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Sequential pattern mining is a challenging issue because of the high complexity of 

temporal pattern discovering from numerous sequences. Current mining approaches ei-
ther require frequent database scanning or the generation of several intermediate data-
bases. As databases may fit into the ever-increasing main memory, efficient mem-
ory-based discovery of sequential patterns is becoming possible. In this paper, we pro-
pose a memory indexing approach for fast sequential pattern mining, named MEMISP. 
During the whole process, MEMISP scans the sequence database only once to read data 
sequences into memory. The find-then-index technique is recursively used to find the 
items that constitute a frequent sequence and constructs a compact index set which indi-
cates the set of data sequences for further exploration. As a result of effective index ad-
vancing, fewer and shorter data sequences need to be processed in MEMISP as the dis-
covered patterns get longer. Moreover, we can estimate the maximum size of the total 
memory required, which is independent of the minimum support threshold, in MEMISP. 
Experimental results indicate that MEMISP outperforms both GSP and PrefixSpan (gen-
eral version) without the need for either candidate generation or database projection. 
When the database is too large to fit into memory in a batch, we partition the database, 
mine patterns in each partition, and validate the true patterns in the second pass of data-
base scanning. Experiments performed on extra-large databases demonstrate the good 
performance and scalability of MEMISP, even with very low minimum support. There-
fore, MEMISP can efficiently mine sequence databases of any size, for any minimum 
support values. 
 
Keywords: data mining, sequential patterns, memory indexing, find-then-index, database 
partitioning  
 
 

1. INTRODUCTION 
 

A complicated issue in data mining is the discovery of sequential patterns, which 
involves finding frequent sub-sequences in a sequence database. For example, in the 
transactional database of an electronic store, each record may correspond to a sequence 
of a customer’s transactions ordered by transaction time. An example sequential pattern 
might be one in which customers typically bought a PC and printer, followed by the pur-
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chase of a scanner and graphics software, and then a digital camera. The mining tech-
nique is useful for many applications, including the analysis of Web traversal patterns, 
telecommunication alarms, and DNA sequences to name a few.  

Sequential pattern mining is more difficult than association rule mining because the 
patterns are formed not only by combining items but also by permuting item-sets. Enor-
mous patterns can be formed as the length of a sequence is not limited and the items in a 
sequence are not necessarily distinct. Let the size of a sequence be the total number of 
items in that sequence. Given 100 possible items in a sequence database, the number of 
potential patterns of size two is 100 ∗ 100 + (100 ∗ 99)/2, that of size three is 100 ∗ 100 ∗ 
100 + 100 ∗ [(100 ∗ 99)/2] ∗ 2 + (100 ∗ 99 ∗ 98)/(2 ∗ 3), and so on. Owing to the chal-
lenge posed by exponential possible combinations, improving the efficiency of sequen-
tial pattern mining has been the focus of recent research in data mining [2, 3, 7, 9, 11, 13, 
17, 18, 20, 21]. 

In general, the mining approaches are either of the generate-and-test framework or 
pattern-growth types for sequence databases with horizontal layouts. Typifying the for-
mer approaches [2, 8, 16], the GSP (Generalized Sequential Pattern) algorithm [16] gen-
erates potential patterns (called candidates), scans each data sequence in the database to 
compute the frequencies of candidates (called supports), and then identifies candidates 
having enough supports as sequential patterns. The sequential patterns in the current da-
tabase pass become seeds for generating candidates in the next pass. This gener-
ate-and-test process is repeated until no more new candidates are generated. When can-
didates cannot fit into memory in a batch, GSP re-scans the database to test the remain-
ing candidates that have not been loaded into memory. Consequently, GSP scans the 
on-disk database at least k times if the maximum size of the discovered patterns is k, and 
this incurs much disk reading. Despite the fact that GSP was good at candidate pruning, 
the number of candidates is still huge, which might reduce mining efficiency. 

The PrefixSpan (Prefix-projected Sequential pattern mining) algorithm [11], repre-
senting the pattern-growth methodology [4, 6, 11], finds the frequent items after scanning 
the sequence database once. The database is then projected, according to the frequent 
items, into several smaller databases. Finally, the complete set of sequential patterns is 
found by recursively growing subsequence fragments in each projected database. Two 
optimizations for minimizing disk projections were described in [11]. The bi-level pro-
jection technique, for huge databases scans each data sequence twice in the (projected) 
database so that fewer and smaller projected databases are generated. The pseudo-   
projection technique, while avoiding physical projections, maintains the sequence-  
postfix of each data sequence in a projection by means of a pointer-offset pair. However, 
according to [11], the maximum mining performance can be achieved only when the 
database size is reduced to the size accommodable by the main memory by employing 
pseudo-projection after using bi-level optimization. Although PrefixSpan successfully 
discovers patterns employing the divide-and-conquer strategy, the cost of disk I/O might 
be high due to the creation and processing of the projected sub-databases. 

Besides the horizontal layout, the sequence database can be transformed into a ver-
tical format consisting of items’ id-lists [10, 21]. The id-list of an item is a list of (se-
quence-id, timestamp) pairs indicating the occurring timestamps of the item in that se-
quence. Searching in the lattice formed by id-list intersections, the SPADE (Sequential 
PAttern Discovery using Equivalence classes) algorithm [21] completes mining in three 
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passes of database scanning. Nevertheless, additional computation time is required to 
transform a database with a horizontal layout into one with a vertical format, which will 
also require several times more storage space than the original sequence database. 

With costs falling and installed memory increasing in size, many small or medium 
sized databases can now fit into main memory. For example, a platform with 256MB of 
memory can hold a database with one million sequences and a total size of 189MB. Pat-
tern mining performed directly in memory is now possible. However, current approaches 
discover patterns either through multiple scans of the database or by means of iterative 
database projections, thereby requiring a huge number of disk operations. The mining 
efficiency can be improved if the excessive disk I/O is reduced by enhancing memory 
utilization in the discovery process. 

