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ABSTRACT

Motivation: Recently, the concept of the constrained
sequence alignment was proposed to incorporate the know-
ledge of biologists about structures/functionalities/consensuses
of their datasets into sequence alignment such that the user-
specified residues/nucleotides are aligned together in the
computed alignment. The currently developed programs use
the so-called progressive approach to efficiently obtain a con-
strained alignment of several sequences. However, the kernels
of these programs, the dynamic programming algorithms for
computing an optimal constrained alignment between two
sequences, run in O(yn?) memory, where y is the number
of the constraints and n is the maximum of the lengths of
sequences. As aresult, such a high memory requirement limits
the overall programs to align short sequences only.

Results: We adopt the divide-and-conquer approach to
design a memory-efficient algorithm for computing an optimal
constrained alignment between two sequences, which greatly
reduces the memory requirement of the dynamic program-
ming approaches at the expense of a small constant factor
in CPU time. This new algorithm consumes only O(an) space,
where « is the sum of the lengths of constraints and usually
a < n in practical applications. Based on this algorithm, we
have developed a memory-efficient tool for multiple sequence
alignment with constraints.

Availability: http://genome.life.nctu.edu.tw/MUSICME
Contact: cllu@mail.nctu.edu.tw

1 INTRODUCTION

Multiplesequenceaignment (MSA) isoneof thefundamental
problems in computational molecular biology that have been
studied extensively, because it is a useful tool in the phylo-
genetic analyses among various organisms, the identification
of conserved motifs and domains in a group of related pro-
teins, the secondary and tertiary structure prediction of a
protein (or RNA), and so on (Carrillo and Lipman, 1988; Chan
etal., 1992; Gusfield, 1997; Nicholaset al., 2002; Notredame,
2002). Moreover, MSA is one of the most challenging
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problems in computational molecular biology because it has
been shown to be NP-complete under the consideration of
sum-of-pairs scoring criteria (Kececioglu, 1993; Wang and
Jiang, 1994; Bonizzoni and Vedova, 2001), which means
that it seems to be hard to design an efficient algorithm for
finding the mathematically optimal alignment. Hence, some
approximate methods (Gusfield, 1993; Pevzner, 1992; Bafna
et al., 1997; Li et al., 2000) and heuristic methods (Feng
and Doolittle, 1987; Taylor, 1987; Corpet, 1988; Higgins and
Sharpe, 1988; Thompson et al., 1994) were introduced to
overcome this problem.

Recently, the concept of the constrained sequence align-
ment was proposed to incorporate the knowledge of biolo-
gists regarding the structures/functionalities/consensuses of
their datasets into sequence alignment such that the user-
specified residues/nucleotides are aligned together in the
computed alignment (Tang et al., 2003). Tang et al. (2003)
first designed a dynamic programming agorithm for finding
an optimal constrained alignment of two sequences and then
used it asakernel to devel op a constrained multiple sequence
alignment (CMSA) tool based on the progressive approach,
where each constraint considered by Tang et al. is a single
residue/nucleotide only. Their proposed algorithm for the
two sequences runs in O(yn*) time and consumes O(n*)
space, where y is the number of constrained residues and
n is the maximum lengths of the sequences. Later, this res-
ult was improved independently by two groups of researchers
to O(yn?) time and O(yn?) space using the same approach
of dynamic programming (Yu, 2003; Chin et al., 2003). In
fact, each constraint requested to be aligned together can
represent a conserved site of a protein/lDNA/RNA family
and each conserved site may consist of a short segment of
residues/nuclectides, instead of a single residue/nuclectide.
In other words, the constraint specified by the biologists
can be a fragment of several residues/nucleotides. For some
applications, biologists may further expect that some mis-
matches are allowed among the residues/nucleotides of the
columns requested to be aligned. Hence, Tsai et al. (2004)
studied such a kind of the constrained sequence alignment
and designed an algorithm of O(yn?) time and O(yn?)
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space for two sequences. The improvements and extension
above greatly increase the performances and practical usage
of the CM SA tool s developed using the progressive approach.
However, the requirement of O(yn?) memory still limits
the existing CMSA tools to align a set of short sequences,
at most several hundreds of residues/nuclectides. To align
large genomic sequences of at least several thousands of
residues/nucleotides, there is a need to design a memory-
efficient algorithm for the constrained pairwise sequence
aignment (CPSA) problem, which is the key limiting factor
relating to the applicable extent of the progressive CMSA
tools. Hence, in this paper, we adopt the so-called divide-and-
conquer approach to design amemory-efficient algorithm for
solving the CPSA problem, which runsin O(yn?) time, but
consumesonly O(an) space, whereo isthesum of thelengths
of constraints and usually « <« n in practical applications.
Based onthisalgorithm, we havefinally devel oped amemory-
efficient CMSA tool using the progressive approach. Note
that applying the divide-and-conquer approach to memory-
efficiently align two or more sequences without any con-
straints has been studied extensively (Myersand Miller, 1988;
Chao et al., 1994; Tonges et al., 1996; Stoye et al., 1997a,b;
Stoye, 1998). In contrast to the progressive approach used
here, the divide-and-conquer algorithms proposed by Stoye
etal. (Tongeset al., 1996; Stoye et al., 1997a,b; Stoye, 1998)
considered the input sequences simultaneously and heuristic-
ally compute the good, but not necessarily optimal, dividing
positions so that the resulting total MSA iscloseto an optimal
MSA of the origina segquences. In fact, many other CMSAs
have been proposed from various perspectives, even using
different approaches (Schuler et al., 1991; Depiereux and
Feytmans, 1992; Taylor, 1994; Myerset al., 1996; Notredame
etal., 2000; Thompson et al., 2000; Sammeth et al., 2003). Of
thesevarious CM SAs, it isworth mentioning that Myerset al.
(1996) obtained their CM SA by performing progressive mul-
tiplealignment under position-based constraintsthat aregiven
by users; Sammeth et al. (2003) got their CM SA by perform-
ing simultaneous multiple alignment under segment-based
constraints (as same aswe studied here) that are pre-computed
viaalocal segmented-based agorithm (Morgenstern, 1999).
We refer the reader to their papers for details.

