–797, 2001.

[63] S. Lin, Y. Ho, and C. Lin, “An ordinal optimization theory-based
algorithm for solving the optimal power flow problem with
discrete control variables,” IEEE Transactions on Power Systems,
vol. 19, no. 1, pp. 276–286, 2004.

[64] Y. Liu, J. Chen, and M. Xie, “Distribution network planning
based on the ordinal optimization theory,” Automation of
Electric Power Systems, vol. 30, no. 22, pp. 21–24, 2006.

[65] S.-Y. Lin and S.-C. Horng, “Application of an ordinal optimiza-
tion algorithm to the wafer testing process,” IEEE Transactions
on Systems, Man, and Cybernetics A: Systems and Humans, vol.
36, no. 6, pp. 1229–1234, 2006.

[66] IMSL, Fortran Library User’s Guide Gtat/Library, vol. 2, Visual
Numerics, Houston, Tex, USA, 2003.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