Here, we propose a memory-indexing approach for fast discovery of sequential pat-
terns, called MEMISP (MEMory Indexing for Sequential Pattern mining). With 
MEMISP, there is neither candidate generation nor database projection, and both CPU 
and memory utilization are high. MEMISP reads data sequences into memory in the first 
pass, which is also the sole pass, of database scanning. Through index advancement 
within an index set composed of pointers and position indices to data sequences, 
MEMISP discovers patterns by using a recursive find-then-index technique. When the 
database is too large to fit into the main memory, we can still mine patterns efficiently in 
two database scans by running MEMISP using a partition-and-validation technique dis-
cussed in section 3.3. The experiments we conducted show that MEMISP runs faster than 
both the GSP and PrefixSpan (without pseudo-projection optimization) algorithms for 
databases of any size.  

The rest of the paper is organized as follows. The problem is formulated and related 
works are reviewed in section 2. Section 3 presents the MEMISP algorithm. The experi-
mental results of mining memory-accommodable databases and extra-large databases are 
described in section 4. We discuss the performance factors of MEMISP in section 5 and 
conclude the study in section 6. 

2. PROBLEM STATEMENT AND RELATED WORK 

2.1 Problem Statement  

A sequence s, denoted by <e1e2 … en>, is an ordered set of n elements, where each 
element ei is an itemset. An itemset, denoted by (x1, x2, …, xq), is a nonempty set of q 
items, where each item xj is represented by a literal. Without loss of generality, items in 
an element are assumed to be in lexicographic order. The size of sequence s, written as |s|, 
is the total number of items in all the elements in s. Sequence s is a k-sequence if |s| = k. 
For example, <(a)(c)(a)>, <(a, c)(a)>, and <(b)(a, e)> are all 3-sequences. A sequence s = 
<e1e2 … en> is a subsequence of another sequence s' = <e1'e2' … em'> if there exist 1 ≤ i1< 
i2 < … < in ≤ m such that e1 ⊆ e i1', e2 ⊆ e i2', …, and en ⊆ e in'. Sequence s' contains se-
quence s if s is a subsequence of s'. For example, <(b, c)(c)(a, c, e)> contains <(b)(a, e)>. 

Each sequence in the sequence database DB is referred to as a data sequence. The 
support of sequence s, denoted as s.sup, is the number of data sequences containing s 
divided by the total number of data sequences in DB. Minsup is the user specified mini-
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mum support threshold. A sequence s is a frequent sequence, also called a sequential 
pattern, if s.sup ≥ minsup. Given minsup and the sequence database DB, the problem of 
sequential pattern mining is to discover the set of all sequential patterns. 

An example database DB having 6 data sequences is listed in the first column in 
Table 1. Take the data sequence C6 as an example. It has three elements (i.e., three item-
sets), the first having items b and c, the second having item c, and the third having items 
a, c, and e. The support of <(b)(a)> is 4/6 since all the data sequences, except C2 and C3, 
contain <(b)(a)>. <(a, d)(a)> is a subsequence of both C1 and C4; thus, <(a, d)(a)>.sup = 
2/6. Given minsup = 50%, <(b)(a)> is a sequential pattern while <(a, d)(a)> is not. The 
set of all sequential patterns is shown in the second column of Table 1.   

Table 1. Example sequence database DB and the sequential patterns. 

Sequence Sequential patterns (minsup=50%) 

C1 = <(a, d)(b, c)(a, e)> 

C2 = <(d, g)(c, f)(b, d)> 

C3 = <(a, c)(d)(f)(b)> 

C4 = <(a, b, c, d)(a)(b)> 

C5 = <(b, c, d)(a, c, e)(a)> 

C6 = <(b, c)(c)(a, c, e)> 

<(a)>, <(a)(a) >, <(a)(b)>, <(a, c)>, <(a, e)>, 
<(b)>, <(b)(a)>, <(b)(a, e)>, <(b)(e)>, <(b, c)>, <(b, c)(a)>, 
<(b, c)(a, e)>, <(b, c)(e)>, <(b, d)>,  
<(c)>, <(c)(a)>, <(c)(a, e)>, <(c)(b)>, <(c)(e)>, 
<(d)>, <(d)(a)>, <(d)(b)>, <(d)(c)>, 
<(e)> 

2.2 Related Works 

The problem of sequential pattern mining was first described and solved in [2] with 
the AprioriAll algorithm. In a subsequent work, the same authors proposed the GSP algo-
rithm [16], which outperformed AprioriAll. The GSP algorithm makes multiple passes 
over the database and finds frequent k-sequences at the k-th database scan. Initially, each 
item is a candidate 1-sequence for the first pass. Frequent 1-sequences are determined 
after all the data sequences in the database are checked. In succeeding passes, frequent (k 
− 1)-sequences are self-joined to generate candidate k-sequences, and then any candidate 
k-sequence having a non-frequent sub-sequence is deleted. Again, the supports of candi-
date k-sequences are counted by examining all the data sequences, and then those candi-
dates having the minimum supports become frequent sequences. This process terminates 
when there are no more candidate sequences. Owing to the generate-and-test nature of 
this approach, the number of candidates often dominates the overall mining time. How-
ever, the total number of candidates increases exponentially as minsup decreases, even 
when effective pruning techniques are used. The PSP (Prefix Sequential Pattern) algo-
rithm [8] is similar to GSP except that the placement of candidates is improved through a 
prefix tree arrangement to speed up discovery.  

The FreeSpan (Frequent pattern-projected Sequential Pattern Mining) algorithm 
was proposed to mine sequential patterns using a database projection technique [4]. 
FreeSpan first finds the frequent items after scanning the database once. The sequence 
database is then projected, according to the frequent items, into several smaller databases. 
Finally, all sequential patterns are found by recursively growing subsequence fragments 
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in each database. Based on a similar projection technique, the authors proposed the Pre-
fixSpan algorithm [11]. PrefixSpan outperforms FreeSpan in that only effective postfixes 
are projected. The bi-level and pseudo-projection techniques further enhance PrefixSpan 
by enabling it to project fewer sub-databases. However, the combined total size of the 
projected databases might be several times larger than the size of the original database. 