2 PROBLEM FORMULATION

Let S = {S1,52,..., Sy} bethe set of x sequences over the
alphabet X. Then an MSA of S is arectangular matrix con-
sisting of x rows of charactersof X U {-} such that no column
consists entirely of dashes and removing dashes from row i
leaves S; forany 1 < i < x. The sum-of-pairs score (SP
score) of an MSA is defined to be the sum of the scores of
al columns, where the score of each column is the sum of
the scores of al distinct pairs of characters in the column.
In practice, the score of the pair of two dashes is usually set
to zero. Then the problem of finding an MSA of S with the

optimal SP scoreis the so-called sum-of-pairs MSA problem
(Carrilloand Lipman, 1988; Chanet al., 1992; Gusfield, 1997;
Nicholas et al., 2002; Notredame, 2002).

Let §(71, T2) denote the Hamming distance between two
subsequences Ty, and T» of egqual length, which is equa to
the number of mismatched pairs in the alignment of 73 and
T, without any gap. Given an alignment £ of S, aband is
defined as a block of consecutive columns in £ (i.e. a sub-
matrix of £). For any band £’ of L, let subseq(S;, £)
denote the subsequence of S; whose residues/nuclectides are
al in the band £/, where 1 < i < x. A subsequence
T = nty...t, issaid to appear in L if £ contains a band
L' of A columns, say m1,7m,...,m;, such that the charac-
ters of column 7;, 1 < j < A, are al equa to ¢;, or
equivalently, subseq(S;,£) = T foreach1l < i < y.
If s[subseq(s;,L), T] < A x ¢ for a given error ratio
0 < € < 1 [i.e. some mismatches are alowed between
subseq(S;,£’) and T], then T is said to approximately
appear in £. From the biological viewpoint, T can be con-
sidered as the consensus among the subsequences in £’ and
hence T is aso called as an induced consensus by the band
L'. For any two subsequences Ty and T, Ty < T is used
to denote that 71 (approximately) appears strictly before T
in £ (i.e. their corresponding bands do not overlap). Let
Q = (C1,Cy...,Cy) be an ordered set of y constraints
(i.e. subsequences), each C; = C’lclz...ci\[ with length of
Ai, wherel < i < y. Thenthe CMSA of S with respect to
is defined as an alignment £ of S inwhich all the constraints
of Q approximately appear intheorder C1 < C2 < --- < C,,
wchthatS(subseq(Si,E’j),C,-) <ijxeforall<i=<y
and1l < j <y, where L‘/j is the band of £ whose induced
consensus is C;. Given aset S of x sequences along with
an ordered set Q of y constraints and an error ratio ¢, the
so-called CMSA problem is to find a CMSA w.r.t. Q with
the optimal SP score. When the number of sequencesin S is
restricted to two (i.e. x = 2), the CMSA problemiscaled as
the CPSA problem.

3 ALGORITHM

In this section, we shall first design a memory-efficient
algorithm for solving the CPSA problem with two given
sequences A = ayap...a, and B = biby...b,, a
given ordered set @ = (Cy,C>,...,C,) of y constraints,
each C; = c’lc’zc’A with length of A;, 1 < i <
y, and a given eror threshold ¢. After that, we shal
use it as the kernel to heurigtically solve the CMSA
problem.

For any sequence T, let pref (T,l) [respectively,
suf f (T,1)] phase don’'t change denote the prefix (respect-
ively, suffix) of T with length /. For any two characters
a,b € X, leto(a,b) denotethescoreof aligninga withb. The
gap penalty adopted here is the so-called affine gap penalty
that penalizesagap of length ! with wo+1 x we, Wherewg > 0
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is the gap-open penaty and we > O is the gap-extension
penalty. For convenience, let A; = pref (A,i) = aiaz...q;,
szpref (B,j)="bibz...b; and Q; = (C1,C>,..., Cr),
wherel < i < m, 1 < j <nadl < k < y.
Let My(i, j) denote the score of an optima constrained
aignment of A; and B; w.rt. Q. Clearly, M, (m,n) is
the score of an optima constrained alignment of A and B
w.rt. Q. An alignment £ is called as a semi-constrained
alignment of A; and B; w.r.t. Q if it is a constrained align-
ment of A; and B; w.rt. ©;_; and also ends (or begins)
with a band whose induced consensus is equal to a prefix
of C; (or a suffix of C1). Ni(i,j,h) is defined to be the
score of an optimal semi-constrained alignment of A; and
Bj w.rt. € that ends with an induced consensus equal to
pref (Cy,h). Let MP (i, j) [respectively, M! (i, j)] be the
maximum scores of all constrained alignments of A; and
B; w.rt. Q that end with a deletion pair (a;, —) [respect-
ively, an insertion pair (—,b;)]. By definition, it is not
hard to derive the recurrence of My(i,j), 1<i<m and
1 < j < n, asfollows. If &k = 0, then My(@i,j) =
max(My(i — 1,j — 1) + o(ai, bj), MP G, j), Mi G, )}
If 1 < k=<y, then M@, j)= max{iMi (i@ — 1,
j=D+oai,bj), MP G, j), MG, ), NiGi, j, i)} Clearly,
Ni(i, j, M) = Mi1(i = A, j — i) + Zo<n<i,—10 (@i—p,
bjp),if 8(sUf f (A;, Ak), Cx) < A x € and §(suf f (Bj, i),
Cr) < A x € otherwise, Ni(i, j,Ar) = —oo. To simply
describe the computation of MP (i, j) and M, j), we
introduce another notation M3 (i, j), which is defined to be
the maximum score of all constrained alignments of A; and
B; w.rt. Q that end with a substitution pair (a;,b;). Let
E,?(A,-, B;) denote the alignment of A; and B; with score
MP(i, j) that ends with a deletion pair (a;,—). Let £’ be
the portion of [,,?(Ai, B;) beforethelast aligned pair (a;, —).
Then there are three possibilities when we consider the last
aligned pair of £'.

