
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 21, 59-84 (2005)

59

On Preventing Type Flaw Attacks on Security Protocols
With a Simplified Tagging Scheme*

YAFEN LI, WUU YANG AND CHING-WEI HUANG

Department of Computer and Information Science
National Chiao Tung University

Hsinchu, 300 Taiwan

A type flaw attack on a security protocol is an attack in which a field in a message

that was originally intended to have one type is subsequently interpreted as having an-
other type. Heather et al. proved that type flaw attacks can be prevented by tagging each
field with the information that indicates its intended type. We simplify Heather et al.’s
tagging scheme by combining all the tags inside each encrypted component into a single
tag and by omitting the tags on the outermost level. The simplification process reduces
the sizes of messages in the security protocol. We also formally prove that our simplified
tagging scheme is as secure as Heather et al.’ with the strand space method.

Keywords: network security, security protocol, type flaw, strand space, tagging

1. INTRODUCTION

A type flaw attack on a security protocol is an attack in which a field of a message
that was originally intended to have one type is subsequently interpreted as having an-
other type [3]. For example, consider the Neuman-Stubblebine protocol [7]:

Initial exchange
Msg 1. A → B : A, Na
Msg 2. B → S : B, {A, Na, Tb}Shared(B,S), Nb
Msg 3. S → A : {B, Na, Kab, Tb}Shared(A,S), {A, Kab, Tb}Shared(B,S), Nb
Msg 4. A → B : {A, Kab, Tb}Shared(B,S), {Nb}kab

Subsequent authentication
Msg 5. A → B : Na′, {A, Kab, Tb}Shared(B,S)
Msg 6. B → A : Nb′, {Na′}Kab
Msg 7. A → B : {Nb′}Kab

In [1], Carlsen described a type flaw attack on the Neuman-Stubblebine protocol.

The attack is shown below, where Px denotes the penetrator which masquerades as the
principal x:

Received November 13, 2003; revised June 29, 2004; accepted July 9, 2004.
Communicated by Ten-Hwang Lai.
* This work reported here was supported by National Science Council, Taiwan, R.O.C., under grant NSC
92-2213-E-009-070. A short summary of this paper was presented at the 4th International Symposium on In-
formation and Communication Technologies, Las Vegas, Nevada, June 16-18, 2004.

YAFEN LI, WUU YANG AND CHING-WEI HUANG

60

Msg 1. Pa → B : A, NP
Msg 2. B → Ps : B, {A, NP, Tb}Shared(B,S), Nb
Msg 4. Pa → B : {A, NP, Tb}Shared(B,S), {Nb}NP

In the attack, the two penetrators Pa and Ps (which could possibly be the same at-

tacker) collaborate to cheat B. B will decode message 4 with the secret key Shared(B, S)
shared by B and the real server S to obtain NP, which B is fooled into believing is the
secret session key between B and A. Once the protocol for the initial exchange is
compromised, subsequent authentication can be attacked in a trivial manner.

Heather et al. [3] proved that type flaw attacks can be prevented by tagging each
field with the information that indicates its intended type. The Neuman-Stubblebine pro-
tocol with Heather et al.’s tags is shown below. We follow the notation in [3]. A pair of
curly brackets with a suitable superscript and/or a subscript indicates encryption. Items in
the same components are separated with commas.

Initial exchange
Msg 1. A → B : (agent, A), (nonce, Na)
Msg 2. B → S : (agent, B), ({|nonce, timestamp|}shared,

{(nonce, Na), (timestamp, ,)}),(
shared

SBSharedbT (nonce, Nb)

Msg 3. S → A : ({|agent, nonce, shared, timestamp|}shared,
{(agent, B), (nonce, Na), (shared, Kab), (timestamp, ,)}),(

shared
SASharedbT

({|agent, shared, timestamp|}shared,
{(agent, A), (shared, Kab), (timestamp,),)}),(

shared
SBSharedbT (nonce, Nb)

Msg 4. A → B : ({|agent, shared, timestamp|}shared,
{(agent, A), (shared, Kab), (timestamp,),)}),(

shared
SBSharedbT

({|nonce|}shared, {(nonce,))}shared
kb ab

N

Subsequent authentication
Msg 5. A → B : (nonce, Na′), ({|agent, shared, timestamp|}shared,