In addition, the SPADE algorithm finds sequential patterns using a vertical database 
layout and join-operations [21]. The vertical database layout transforms data sequences 
into items’ id-lists. The id-list of an item is a list of (sequence-id, timestamp) pairs indi-
cating the occurring timestamps of the item in that sequence-id. The list pairs are joined 
to form a sequence lattice, in which SPADE searches and discovers patterns [21]. How-
ever, transforming the naturally horizontal database into vertical requires additional 
space since a sequence-id is repeated in several items’ id-lists. The gain achieved by us-
ing the vertical approach might be diminished owing to the additional space and trans-
forming time required while mining large databases.  

In order to boost the mining performance, memory utilization should be increased to 
minimize the required number of disk operations, especially when dealing ever-larger 
sequence databases. Therefore, we propose the MEMISP algorithm, which will be de-
scribed next.  

3. MEMISP: MEMORY INDEXING FOR SEQUENTIAL 
PATTERN MINING 

In this section, the proposed method for sequential pattern mining, named MEMISP, 
is described. MEMISP uses a recursive find-then-index strategy to discover all the se-
quential patterns from in-memory data sequences. MEMISP first reads all the data se-
quences into memory and counts the supports of 1-sequences (i.e., sequences having only 
one item). Next, an index set for each frequent 1-sequence is constructed and then fre-
quent sequences are found using the data sequences indicated by the index set. In section 
3.1, the mining of an example database is use to explain how the algorithm works. Sec-
tion 3.2 will present the algorithm. The procedure for dealing with extra-large databases 
that can not fit into to the main memory space is described in section 3.3. Section 3.4 
discusses the differences between MEMISP and PrefixSpan. Some implementation issues 
are discussed in section 3.5. 

3.1 Mining Sequential Patterns with MEMISP: an Example 

Definition (Type-1 pattern, type-2 pattern, stem, P-pat)  Given a pattern ρ and a 
frequent item x in the sequence database DB, ρ′ is a type-1 pattern if it can be formed by 
appending the itemset (x) as a new element to ρ, and is a type-2 pattern if it can be 
formed by extending the last element of ρ with x. The frequent item x is called the 
stem-item (abbreviated as stem) of the sequential pattern ρ′, and ρ is the prefix pattern 
(abbreviated as P-pat) of ρ′. 

For example, given a pattern <(a)> and the frequent item b, we obtain the type-1 
pattern <(a)(b)> by appending (b) to <(a)> and the type-2 pattern <(a, b)> by extending 
<(a)> with b. <(a)> is the P-pat, and b is the stem of both <(a)(b)> and <(a, b)>. As for a 
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Fig. 1. Some index sets and the in-memory DB. 

 

: MDB 
(the in-memory DB)

: index-set

(1) <(a)>-idx

<(a,d)(b,c)(a,e)>
<(d,g)(c,f)(b,d)>
<(a,c)(d)(f)(b)>
<(a,b,c,d)(a)(b)>
<(b,c,d)(a,c,e)(a)>
<(b,c)(c)(a,c,e)>

1   • 

4   • 
4   • 

1   • 

1   • 

(2) <(a)(a)>-idx

<(a,d)(b,c)(a,e)>
<(d,g)(c,f)(b,d)>
<(a,c)(d)(f)(b)>
<(a,b,c,d)(a)(b)>
<(b,c,d)(a,c,e)(a)>
<(b,c)(c)(a,c,e)>

7   • 

5   • 
5   • 

(3) <(a)(b)>-idx

<(a,d)(b,c)(a,e)>
<(d,g)(c,f)(b,d)>
<(a,c)(d)(f)(b)>
<(a,b,c,d)(a)(b)>
<(b,c,d)(a,c,e)(a)>
<(b,c)(c)(a,c,e)>

5   • 
3   • 

6   • 

(4) <(a,c)>-idx

<(a,d)(b,c)(a,e)>
<(d,g)(c,f)(b,d)>
<(a,c)(d)(f)(b)>
<(a,b,c,d)(a)(b)>
<(b,c,d)(a,c,e)(a)>
<(b,c)(c)(a,c,e)>

2   • 

5   • 
5   • 

3   • 

(5) <(a,c)(a)>-idx

<(a,d)(b,c)(a,e)>
<(d,g)(c,f)(b,d)>
<(a,c)(d)(f)(b)>
<(a,b,c,d)(a)(b)>
<(b,c,d)(a,c,e)(a)>
<(b,c)(c)(a,c,e)>

7   • 
5   • 

(6) <(a,e)>-idx

<(a,d)(b,c)(a,e)>
<(d,g)(c,f)(b,d)>
<(a,c)(d)(f)(b)>
<(a,b,c,d)(a)(b)>
<(b,c,d)(a,c,e)(a)>
<(b,c)(c)(a,c,e)>

6   • 
6   • 

6   • 

(7) <(b)>-idx

<(a,d)(b,c)(a,e)>
<(d,g)(c,f)(b,d)>
<(a,c)(d)(f)(b)>
<(a,b,c,d)(a)(b)>
<(b,c,d)(a,c,e)(a)>
<(b,c)(c)(a,c,e)>

5   • 

2   • 
1   • 

5   • 

3   • 

1   • 

type-2 pattern <(c)(a, d)>, its P-pat is <(c)(a)>, and its stem is d. Note that the null se-
quence, denoted as <>, is the P-pat of any frequent 1-sequence. Clearly, any frequent 
k-sequence is either a type-1 pattern or a type-2 pattern of a frequent (k − 1)-sequence. 
 
Example 1: Given minsup = 50% and the DB shown in Table 1, MEMISP mines the pat-
terns through the following steps.  
 
Step 1: Read DB into memory and find frequent 1-sequences. We accumulate the 

count of every item while reading data sequences from DB into memory. The 
in-memory DB will be referred to as MDB hereafter. Hence, we have frequent 
items a (count = 5 for appearing in 5 data sequences C1, C3, C4, C5, C6), b 
(count = 6), c (count = 6), d (count = 5), and e (count = 3). All these frequent 
items are stems of the type-1 patterns with respect to the P-pat = <>. Loop 
steps 2 and 3 on each stem to find all the sequential patterns. 