Case 1: The last aligned pair of £’ is a substitution pair.
Thenthescoreof £ is M3 (i —1, j) and (a;, —) ischarged by
agap-open penalty and a gap-extension penalty in M,?(i, -
Hence, MP (i, j) = MZ(i — 1, j) — wo — we.

Case 2: The last aligned pair of £’ isadeletion pair. Then
thescoreof £’ isM,?(i —1, j) and (¢;, —) ischarged by only
one gap-extension penalty in MP (i, j). Hence, MP (i, j) =
MPG -1, ) — we.

Case 3: Thelast aligned pair of £’ isaninsertion pair. Then
the score of £’ is M,{(i —1,j) and (a;, —) is charged by a
gap-open penalty and a gap-extension penalty in M,f’(i  J)e
Hence, MP (i, j) = MG — 1, j) — wo — we.

In summary, MP(@i,j) = max{M(i — 1,j) — wo —
we, MP(i — 1, j) — we, Mj(i — 1, ) — wo — we}. How-
ever, by including an extra/\/l,?(i —1,7) — wo — we into the
right-hand side of the above recurrence, we can reformulate

the above recurrence as MP (i, j) = max{M( — 1, ) —
wo—we, MP (i —1, j) —we}. Similar to the discussion above,
the recurrence of /\/l,ﬁ(i,j) can be derived as M,ﬂ(i,j) =
mMax{My (i, j — 1) — wo — we, ML (i, j — 1) — we}.

According to the recurrences above, we designed an
algorithm to compute M,, (m, n) and its corresponding con-
strained alignment using the technique of dynamic program-
ming asfollows. For convenience, wedepicted therecurrences
of matrices My, MP, M! and Ny for all 0 < k < y by
a three-dimensiona (3D) grid graph G, which consists of
m+1) xm+1 x(y+1) entriesand each entry (i, j, k)
consists of four nodes M, M ,? , M ,{ and NV corresponding
to M (i, j), MP @, j), MG, j) and Ni(,j, Ai), respect-
ively. Figure 1 shows the relationship of four adjacent entries
(i,j,k),(—1,j,k),G,j—1kyand (i —1,j—1,k)of G for
each fixed k.

Note that there is a directed edge, which is not shown
in Figure 1, with weight Xo<j<j,—10(aj_p,bj_y) from the
M_1 nodeof theentry (i — Ag, j — Ak, k — 1) tothe NV, node
of the entry (i, j, k). Then each path from M(0, 0) node of
entry (0,0,0) to M, (m,n) node of entry (m,n,y) corres-
ponds to a constrained aignment of A and B w.rt. Q. Asa
result, an optimal constrained alignment of A and B can be
obtained by backtracking a shortest path from M, (m, n) to
Mp(0,0) in G. It isnot hard to see that the agorithm costs
both computer time and memory in the order of O(ymn). We
call the above algorithm based on the dynamic programming
approach as CPSA-DP agorithm.

Hirschberg (1975) had developed a linear-space algorithm
for solving the longest common subseguence problem based
on the divide-and-conquer technique. Sincethen, thisstrategy
has been extended to yield a number of memory-efficient
algorithms for aligning biological sequences (Myers and
Miller, 1988; Chao et al., 1994). In this paper, we general-
ize the Hirschberg's algorithm so that it is capable of dealing
with the CPSA. As compared with others, our generalization
ismore complicated becausethe grid graph G dealt hereis3D,
instead of 2D, and the input sequences are accompanied with
several constraints that need to be considered carefully. The
central idea of our memory-efficient algorithm is to determ-
ine a middle position (imid, jmid, kmig) ON an optimal path
from Mp(0,0) to M, (m,n) in G so that we were able to
divide the constrained alignment problem into two smaller
constrained alignment problems; then these smaller con-
strained alignment problemsare continued to be dividedinthe
same manner, and finally the optimal constrained alignment
isobtained completely by merging the series of the calculated
mid-points (Fig. 2).

Before describing our algorithm, some notation must be
introduced as follows. Let A; and B; denote the suffixes
ai110i42 ... ap aNdbj1bjio. .. b, Of Aand B, respectively,
for 1l < i < mad1l < j < n Let Q denote
the ordered subset (Ci41, Cry2,...,Cy) for 1 < k < y.
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Fig. 1. Theschematic diagram of four adjacent entries of G, whereentry (i, j, k) consists of four nodes My, MP, M! and N, corresponding

to My (i, j), MP (i, j), MLG, j) and Ni(i, j, Ay), respectively.