{(agent, A), (shared, Kab), (timestamp,),)}),(
shared

SBSharedbT
Msg 6. B → A : (nonce, Nb′), ({|nonce|}shared, {(nonce,))}shared

Ka ab
N ′

Msg 7. A → B : ({|nonce|}shared, {(nonce,))}shared
Kb ab

N ′

In this paper, we simplify the tagging scheme by combining all the tags inside each

encrypted component into a single tag and by omitting the tags on the outermost level.
The Neuman-Stubblebine protocol with our simplified tags is shown below:

Initial exchange
Msg 1. A → B : A, Na
Msg 2. B → S : B, {(agent, nonce, timestamp), (A, Na, b

shared
SBSharedb NT ,)}),(

Msg 3. S → A : {(agent, nonce, shared, timestamp), (B, Na, Kab, ,)}),(
shared

SASharedbT
{(agent, shared, timestamp), (A, Kab, Tb)}Shared(B,S), Nb

Msg 4. A → B : {(agent, shared, timestamp), (A, Kab, Tb)}Shared(B,S),

PREVENT TYPE-FLAW ATTACKS

61

{(nonce, shared
kb ab

N)}

Subsequent authentication
Msg 5. A → B : Na′, {(agent, shared, timestamp), (A, Kab,

shared
SBSharedbT),()}

Msg 6. B → A : N b′, {(nonce, shared
Ka ab

N)}′

Msg 7. A → B : {(nonce, shared
Kb ab

N)}′

Consider the fourth message in the protocol. Note that, in our simplified tagging

scheme, the outermost-level tags − {|agent, key, timestamp|}shared and {|nonce|}shared − are
omitted. Furthermore, the three tags insides the encrypted component − agent, key, and
timestamp − are combined into a single tag − (agent, key, timestamp). Because in a secu-
rity protocol, the number of different possible tag types is very limited, the combined tag
can be represented with a single, small integer.

Following Heather-Lowe-Schneider’s proof method [3] (which will be referred to as
the HLS-scheme in this paper), we can also prove that our simplified tagging scheme is
as secure as the HLS-scheme. The proofs proceed in two stages. In the first stage, we first
define an A-scheme in which all tags inside each encrypted component are combined into
a single tag. We show that the A-scheme is as secure as the HLS-scheme. In the second
stage, the A-scheme is further simplified. We define a B-scheme in which the outer-
most-level tags are omitted and the simplifications done in the A-scheme are employed.
We then show that the B-scheme is as secure as the A-scheme. We can then conclude that
the B-scheme, our simplified tagging scheme, is as secure as Heather et al.’s (full) tag-
ging scheme.

Since we adopt the same model and proof techniques employed in [2, 3], the defini-
tions in this paper (in sections 3, 4, and 5) are adapted from those in the above works,
with modifications needed to reflect our simplified tagging scheme. We provide these
definitions in order to help the reader to understand the proofs which we will give later.

Attacks based on type flaws are quite common in security protocols. Meadows [5]
also discussed a similar type flaw attack on the Needham-Schroder protocol [6]. The
Woo-Lam protocol π1 [9] is also vulnerable to type flaw attacks [3].

The remainder of this paper is organized as follows: Section 2 defines the strand
space model [2]. Section 3 defines the A-scheme and shows that the A-scheme is as se-
cure as the HLS-scheme. In section 4, we define the B-scheme and show that the
B-scheme is as secure as the A-scheme. Section 5 concludes this paper.

2. BACKGROUND

2.1 Strand Spaces

Our proof method is based on strand spaces [2]. We will briefly review strand
spaces and their notations. In this section, A denotes the set of all possible messages that
can be sent or received by principals in a protocol. T denotes the set of atomic messages.
K denotes the set of keys. The elements of A are called terms (or facts). There are a unary
operator and two binary operators defined on A:

YAFEN LI, WUU YANG AND CHING-WEI HUANG

62

• A unary operator inv: K → K. inv maps a member of a key pair to the other for an
asymmetric key and maps a symmetric key to itself.

• Two binary operators for encryption and joining, respectively are

encr: K × A → A
join : A × A → A

We will write inv(K) as K-1, encr(K, m) as {m}K, and join(a, b) as ab. We will refer
to the set of ciphertexts of the form {h}k as E and to the set of terms of the form ab as C.
A term (fact) f is simple if f ∈ T ∪ K ∪ E.