Step 2: Output the sequential pattern ρ formed by the current P-pat and stem x, 
and construct the index set ρ-idx. We output a sequential pattern ρ generated 
by the current P-pat and stem x. Next, we allocate a (ptr_ds, pos) pair for each 
data sequence ds in MDB if and only if ds contains x, where ptr_ds is a pointer 
to ds and pos is the first occurring position of x in ds. The set of these (ptr_ds, 
pos) pairs is called index set ρ-idx. 

 
Take stem x = a as an example. Now, the P-pat is <>. We output the type-1 sequen-

tial pattern ρ = <(a)> and construct the index set <(a)>-idx as shown in Fig. 1-(1). For 
instance, the pos is 1 for C1 = <(a, d)(b, c)(a, e)> and 4 for C6 = <(b, c)(c)(a, c, e)>.  
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Step 3: Use index set ρ-idx and MDB to find stems with respect to P-pat = ρ. Any 
sequential pattern having the current pattern ρ as its P-pat will be identified in 
this step. Now, the ptr_ds of each (ptr_ds, pos) pair in ρ-idx points to a data 
sequence ds that contains ρ. Any item appearing after the pos position in ds 
could be a potential stem (with respect to ρ). Thus, for every ds existing in ρ-idx, 
we increase the count of such an item (an item appearing after the pos in ds) by 
one and then identify the stems having sufficiently large support counts. 

 
Let us continue with <(a)>-idx. The pos of the (ptr_ds, pos) pointing to C1 is 1. 

Only those items occurring after position 1 in C1 need to be counted. We increase the 
count of the potential stem d (for the potential type-2 pattern <(a, d)>) by one (also the 
potential stem e for <(a, e)>). We also increase the count of the potential stem b (also c, 
a, and e) for the potential type-1 pattern <(a)(b)> (<(a)(c)>, <(a)(a)>, and <(a)(e)>) by 
one. Analogously, items occurring after positions 1, 1, 4, and 4 for data sequences C3, 
C4, C5, and C6, respectively, are counted. After validating the support counts, we obtain 
stems a, b of type-1 patterns and stems c, e of type-2 patterns with respect to P-pat = 
<(a)>. Steps 2 and 3 are then recursively applied on the stems a, b, c, and e with P-pat = 
<(a)>. We continue the mining with stem a and P-pat = <(a)> as follows. 

By applying step 2, we generate and output the sequential pattern ρ = <(a)(a)>. 
Again, a new (ptr_ds, pos) pair for a data sequence ds is inserted into ρ-idx 
(<(a)(a)>-idx) if and only if ds contains ρ. While constructing <(a)(a)>-idx, we simply 
check the data sequences indicated by the current index set, i.e., <(a)>-idx, rather than 
those in MDB. Assume that a pair (ptr_ds, pos) in <(a)>-idx points to ds. The search for 
the occurring position of stem a (with respect to P-pat = <(a)>) starts from position  
pos + 1 in ds. Item a occurs at 5 in C1 and in C4, and at 7 in C5. No entry is created for 
C3 and C6 since item a cannot be found after positions 1 and 4, respectively. Hence, we 
have the new index set <(a)(a)>-idx as shown in Fig. 1-(2). Note that the current index 
set is ‘pushed’ for later mining before the new index set becomes active. 

When step 3 with <(a)(a)>-idx and MDB is applied, no stems can form additional 
sequential patterns. Therefore, mining stops, and the previous index set, i.e., <(a)>-idx, 
is popped. Mining continues with stem b. Through the creation and mining of 
<(a)(b)>-idx, pattern <(a)(b)> is output, but no more patterns are found. Next,      
<(a, c)>-idx is constructed. The result of applying step 2 with <(a, c)>-idx is the genera-
tion of <(a, c)> and discovery of the next stem a. Thus, <(a, c)>-idx is ‘pushed’, and <(a, 
c)(a)>-idx is created. 

After mining with <(a, c)(a)>-idx, which stops when nothing is found and outputs 
the pattern <(a, c)(a)>, the pattern <(a, e)> is generated during mining with <(a, e)>-idx. 
All the subsequent find-then-index processes regarding stem a with P-pat = <> now 
finish.  

By collecting the patterns found in the above process, MEMISP efficiently discovers 
all the sequential patterns.  

3.2 The MEMISP Algorithm 

The central idea of MEMISP is to utilize memory for both data sequences and indi-
ces in the mining process. A computer memory size of 256MB is very common nowa-
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days and can accommodate a sequence database having one million sequences and a size 
of 189MB as indicated by our experiments. Processing sequences in-memory is more 
efficient than disk-based processing with either multiple scans or iterative projections. 
MEMISP scans only once over the database and reads data sequences into memory dur-
ing the whole mining process. Starting with sequential patterns of size one, MEMISP 
then discovers all the frequent sequences of larger sizes recursively by searching the set 
of in-memory data sequences having common sub-sequences. Fig. 2 outlines the pro-
posed MEMISP algorithm. 

 
_______________________________________________________________________ 

Algorithm MEMISP 
Input: DB = a sequence database; minsup = minimum support. 
Output: the set of all sequential patterns. 
Method:  

1. Scan DB into MDB (the in-memory DB), find the set of all frequent items.  
2. For each frequent item x,  

(i) form the sequential pattern ρ = <(x)> and output ρ. 
(ii) call IndexSet(x, <>, MDB) to construct the index set ρ-idx.  
(iii) call Mine(ρ, ρ-idx) to mine patterns with index set ρ-idx. 

Subroutine IndexSet(x, ρ, range-set) 
Parameters: x = a stem-item; ρ = a (P-pat) pattern; range-set = the set of data sequences 

for indexing. /* If range-set is an index set, then each data sequence for indexing 
is pointed to by the ptr_ds of the (ptr_ds, pos) entry in the index set */ 

Output: index set ρ'-idx, where ρ' denotes the pattern formed by stem-item x and P-pat. 
Method:  

1. For each data sequence ds in range-set,  
   (i) if range-set = MDB then start-pos = 0; otherwise start-pos = pos. 
   (ii) starting from position (start-pos + 1) in ds, 

if the stem-item x is first found at position pos in ds, then insert a (ptr_ds, pos) 
pair into the index set ρ'-idx, where ptr_ds points to ds.  