I
I
I
I
kmid I
|
|

M(0,0)

mid

~

7 - M, (m,n)

j mid

Fig. 2. Schematic diagram of divide-and-conquer approach: two light gray areas are the reduced subproblems after middle position
(imid, Jmid» kmig) 1S determined, each of which will be further divided into two subproblems of dark gray aress.

Define My (i, j) to be the score of an optimal constrained
aignment of A; and B; w.rt. @, and define ﬂ,f(i,j)
(ﬂf (@, j) and ﬂ,ﬁ (i, ), respectively) to be the maximum
score of all constrained alignments of A; and B; w.rt.
Q. that begin with a substitution [deletion and insertion,
respectively] pair (ait+1,bj+1) [(ai+1,—) and (=, bj11),

respectively]. Let Q@ (h) = [C1,Ca, ..., Ck_1,pr ef (Cy, h)]
and Q(h) = [suff (Cx,Ax — h),Ciy1,...,Cy], Where
1 < h < . Let Ni(i,j,h) denote the score of an
optimal semi-constrained alignment £ of A; and B; w.rt.
Qi (h) that begins with a band whose induced consensus is
equal to suf f (Cx,Ar — h). Note that the recurrences for
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computing matrices My, M, , M, , M, and N can be
developed similarly as those for computing My, M7, MP,
M! and N, respectively. Clearly, MS(i,j) = MG —
Lj—1+4o0(a,bj). If§[suf f(A;,A), Ck] < A x € and
S[suf f (Bj,Ak), Ci]l < A x €, then we can reformulate the
recurrence of A asfollows: NVi(i,j, 1) = My_1G —1,j —
1) +o(ai,bj) and Ni (i, j,h) = Ni(i = 1,j —L,h — 1) +
o(a;,bj) foreachl < h < Ag.

Next, we describe our divide-and-conquer algorithm,
termed as CPSA-DC algorithm, for computing an optimal
constrained alignment between A and B w.r.t. Q as fol-
lows. The key point is to determine the middle position
(imid» jmid» kmid) Of the optimal path in G to divide the prob-
lem into two subproblems, each of which is recursively
divided into two smaller subproblems using the same way.
Given an aignment £, we use scor e(£) to denote the
score of L. Let £, (A, B) be an optimal constrained align-
ments of A and B w.r.t. © and clearly scor e[£, (A, B)] =
M, (m,n). Let img = 7% ]. Then, we partition L, (A, B)
into two parts by cutting it at the position immediately after
ai,, and we let Ly . (Aj.., Bj.,) denote the part containing
airyg A Lpy (Ainigs B jrig) denote the remaining part, where
b;.., denotes the last character in Ly, (A;..,, Bj.,) from B,
and kmig denotes the largest index so that pr ef (Ck,,,, 2mid)
(approximately) appears in Ly, (Aiq Bjmg)- Then there are
two possibilities when we consider the last aligned pair of
Litrig (Aiyg Bjy)-

Case 1: The last aligned pair of Ly, (A Bjng) 1S @
substitution pair [i.e. (diqy, bj.e)]- 1N this case, we have
M, (m,n) = score(L,(A,B)) = score(Li, (A
Bj..) + score(Ly,,(Aig Bjug)) 1T (@ingrbjig) 1S NOL
a constrained column in £, (A, B), then Ly, (Ai.q Bjwis)
is an optimal constrained aignment of A; , and Bj,
w.rt. Q.. ending with a substitution pair (a4, ;)
and Ly, (A B ) IS an optimal constrained aignment
of A;,, ad B, Wrt $,. Hence, M,(m,n) =
M3 Gimid, jmid) + Moy Gimid, Jmid)- If (dipgq, bjrq) IS@CON-
strained column in Ly, (Aivgs Bjmia)s then Liio (Aivgs Bjvia)
is an optimal semi-constrained alignment of A; ,, and B,
w.r.t. Q.. (hmid) ending with aband £’ whose induced con-
sensus is equal to pr ef (Ci.y Amid)- If Amid < Ak, then
Lig (A B jug) 1S @n optimal semi-constrained alignment
of A;,, and B, Wrt. Q. (hmd) beginning with a band
L’ whose induced consensus is equal to suf f (C,, Moy —
hmid)- Moreover, theinduced consensusof themergeof £ and
L’ haveto beequal to Cy, . Inthiscase, wehave M, (m, n) =
Nia (imids Jmids Amid) + N (imids jmids Amid)- 1f Amia =
Migr then Ly (Aig, B jwe) 1S @n optimal constrained align-
ment of A;,, and Bj, Wrt . (hmid), and hence
M, (m,n) = Nig (imids Jmids Meog) + M (imids Jmid)-

Case 2. The last aligned pair of Ly, (Aing Bjwa)
is a deletion par [i.e. (a,,,—)]. If the first aligned

pair in kaid(zimid’
My (m,n) = max{Mp (imid, jmid) + My, (imids jmid),
MP(imid, jmid) + My, (imid, jmid)}. If thefirst aligned pair
iN Ly (Aiigs B jmg) 1S @ deletion pair, then M, (m,n) =
o =D . .