2. Return index set ρ'-idx. 
Subroutine Mine(ρ, ρ-idx) 
Parameter: ρ = a pattern; ρ-idx = an index set. 
Method:  

1. For each data sequence ds pointed to by the ptr_ds of an entry (ptr_ds, pos) in ρ-idx, 
(i) starting from position (pose+1) to |ds| in ds, increase the support count of each 

potential stem x by one. 
2. Find the set of stems x having a larger enough support count to form a sequen-

tial pattern. 
3. For each stem x,  

(i) form the sequential pattern ρ' with P-pat ρ and stem x, output ρ'. 
(ii) call IndexSet(x, ρ, ρ-idx) to construct the index set ρ'-idx. 
(iii) call Mine(ρ', ρ'-idx) to mine patterns with index set ρ'-idx. 

_______________________________________________________________________ 

Fig. 2. Algorithm MEMISP. 
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In order to speed up the mining process by means of focused search, we construct a 
set which groups the data sequences to be checked. A data sequence ds participates in 
finding pattern ρ′ only when ds contains the P-pat (prefix-pattern) ρ of pattern ρ′. Con-
sequently, for each ds containing ρ, we create a pointer ptr_ds pointing to ds in the set 
used for exploring patterns ρ′ having P-pat ρ. The set is denoted as ρ-idx. For each data 
sequence ds pointed to ρ-idx, we associate ptr_ds with a position index pos indicating 
where (in ds) we should begin to find potential stems. That is, ρ-idx is the set of (ptr_ds, 
pos) pairs for discovering patterns whose P-pat = ρ. 

Take the data sequence C6 = <(b, c)(c)(a, c, e)> in memory as an example. We may 
find <(b)> occurring at position 1, <(b, c)> occurring at composite position (1, 2), and 
<(b, c)(a)> occurring at composite position (1, 2, 4). Assume that items b, c, and a are 
frequent. While mining patterns having P-pat <(b)>, we include C6 in the index set with 
pos = 1, suggesting that only items appearing after position 1 in C6 should engage in 
mining. Similarly, C6 will be included in the index set for patterns having P-pat <(b, c)> 
with pos = 2 or P-pat <(b, c)(a)> with pos = 4. As the discovered P-pat becomes longer, 
the index set will contain fewer data sequences to be processed. Moreover, the number of 
items in each data sequence remaining to be processed will decrease. Through recursive 
finding-then-indexing, the proposed MEMISP algorithm efficiently discovers sequential 
patterns. 

3.3 Dealing with Extra-Large Databases by Means of Database Partitioning 

With memory sizes increasing, many databases will now fit into the main memory 
of computers without difficulty. Still, some databases might be too large for the main 
memory to accommodate in a batch. In this case, the sequential patterns are discovered 
by using a partition-and-validation technique, as shown in Fig. 3.  

DB: the sequence database 
Di: a partition of DB which fits in memory
Fi: set of frequent sequences in partition Di

C: set of potential patterns, C = ∪Fi, 1 ≤ i ≤ p

D1 D2 Dp

DB

...

first scan

second scan

F1 F2 Fp

C = ∪Fi, 1 ≤ i ≤ p

compute supports of the patterns
 in C

apply MEMISP to find frequent 
sequences in each partition

True patterns found

Fi is saved on disk 

...

 
Fig. 3. Partition the database and discover patterns for extra-large databases. 



MING-YEN LIN AND SUH-YIN LEE 

 

118 

 

The extra-large database DB is partitioned so that each partition can be handled in 
main memory by MEMISP. The number of partitions is minimized by reading as many 
data sequences into main memory as possible to constitute a partition. The set of poten-
tial patterns in DB is obtained by collecting the discovered patterns after running 
MEMISP on these partitions. The true patterns can be identified with only one extra da-
tabase pass through support counting against all the data sequences in DB one at a time. 
Therefore, we can employ MEMISP to mine databases of any size, with any minimum 
support, in just two passes of database scanning. 

In comparison with other approaches, MEMISP reduces the total number of com-
plete database passes to two without requiring any additional storage space. SPADE 
needs to scan the database three times and demands disk storage space for the trans-
formed vertical database. GSP scans at least k times to discover the frequent k-sequences. 
PrefixSpan often creates and processes projected databases that are several times the 
original database size. 

3.4 Differences between MEMISP and PrefixSpan 

The PrefixSpan algorithm proposed in [11] can be optimized with bi-level and 
pseudo-projection techniques. A pseudo-projection technique keeps redundant pieces of 
postfixes form being projected when the database/projected database can be held in main 
memory. PrefixSpan and MEMISP differ although the two algorithms both utilize mem-
ory for fast computation. The differences are illustrated by the following two cases: (1) 
when the database can be held in main memory; (2) when the database cannot be held in 
main memory. 

When the database can be held in main memory, the two algorithms find the pat-
terns in a similar, but still different way. Both algorithms load the database into memory, 
but differ in how they process in-memory sequences. The PrefixSpan algorithm removes 
in-frequent items and greatly shrinks projected sequences. Example 3 in [11] clearly 
demonstrates such projections in that item g is not projected in Table 2 in [11]. Pseudo- 
projection maintains the sequence-postfix of each data sequence in memory by means of 
a pointer-offset pair. The detailed implementation of PrefixSpan with the pseudo-projec-
tion technique has not been reported in the literature. However, using just one pointer- 
offset pair to indicate the occurrence of the prefix is not enough. For example, if C1 = 
<(a, d)(b, c)(a, e)> to the pseudo-projected sub-database having prefix <(a)> with just 
one pointer-offset pair, (C1, 1), and if there is no offset specifying ‘a’ in the third element 
(a, e), then the ‘e’ could be missed in support-counting. Thus, each occurrence of the 
prefix should be recorded in a pointer-offset list, rather than by a pointer-offset pair. 

The MEMISP algorithm removes no items from the in-memory sequences. Interme-
diate in-memory database generation and rearrangement of sequences are not required at 
all. The sole in-memory sequence database originally loaded is used throughout the 
whole process. We shift the index without modifying any in-memory sequence to skip 
the in-frequent items in each iteration. The functionality of the pointer-offset list in Pre-
fixSpan+pseudo_projection is accomplished by the (ds_ptr, pos) index pair in MEMISP. 
MEMISP matches the prefix from the (pos + 1)-th position of the data sequence without 
using variable-length lists to prevent miscounting. Fast index advancement could  
eliminate the need to process the in-frequent items. 
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When the database cannot be held in main memory, MEMISP is totally different 
from PrefixSpan. PrefixSpan, either with or without pseudo-projection, generates and 
scans sub-databases that might be several times the original database size. Even with the 
bi-level projection technique, PrefixSpan still might suffer from a low support value 
when generating many projected sub-databases before pseudo-projection could help. For 
any support value, MEMISP scans the database only twice, and no more times, without 
generating any intermediate databases. 

Bi-level projection is proposed to reduce the number and size of projected databases, 
at the cost of double scanning to fill the S-matrix (see Lemma 3.3 [11]). When ex-
tra-large databases are dealt with using bi-level projection, the entire database is scanned 
at least twice at the beginning. Then, if each projected database can luckily fit into the 
available memory, then pseudo-projection can be applied. This results in the fewest scans, 
which is more than twice in total, PrefixSpan can do. Otherwise, re-applying bi-level 
projection could result increasing in the total number of scans to many more than two. 
Nevertheless, the current version of PrefixSpan only uses pseudo-projection optimization 
since bi-level projection does not always achieve the best performance [23].       

MEMISP partitions an extra-large database to several sub-databases; each sub-   
database can be fit into the available memory. The first scan, which mines each sub-  
database independently using MEMISP, identifies the potential candidates. The second 
scan verifies whether each candidate has sufficient support to be frequent. MEMISP 
never scans the database, no matter how large it is, more than twice for any value of sup-
port. In addition, MEMISP never generates any intermediate databases during the mining 
process. The partition-based approach was used in [14] for association rule mining. 
However, MEMISP is the first algorithm that successfully adapts the partitioning tech-
nique to the mining of sequential patterns. 

3.5 Implementation Issues 

In common implementations, a data sequence is usually represented as a linked list 
of itemsets in memory. Such a structure might be suitable for algorithms that access a 
single data sequence at a time for support counting. In order to facilitate fast index con-
struction and speed up searching from specific positions (in data sequences), MEMISP 
uses variable-length arrays to hold the data sequences in memory. Data sequence C1 = 
<(a, d)(b, c)(a, e)>, for instance, is coded as the array = [a, d, $, b, c, $, a, e, $], where $ 
indicates the end of an element. Therefore, both data sequences and index sets benefit 
from the array representation in terms of reduced storage space. Efficient searching from 
specific positions in data sequences is also achieved. 

When extra-large databases that require partitioning are mined, a percentage of the 
main memory (say, 5%) must be reserved for holding variables, index sets, etc. In order 
to determine whether the main memory can accept any more data sequences, the amount 
of available physical memory is checked periodically while the database is being loaded 
into memory. Once the percentage of free memory space falls below a predefined value, 
MEMISP starts to mine the loaded in-memory partition, and the remaining data se-
quences are handled in subsequent loading runs. 
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4. EXPERIMENTAL RESULTS 

Extensive experiments were conducted to assess the performance of the MEMISP 
algorithm. In the experiments, we used an 866 MHz Pentium-III PC with 256MB mem-
ory running Windows NT. Like most studies on sequential pattern mining [2, 4, 11, 15, 
16, 21], the synthetic datasets for these experiments were generated using the conven-
tional procedure described in [2]. We will briefly review the generation of experimental 
data in section 4.1. Section 4.2 will compare the results of mining by the GSP, Prefix-
Span, and MEMISP algorithms. To verify that MEMISP handles large databases as well, 
scale-up experiments will be presented in section 4.3. 

4.1 Generation of Experimental Data 

The procedure described in [2] models a retailing environment, where each cus-
tomer purchases a sequence of itemsets. Such a sequence is referred to as a potentially 
frequent sequence (abbreviated as PFS). Still, some customers might buy only some of 
the items from a PFS. A customer’s data sequence may consist of items from several 
PFSs. The PFSs are composed of potentially frequent itemsets (abbreviated as PFIs). A 
table with a total of NI PFIs (denoted as ΓI) and a table with a total of NS PFSs (denoted 
as ΓS) were generated before items were picked for the transactions of customer se-
quences. 

Table 2. Parameters used in the experiments. 

Parameter Description Value 

|DB| Number of data sequences in database DB 
200K, 500K, 1000K, 
10000K 

|C| Average size (number of transactions) per customer 10, 20 
|T| Average size (number of items) per transaction 2.5, 5, 7.5 
|S| Average size of potentially sequential patterns 4, 8 
|I| Average size of potentially frequent itemsets 1.25, 2.5, 5 
NI Number of potentially frequent itemsets 25000 
NS Number of possible sequential patterns 5000 
N Number of possible items 10000 
ΓS The table of potentially frequent sequences (PFSs)

 ΓI The table of potentially frequent itemsets (PFIs)
 

corrS Correlation level (sequence), exponentially distributed µcorrS
 = 0.25 

crupS Corruption level (sequence), normally distributed µcrupS
 = 0.75, σcrupS

 = 0.1 
corrI Correlation level (itemset), exponentially distributed µcorrI

 =0.25 
crupI Corruption level (itemset), normally distributed µcrupI

 = 0.75, σcrupI
 = 0.1 

Table 2 summarizes the symbols and the parameters used in the experiments. The 
procedure for data sequence generation [2] is reviewed here, first the generation of PFIs 
and PFSs, and then the customer sequences. The number of itemsets in a PFS was gener-
ated by picking from a Poisson distribution with mean equal to |S|. The itemsets in a PFS 
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are picked from table ΓI. In order to model that there were common itemsets in frequent 
sequences, subsequent PFSs in ΓS were related. In the subsequent PFS, a fraction of the 
itemsets were chosen from the previous PFS, and the other itemsets were picked at ran-
dom from ΓI. The fraction corrS, called correlation level, was decided by means of an 
exponentially distributed random variable with mean equal to µcorrS