M. (imid, jmid) + M, (imid, jmid) + wo. We need to com-
pensate it by adding we because the open penalty of the gap
containing a;,,, and a;,,,+1 in £, (A, B) is charged twice by
M. (imid, jmid) and m/f:md(imid, Jmid)-

In summary, the recurrence of M, (m,n) is derived as
follows:

Bj,) is not a deletion pair, then
—

M, (m,n)
o —s
M (imid, jmid) + M,;mid (imid, jmid),
M (imid, Jmid) + ﬂ’gﬂid (imid, Jmid),
=max | Mg, Gmid: jmid) + My Gimid, jmid) + wo,

M Gimid, jmid) + Mkmi(imid‘ Jmid)s
N (imids Jmid» hmid) + /\Qmid (imid, Jmid, ftmid),
Nimia mids Jmids Akmig) + Mg Gmids Jmid)

. , —D . L

When MP (imid, jmid) + M, (imid, jmid) is added to the

right-hand side, the above recurrence is not changed, but can
be reformulated as follows:

M;?mid(imid, Jmid) + Mg Gimid, jmid),

M Gimid, jmid) + m/?mid(imidx Jmid) + wo,
M3 Gimid, jmid) + Mg (imid, jmid),

Niia Gmid, jmids Bmid) + N tig Gmids jmid, Amid).,
Nigria Gmids Jmids Maig) + Mg (imid, jmid)

M, (m,n) = max

In other words, jmid, kmid and hmig are theindices j, k and
h,wherel < j <n,0<k <yandl<h < i, such that
the following maximal value is the maximum.

MP (imig, /) + MiGimid, J),

MP (imia, j) + My Gimid, J) + wo,
max § - M (imids ) + My (imid. /),

Nielimid, j, h) + N (imid, j, 1),

Ni(imid, j, M) + M (imids /)

Now, we show how to use O(an), instead of O(ymn),
memory to determine jmig, kmig and hmig, where o =
Zliksy A and o < min{m,n} intrinsicaly. In fact, asingle
matrix E of size (y +1) x (n + 1) witheachentry E(k, j) of
Ak + 4 space is enough to compute My (imid, j), M,f(imid,j),
MP (imid, j) ML (imid, j) ad N (imig, j, h), for 1 < j <n,
0 <k <yadl < h < At. When reaching the entry
(i, j, k) of 3D grid graph G, we useentry E (k, j) of E tohold
the most recently computed values of M(i, j), M,f(i,j),
MP (i, j) Mi(,j) and Ni(i, j,h), which clearly needs a
total of A, + 4 space. Notethat the old valuesin entry E (k, j)
will be moved into an extra entry, termed as V}, whose space
isequal to E (k, j), beforethey are overwritten by their newly
computed values. Beforemovingtheoldvaluesin E (k, j) into
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Fig. 3. Thegrid locationsof E(k — 1), E (k) and the valuesin V,_1 and V;, when the entry (i, j, k) of G, marked with *?, is reached for the

computation.

Vi.; however, we needtofirst move M (i —1, j —1) in Vy into
aspace, named as vy x+1, where1 < i < m. The mechanism
above will enable us to compute A (i, j, 1), which needs to
refer to My_1(i — 1,j — 1) that is kept in vx_1%; compute
Ni(, j,h) foreach 2 < h < A, which needs to refer to
Nii —1,j —1,h — 1) that iskept in Vi; compute M3 (i, j),
which needsto refer M (i —1,j — 1) that iskeptin V;; and
finally we were able to compute M (i, j). Figure 3 shows
the grid locations of E(k — 1), E(k) and the valuesin V;_1
and V; when we reach the entry (i, j, k) of G for the com-
putation, where E (k) denotes the k-th row of E. Hence, the
total needed space for computing and storing all My (imid, 7).
M Gimid, ), M Gimid, /) M (imig, /) @d Ni(imig, j, 1) is
the sum of the space of matrix E, the space of al V; and
the space of al vgy1, Wherel < j < n, 0 <k < y
and 1 < h < A, whichis equa to O(an). Similarly, the
required matrix, denoted by E, for computing all M (imid, /),
/Vl;f(imid,j),/\/lkD(imid,j)M;i(imid,j)and/\fk(imid,j,h)Sti”
needs O(an) space. Hence, the determination of jmid, kmid
and hpmig can be performed in O(an) space. The details
of CPSA-DC algorithm are described as follows. Note that
the program code of BestScoreRev is similar to that of
BestScore and henceisomitted here. Inthe codes, thevariable
E (M (imid, j)) is used to denote the value of M (imid, j)
in E(k,j) and others are analogous. The globa variables
Halk,h)=8(suf f (A; ,,h),pref (C,h), Halk,h) =
s(pref (A; ., i —h),suf f (Cx, i —h)), Hp(j, k,h) =
s(suf f (Bj,h),pref (Cy,h)), and Hp(j, k,h) = 8(pr ef
(B, A — h),suf f (Cx, \x — h)) are computed in Algorithm
BestScore so that they can be used directly in Algorithm
CPSA-DC.

Algorlthm CPSA-DC(lStaI’t! lend' jstarty Jend, kS[al'ty kend)
Input: Sequencesa;,, - - - aj,, ad b, - - - bj,, With
constraints (Cigyys - - - » Chag)

L if (igart > iend) OF (jgtart > Jjend) then
Align the nonempty sequence with spaces;
ese
imig = | St |
BestScore(isart, imids Jstart, Jend, Kstart; kend);
BestScoreRev(imid + 1, iend, jstarts jends kstarts Kend);
end if
2. max = —oo;
for j = jgat — 110 jeng dO
for k = kgat — 110 keng dO
it E(MP (imid, /) + E(Mi(imid, j)) > max then
max = E(MP (imid, /) + E (M (imid, /));
Jmid = Jj; kmid = k; type = case 1;
end if
if E(MP (imid, /) + E (M. Gimid, /) + wo > max then
max = E(MP (imig, /) + E(M; Gimid, /)) + wo;
Jmid = Jj; kmid = k; type = case 2;
end if
if E(M (imia, j) + E(Mi(imig, /) > max then
max = E (M (imid, /) + E (M (imid, /));
Jmid = J; kmid = k; type = case 3;
end if
if k> 1then
for h=1toA; — 1do

|f HA(k,h);;ﬁA(k,h) <e and
(Hg(j,k,h)er(j,k,h) < ¢) then

Ak
if EWNi(imid, j,h) + EWNk(mid, j, h)) >
max then
max = E N (imid, j, h))
+ E(Nk(imid» j, h));
Jmid = Js kmid =k; hmia = h; type=case 4,
end if
end if
end for
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if (—HARIZ'“) < e) and (—Hg(ikk'“) < e) then

if EWNk(imid, j,20)) + E(Mi(imid, ) >
max then
max = E N (imid, j, M) + E(Mi(imid, J));
Jmid = J; kmid = k; hmid = h; type = case 5;
end if
end if
end if
end for
end for
3: if type = case 1then
CPSA-DCligart; imid — 1, jstarts jmids Kstart: kmid);
Align a;,,, with a space;
CPSA-DC(imid + L, iend, jmid + 1, jend, kmid + 1, kend);
end if
if type = case 2 then
CPSA-DCl(igart; imid — 1, jstarts jmids Kstarts kmid);
Align a; ,ai,,.+1 With two spaces,
CPSA-DC(imid + 2, iend, jmid + 1, jend, kmid + 1, kend);
end if
if type = case 3then
CPSA-DCligart, imid — 1, jstarts jmid — 1. kstart, kmid);
Align Ajig with b.imud;
CPSA-DC(imid + 1,iend, jmid + 1, jend: kmid + 1, kend);
end if
if type = case4 then
CPSA-DCl(igart, imid — hmid, jstarts Jmid — Bmids Kstart,
Kmid — 1); _
A“gn Qiig—hmia+1 " Liig+re—hmig with bjmid—hmid+1 to
bjmid+}\k_hmid;
CPSA-DC(imid + Ak — hmid + 1, iend, jmid + Ak — Amid
+ 1, jends kmid + 1, kend);
end if
if type = case5then
CPSA-DCligart, imid — Ak, Jstarts jmid — Ak, kstarts
kmid -1, _
AligN @iy 341« * Qi With bjia—rt1" " Vg
CPSA-DC(imid + 1, iend, jmid + 1, jend, kmid + 1, kend);
end if
Algorithm BestScor e(isart, iends jstart: jend: Kstart, Kend)
Input: Sequencesaiy,, - - - diy,y A bj . ---b
with constraints (Ciy,,, - - - » Ckay)
1: /* Reindex */
m = igat — lend + 1, n = jgtart — Jend + 1;
Yy = kstat — kend + 1,
2: I* Initialization */
for j =0tondo
for k =0toy do
E (M (imid, J)) = E(MP (imid, j)) = —00;
if (j =0)or (k > 0) then E(M] (imid, j)) = —00;
else E(M] (imid, j)) = —wo — jwe;
if (j =0)and (k = 0) then E(My(imid, j)) = 0;
else E (M (imid, j)) = —00;

Jend

if Kk > 1then
for h = 1t0 Ax do E(Ni(imid, j, b)) = —00;
end if
end for
end for

3: /* Computation */
for i = 1tom do
for k =0toy do/* For thecaseof j =0*/
V(M (imid, 0)) = E (M (imid, 0));
if k> 1then
for h = 1to Ar do Vi (Wi (imid, O, 1))
= EWNk(imig,0,h)));
end if
E(M; (imid, 0)) = E (M (imid, 0)) = —00;
E(My(imid, 0) = E(MP (imid, 0)) = —wo — jwe;
end for
for j = 1ton do/* For thecaseof j > 0*/
for k =0toy do
temp, (Mg (imid, j)) = E(My(mid, j)) ;
if k> 1then
for h = 1to i do temp, (N (imid, j, 1))
= EWNk(imid, /. h));
end if
E(M; (imid: /) = Vi(My (imid, /)
+ 0 (Qiggti—11 b jgutj—1);
E(MP (imid, j)) = Max{E (M (imid, j))
— We, EM (imid, ) — Wo — we};
E(M (imid, j)) = MaX{E (M (imid, j — 1))
— We, E(Mk(imidaj -1

— Wo — We};
if k> 1then
for h =1to A, do
if 7 =1then
EWNi(imids J, 1)) = k=1 + 0 (@iggti—ny
bjsan"!‘j_)“k);
else

E Nk (imid, j, 1)) = Vi WNi(imid, j,h — 1))
+ 0 (@igat+i—ri+h—1s
D gt j—rith—1);
end if
end for
end if
E (M (imids j))
E(MP (imid, J)), E (M (imid, 1))
E Nk (imids j, 2k)) .
Vi M (imidy /) + 0 @igaeti-1. |’
bjs{anJrj*l)’
Vk k41 = V(Mg (imids J));
Vi (M (imids j)) = temp, (M (imid, j));
if Kk > 1then
for h = 1to X, do
Vi (imid, j, b)) = tempy (N (imids /., 1));
end for
end if