. Itemsets in the first 
PFS in ΓS were randomly picked. The generation of PFI and ΓI was analogous to the 
generation of PFS and ΓS, with parameter N items, mean |I|, correlation level corrI, and 
mean µcorrI

 correspondingly. 
Customer sequences were generated as follows. The number of transactions for the 

next customer and the average size of the transactions for this customer were determined 
first. The size of the customer’s data sequence was picked from a Poisson distribution 
with mean equal to |C|. The average size of the transactions was picked from a Poisson 
distribution with mean equal to |T|. Items were then assigned to the transactions of the 
customer. Each customer was assigned a series of PFSs from table ΓS. 

The assignment of PFSs was based on the weights of PFSs. The weight of a PFS, 
representing the probability that this PFS would be chosen, was exponentially distributed 
and then normalized in such a way that the sum of all the weights was equal to one. Since 
all the itemsets in a PFS were not always bought together, each sequence in ΓS was as-
signed a corruption level crupS. When itemsets were selected from a PFS for a customer 
sequence, an itemset was dropped if a uniformly distributed random number between 0 
and 1 was less than crupS. The crupS value was a normally distributed random variable 
with mean µcrupS

 and variance σcrupS
. The assignment of PFIs (from ΓI) to a PFS was con-

ducted analogously with the parameters crupI , mean µcrupI
, and variance σcrupI

. 
All the datasets used here were generated by setting N = 10000, NS = 5000, and NI = 

25000. A dataset created with |C| = α, |T| = β, |S| = χ, and |I| = δ was denoted as Cα-Tβ- 
Sχ-Iδ. In addition, µcrupS

 and µcrupI
 were both set to 0.75, and σcrupS

 and σcrupI
 were both set 

to 0.1. µcorrS
 and µcorrI

 were both set to 0.25. 

4.2 Execution Times of the GSP, PrefixSpan, and MEMISP Algorithms 

The total execution times of sequence mining with various minsup values of algo-
rithms GSP, PrefixSpan, and MEMISP using a horizontal layout were compared in the 
experiments. The SPADE algorithm was not implemented in the comparison because 
additional storage space and computation time were required to change the database to a 
vertical format. We have two versions of PrefixSpan: PrefixSpan-1 is a general imple-
mentation without further optimizations; PrefixSpan-2, obtained from Prof. Han [23], is 
optimized using the pseudo-projection technique.  

Dataset C10-T2.5-S4-I1.25 having 200,000 data sequences (37.6MB) was used in 
the first experiment. Fig. 4 shows that the total execution times of the four algorithms 
were nearly the same for minsup = 2% because only a few (less than 200) patterns had 
enough supports. In addition, the discovered patterns were all short patterns of size one. 
However, the performance gaps became clear as minsup decreased. In the experiment, 
MEMISP, PrefixSpan-1, and PrefixSpan-2 were faster than GSP for all minsup values. 
PrefixSpan-2 was faster than MEMISP because prefix checking in MEMISP demands 
more time than the offset-list operation in PrefixSpan-2. MEMISP was about 3 to 4 times 
faster than PrefixSpan-1 for a low minsup value.  
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Fig. 4. Total execution times with respect to various minsup values. 

 
Next, the characteristics of the datasets were changed. The results of execution on 

dataset C20-T2.5-S4-I1.25 (|DB| = 200K, 76.3MB) are shown in Fig. 5. The total execu-
tion time of running GSP was too long to be shown in Fig. 5 and in the subsequent fig-
ures. For the same minsup value, the doubled |C| generated longer data sequences and 
produced more patterns, thereby requiring more execution time. The total execution time 
of running PrefixSpan-1 was about 5 to 7 times that of running MEMISP. The perform-
ance of MEMISP was comparable to that of PrefixSpan-2 for minsup values greater than 
0.5%. The efficiency of PrefixSpan-1 decreased due to the fast growth of the projected 
databases. For example, the number of data sequences processed by PrefixSpan-1 was 
4.9 times and 21 times the size of DB when minsup = 2% and misup = 0.75%, respec-
tively. The execution results obtained after changing |T| from 2.5 to 5, |S| from 4 to 8, and 
|I| from 1.25 to 2.5 showed similar effects. Fig. 6 shows that MEMISP outperformed Pre-
fixSpan-1. Fig. 7 shows that the performance achieved while running with a bigger |T| 
value and a bigger |I| value (|T| = 7.5, |I| = 5) were consistent with those obtained in the 
previous experiments. Surprisingly, PrefixSpan-2 was slowest when minsup = 0.5%. The 
reason was that it used up to 323.72 MB to discover a large set of patterns. The available 
memory was not sufficient, so disk-based pseudo-projection slowed the whole process 
down. In summary, MEMISP was faster than PrefixSpan-1 for various data characteris-
tics, and the performance gain resulted from in-memory processing of the MEMISP algo-
rithm.   

4.3 Scale-up Experiments 

The maximum size of the datasets used the experiments described in section 4.2 was 
76.3MB for the C20-T2.5-S4-I1.25 dataset with 200,000 sequences. Consequently, all 
the data sequences could fit into the 256MB main memory. The performance of MEMISP 
was very stable, even when minsup was very low for large databases if the database 
could fit into memory. Given minsup = 0.25%, MEMISP could perform well in process-
ing one million data sequences of a total size of 189MB and with 256MB main memory 
in the experiments. Nevertheless, just for the mining of 100K sequences with minsup = 0.5%,  
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Fig. 5. Comparison of execution times for dataset C20-T2.5-S4-I1.25. 
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Fig. 6. Comparison of execution times for dataset C20-T5-S4-I1.25. 
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Fig. 7. Comparison of execution times for dataset C20-T7.5-S4-I5. 
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GSP scanned the database 4 times to test the 4.4 million candidates in pass two (more 
passes to go), and PrefixSpan-1 generated sub-databases that, in total, were 9.6 times the 
size of the original database.  