= max
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if i=mandk > 1then
for h =1tox; do
if h = 1then
if j=1 and Aigoi+i—hy #* C]Z then
Halk,h) =1, else Ha(k,h) =0;
if bjstan‘l“j*)tk * Cﬁ then
Hp(j, k,h) =1;else Hg(j,k,h) =0;
else
if j =1and @y +i-2,+n-1 # cf, then
Halk,h) =Halk,h — 1)+ 1;
if Dot j—iith—1 7 Ci then Hp(j,k, h)
=Hp(j,k,h —1) +1;
end if
end for
end if
end for
end for
end for

Now, we analyze the time-complexity of our CPSA-DC
agorithm for solving the CPSA. As shown in Figure 2,
after determining the middle position (imid, jmid, kmig) Of the
optimal path in G, we can divide the origina problem into
two subproblems, each of which further can be recursively
divided into two smaller subproblems using the same way.
Note that regardless of where the optimal path passes through
(imid, jmid, kmid), thetotal sizeof thetwo reduced subproblems
isjust half the size of the original problem, wherethe sizeis
measured by the number of entriesin G. It is not hard to see
that thetime-compl exity of determining the middle position of
each subproblem at each recursive stageis proportional to the
size of the subproblem. Let W denote the size of the original
problem (i.e. W = ymn). Then the total time-complexity of
our CPSA-DC agorithmisequal tow + % + % ... = 2w,
which is twice as high as the CPSA-DP algorithm. Using
the CPSA-DC algorithm as a kernel, we were able to design
a memory-efficient algorithm, termed CMSA-DC, for pro-
gressively aligning multiple input sequences into a CMSA
according to the branching order of a guide tree. The above
progressive method we adopted was proposed by Tang et al.
(2003). Owing to space limitation, werefer the reader to their
paper for the details of itsimplementation.

4 EXPERIMENTAL RESULTS

We use Javalanguage to implement the CM SA-DC agorithm
as a web server, called as MuSIC-ME (Memory-Efficient
tool for Multiple Sequence Alignment with Constraints).
The input of the MuSIC-ME system consists of a set of
protein/DNA/RNA sequences and a set of user-specified con-
straints, each with a fragment of residue/nuclectide that
(approximately) appears in all input sequences. The output
of MuSIC-ME isaCM SA in which the fragments of the input
sequences whose residues/nucl eotides exhibit a given degree

Table 1. Theinformation of the tested families and their constraints

Family #SEQ MAXSEQ #CON MAXCON
Protease 6 123 4 1
Globin 6 146 7 2
RNase 6 185 3 1
Kinase 6 353 10 3
CoV-3-UTR 6 422 12 2

#SEQ is the number of sequences, MAXSEQ is the maximum length of sequences,
#CON isthe number of constraintsand MAXCON isthe maximum length of constraints.

Table 2. The comparison of CPU time and memory usage between MuSIC
and MuSIC-ME

Family MuSiC MuSiC-ME

CPU Time Memory CPU Time Memory

(s (MB) C) (MB)
Protease 6 254 6 155
Globin 23 42.0 18 155
RNase 11 320 8 155
Kinase 131 160.8 96 15.9
CoV-3-UTR — — 165 174

The memory usage includes VM (Java Virtual Machine), code (MuSiC/MuSiC-ME)
and data, and MuSiC cannot deal with the case of CoV-3'-UTR due to running out of
memory.

of similarity to aconstraint are aligned together. For itsbiolo-
gical applications, we refer the reader to other related papers
(Tang et al., 2003; Tsai et al., 2004).

Inthefollowing, we eval uate our memory-efficient MuSiC-
ME system and compare its running time and memory to the
origina MuSIiC system (Tsai etal., 2004), whosekernel CPSA
algorithm was implemented by the dynamic programming
approach. We chose five families of protein/RNA sequences
as our testing datasets, each of which has been shown to
contain an ordered series of conserved motifs related to the
structures/functionalities/consensuses of the family (McClure
et al., 1994; Chin et al., 2003; Tang et al., 2003; Tsai et al.,
2004): (1) the aspartic acid protease family (Protease), (2) the
hemoglobins family (Globin), (3) the ribonuclease family
(RNase), (4) thekinasefamily (Kinase) and (5) the 3'- untrans-
lated region of the coronaviruses (CoV-3'-UTR). From each
family, we have sel ected arepresentative set of sequencesand
adopted the ordered series of conserved motifs as the con-
straints. Table 1 liststheinformation of thetested familiesand
their constraints. All testswere run with default parameterson
IBM PC with 1.26 GHz processor and 512 MB RAM under
Linux system. Table2 liststhe CPU timeand memory usage of
our experiments using MuSiC and MuSiC-ME. It shows that
the memory usage of MuSiC-ME is much smaller than that of
MusSiC for large-scale sequences, and the CPU time required
by MuSIC-ME is smaller than that required by MuSIC for
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PEDV UGG --BuuuGEEEU - - IGGU U---UGGUSE
HCOV-229E UUUGE UUG GGAU ————UAGU
TGEV GUUUUUBEGAGEARUUABUGSEL UIGIG UGUIU
MHV UBGEBGEAGARLAGUBGGGRUAGGR - —§-----
BCOV UBsErG6ARAGUBGGEERUARGG - —§-----
SARS-TW1 uuEBGuuu GAUA.AUAG ————— UIU

*
Constraints CUNNNNCA AXA G C
PEDV UAGliluc;U——ﬂ——GAGG
HCoV-229E UG- - 288 - - UAGG
TGEV AR | UUAGGAR - - GUU - - UAGA
MHV UGUAUBAAU--UAGU
BCOV UAUAGAUUAAU - - URGU
SARS-TW1 S UUURAN vzGEraUBuuuza
Constraints

Fig. 4. The partial display of the resulting CMSA of MuSiC-ME by aligning the sequences of SARS-TW1 3-UTR with those of other five

Coronaviruses.

short sequences, since we have simplified the recurrences of
the dynamic programming here.

It is worth mentioning that in MuSIC-ME system, the let-
ters representing the constraints are not just the individual
residues/nucleotides, but alsothe [lUPAC (International Union
of Pure and Applied Chemistry) codes. For example, nucleo-
tidesNand R have the meanings of any nucleotides and purine
(i.e. Aor G, respectively. This enhanced improvement will
enable the user to define more flexible constraints or combine
several small constraintswith fixed distancesinto alarge one.
For example, consider our fifth experiment above related to
the 3'-UTRs of the coronavirus sequences, including HCV-
229E (human coronavirus), PEDV (porcineepidemicdiarrhea
virus), TGEV (porcine transmissible gastroenteritis virus),
BCV (bovine coronavirus), MHV (mouse hepatitisvirus) and
SARS-TW1 (severe acute respiratory syndrome virus). All
the 12 adopted constraints appear in the fragment sequences
that were able to fold themselves into a stable pseudoknot
structure (Williams et al., 1999; Tsai et al., 2004). However,
these adopted constraints are too short to correctly align the
truly conserved motifs of sequences together, since the short
constraints occur frequently in the large genomic sequences
that led to the difficulty in identifying the true occurrences.
In fact, four pairs of two consecutive constraints appear
in the stem regions (containing no loops) of pseudoknots
and each paired constraints is separated by a non-conserved
subsequence of fixed length. Hence, we can combine each
pair of constraints into a new and larger constraint by rep-
resenting the non-conserved part with N. Consequently, we
got eight new constraints with the order of (CUNNNNC,
A AA, G C, UNNNA, GNNNNAG, UNNNA) for this
dataset. After running MuSIC-ME, a satisfied CMSA was
found (Figure 4), where the band of the resulting CMSA
corresponding to a constraint is black and its corresponding
congtraint is displayed beneath it. This resulting CMSA
implies that the fragment of SARS-TW1 between the first

band and the last band may fold into a pseudoknot structure
that is possibly involved in replicating SARS viruses (Pleij,
1994; Deiman and Pleij, 1997). In fact, this fragment is the
pseudoknot sequence of SART-TW1 that was found by Tsai
et al. (2004) using MuSIC to align the 3-UTR of SARS
TW1 with the pseudoknot sequences, instead of 3'-UTRs, of
other coronaviruses. Theinput sequences of the above experi-
ment were al so tested by Clustal W 1.82, the most commonly
used MSA tool. According to its resulting MSA as shown
in Figure 5, the fragments of all pseudoknots, including our
detected pseudoknot for SARS-TW1, were not able to align
well so that it isdifficult for us to identify the exact fragment
of the SARS-TW1 pseudoknot from this MSA.

5 CONCLUSIONS

In this paper, we designed a memory-efficient program for
performing the CM SA, which can incorporate the knowledge
of biologists about the structures/functionalities/consensuses
of their datasets into sequence alignment such that the user-
specified residues/nucleotides are aligned together. We first
used the divide-and-conquer approach to design a memory-
efficient algorithm for optimally aligning two sequences with
constraints, and then based on thisal gorithm, we used the pro-
gressive method to develop a memory-efficient tool, called
MuSIC-ME, for heuristically aligning multiple sequences
with constraints. The proposed MuSIC-ME system makes
it possible to align several large-scale protein/DNA/RNA
sequences with constraints through the desktop PC with the
limited memory. In this system, moreover, the letters allowed
to represent the constraints are the IUPAC codes, which will
enable the user to define more flexible constraints or com-
bine several small constraints with fixed distances into a
large one. It is worth mentioning that the A* agorithm, a
heuristic search method in Artificial Intelligence, has been
extensively used to time- and/or memory-efficiently solvethe
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TGEV

SARS-TW1

PEDV
HCoV-229E
TGEV

PEDV = ceeiseanssssssnanas .
HCoV-229E e e T e e e e e s s s --

MHV 0 cieeeiranaasssannns -
BCOV = e essssesaaaaaasaas .=

T e CUUGCA-CACAACGGUAAGCCAGUG

itk CUUGUA-CAGAAUGGUAAGCACGUG
MHY e eeaeaas CUCUAUCAGAAUGG--AUGUCUUGCUGUCAUAACAGAUAGAGAAGGUUGUG
......... CUCUAUCAGAAUGG--AUGUCUUGCUGCUAUAAUAGAUAGAGAAGGUUAUA

GUARIGUCAGUGCAAGARGGAUATUACCA. o o v v i v i i e v n R
GUAGUAAAGGUAUAAGARATUUGCUACUAL . - o i i e s i s r i n i ns
UAAUAGGAGGUACAAGCAACCCUATUGCA . o v vt s it i et v s e s s nans

BCoV

SARS-TW1

PEDV

HCoV-229E

TGEV

MV 1

BCoV L ———= -
SARS-TW1 v en e ennnnnnns R R -=

*

............ CUUAUA-CACAAUGGUAAGCCAGUG

Fig. 5. The partia display of the resulting MSA of Clustal W 1.82 by aligning the 3'-UTR sequences of six coronaviruses, where the bases

not in the pseudoknots are marked with dots.

general MSA problem without constraints (Ikeda and Imai,
1994, 1999; Kobayashi and Imai, 1999; Lermen and Reinert,
2000). Hence, it isinteresting to study whether or not the A*
agorithm can still be applied to the CMSA problem.
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