In order to verify the scalability of MEMISP, in the following experiments, we in-
creased the number of data sequences from 1000K to 10,000K with C10-T2.5-S4-I1.25. 
As shown in Fig. 8, the total execution times are normalized with respect to the execution 
time for |DB| = 1000K. The size of the dataset having 1000K sequences was 189MB, so 
MEMISP discovered patterns in a single pass without partitioning. PrefixSpan-2 used 
125.7 seconds for |DB| = 1000K and 9635.7 seconds for |DB| = 2000K. In addition, Pre-
fixSpan-2 could not finish mining in a reasonable amount of time for |DB| > 4000K. Al-
though PrefixSpan-2 ran very fast when the database could fit into the main memory, its 
performance worsened dramatically when |DB| >= 2000K. That is, once the database 
could not fit into memory, the cost of disk-based pseudo-projection rose greatly. Note 
that in Fig. 8, the execution time of PrefixSpan-2 is plotted in a different scale.   

Given |DB| >= 2000K in the experiments, MEMISP mined using the partition-and- 
validation technique described in section 3.3. For example, a dataset of |DB| = 10,000K 
with a size of 1.8GB was mined by means of 10 partitions. Given minsup = 0.75% with 
10 million sequences, GSP could not finish mining in a reasonable amount of time. Pre-
fixSpan-1 created the projected databases that together were 11.4 times the original data-
base size. Though Fig. 8 shows that both PrefixSpan-1 and MEMISP were linearly scal-
able with the number of data sequences, MEMISP showed better scalability.  
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Fig. 8. Linear scalability of MEMISP vs. PrefixSpan. 
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5. DISCUSSION 

We will summarize the factors contributing to the efficiency of the proposed 
MEMISP algorithm by comparing it with the well-known GSP and PrefixSpan algo-
rithms.  
 
• One pass database scanning.  MEMISP reads the original database only once, except 

for extra-large databases as described in section 3.3. In the experiments, a database 
with one million data sequences could fit into a platform with 256MB memory, so the 
database was scanned only once by MEMISP during mining. However, GSP must read 
the database at least k times, assuming that the maximum size of the discovered pat-
terns is k. PrefixSpan reads the original database once, and then writes and reads once 
for each projected sub-database. In some cases, such as when the minsup value is low, 
the total size of the sub-databases might be several times larger than the size of the 
original database.  

• No candidate generation.  MEMISP discovers patterns directly from data sequences 
in-memory by means of index advancement. In contrast to GSP, MEMISP generates no 
candidates, so the time needed for candidate generation and testing is reduced. More-
over, MEMISP works well with a small amount of memory since the unknown sized 
(and often huge) amount of space for candidate storage is not needed.  

• No database projection.  The pure and simple index advancing approach in MEMISP 
creates no new databases, so the intermediate storage, which PrefixSpan needs, is not 
needed here. Note that MEMISP and PrefixSpan can achieve similar performance in 
mining a memory-accommodable database if the pseudo-projection technique [11] is 
used in PrefixSpan. However, according to [11], pseudo-projection is not efficient if it 
is used for disk-based accessing and should be employed after bi-level optimization is 
performed [11], which reduces the database size so that it can fit into the main memory. 

• Focused search and effective indexing.  MEMISP considers only those data se-
quences indicated by the current index set instead of searching every data sequence in 
the database. Furthermore, each position index keeps moving forward along a data se-
quence as the discovered pattern gets longer. Consequently, fewer and fewer items in a 
data sequence need to be considered as a prefix pattern gets longer.  

• Compact index storage.  MEMISP requires very little storage space for index sets. In 
an index set, the maximum number of indices required is equal to the number of data 
sequences, no matter how small the minsup value is. Assume that the database has m 
million sequences. In a 4-byte addressing mode, MEMISP demands a maximum of 
(4+4) ∗ m MB for an index set. The total required memory for discovering the frequent 
k-sequences will be less than k ∗ (8 ∗ m) MB for any minsup value. On the other hand, 
the memory requirement for storing candidates in GSP can hardly be estimated without 
giving the minsup value. Similarly, the total size of the databases projected by Prefix-
Span increases as the minsup value decreases. 

• High CPU and memory utilization.  PrefixSpan needs only a little memory space 
during the mining process. It solves the mining problem successfully by means of 
sub-database searching, though the CPU maybe idle when sub-databases are projected. 
MEMISP, in contrast, uses all the available memory and maximizes CPU utilization 
without extra disk operations. 
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6. CONCLUSIONS  

Speeding up the discovery of sequential patterns has been a focus of data mining 
research. In this paper, we have presented a memory indexing approach for fast discov-
ery of sequential patterns, called MEMISP. MEMISP mines the set of all sequential pat-
terns without generating candidates or sub-databases. The performance study shows that 
MEMISP is more efficient than both the GSP and PrefixSpan algorithms, and achieves 
comparable performance when PrefixSpan is optimized using the pseudo-projection 
technique. MEMISP has good linear scalability even under very low minimum supports. 
Moreover, MEMISP can estimate the total memory required, which is independent of the 
specified minsup value. MEMISP scans the database at most twice using the parti-
tion-and-validation technique even for extra large databases, so the slow disk I/O is 
minimized. The compact indexing approach and the effective find-then-index technique 
together make MEMISP a promising approach for fast discovery of sequential patterns in 
sequence databases of any size, even with a small amount of memory and low minsup 
values. 

In addition to sequential pattern mining, the technique could be extended to the dis-
covery of maximum patterns [1], constrained/generalized sequential patterns [6, 16, 19], 
multi-dimensional patterns [12], and incremental sequence discovery after database up-
dating [5, 10, 22]. It would also be interesting to integrate the proposed index sets with 
database systems to make queries efficient.  
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