A
•+(A, Na)
⇓
•−(B, {A, Na, kab, Tb}Kas

, {A, Kab, Tb}Kas
, Nb)

⇓
•+({A, Kab, Tb}Kbs

, {Nb}Kab
)

Fig. 1. A strand.

A strand represents a sequence of events that a principle may be engaged in. That is,
each strand is a sequence of message transmissions and receptions. Formally, it has the
form 〈± a1, ± a2, …, ± an〉, where + a represents the transmission of message a and − a
represents the reception of message a. An element of the strand is called a node.

A graph structure is defined on strands with two types of edges (Fig. 1 shows a sam-
ple strand):

• If nodes ni and ni+1 are consecutive steps on the same strand, then we write ni ⇒ ni+1.

This represents the causal relationship between ni and ni+1.
• If nodes ni = + a and nj = − a, then we write ni → nj. This means that node ni sends a

message which is received by node nj.

A bundle is a finite subgraph of this graph. It consists of a number of strands, le-

gitimate or otherwise, hooked together, where one strand sends a message and another
strand receives the message. Fig. 2 shows a sample bundle that involves three strands.
Formally, let C be a set of edges, and let NC be the set of nodes incident with any edge in
C. C is a bundle if

1. C is finite.
2. If n1 ∈ NC and n1 has a negative sign, then there is a unique n2 such that the edge n2 →

n1 ∈ C.
3. If n1 ∈ NC and n2 ⇒ n1, then the edge n2 ⇒ n1 ∈ C.
4. C is acyclic.

We will speak of a node as being in the bundle C if, in fact, it is in NC.

PREVENT TYPE-FLAW ATTACKS

63

Fig. 2. A bundle.

2.2 Honest Agents

2.2.1 Strand templates

As in [3], we assume that each role in the protocol is defined by a strand template. A
strand template is defined as follows:

StrandTemplate ::= (Sign × Template)*

 Sign ::= + | −
 Template ::= Var | Fn(Var*) | Tag

TemplateTemplate }{ *

As in [3], the template g(v1, …, vn) represents the function g applied to variables

v1, …, vn. It is only defined when they are applied to arguments of the correct types. The
template tag

kt represents template t encrypted using key k and an encryption algorithm
corresponding to tag. For example, the roles A, B, and S in the Neuman-Stubblebine
protocol [7] would be defined by the following three strand templates:

tempa ≅< +(a, na), − ({b, na, kab, tb}Shared(a,s), x, nb), + (x, {nb}kab

) >
tempb ≅< − (a, na), + (b, {a, na, tb}Shared(b,s), nb)

− ({a, kab, tb}Shared(b,s), {nb}kab
) >

temps ≅< − (b, {a, na, tb}Shared(b,s), nb)
+ ({b, na, kab, tb}Shared(a,s), {a, kab, tb}Shared(b,s), nb) >

All strands representing an execution of a particular role can be obtained by instan-

tiating the free variables of the corresponding strand template.

Definition An honest strand is one that results from the application of a substitution to
a strand template.

Formally, a substitution is a function that maps a variable to a simple fact. Such a
substitution function can be lifted to the templates and the strand templates:

YAFEN LI, WUU YANG AND CHING-WEI HUANG

64

sub : var → simple fact
subt : template → fact
subs : strand template → honest strand

These are defined as

)))(,(...,)),(,(()) ,(...,), ,((

))}(({)}({

))),(...,),((())..., ,((

),()(

1111

)(

11

kkkk

tk
ksubt

tk
k

nn

tsubtstsubtststssubs

tsubtsubt

Fngvsubvsubgvvgsubt

Varvvsubvsubt

=

=

∈∀=
∈∀=

2.3 Penetrators

Two ingredients characterize a penetrator’s capabilities: a set of keys known ini-

tially to the penetrator and a set of penetrator traces that allow the penetrator to generate
new messages from the messages he intercepts.

The atomic actions available to the penetrator (i.e., a penetrator trace) include the M
(text message), F (flushing), T (tee), C (concatenation), S (separation), K (key), E (en-
cryption), and D (decryption) strands. According to [1, 7], it is possible to extend the set
of penetrator traces given here to model other abilities of the penetrator.

Definition Each penetrator strand is one that results from the application of a substitu-
tion to a penetrator trace.

2.4 Security Properties

As in [3], failures of a security protocol include failures of secrecy and authentica-
tion.

There is a breach of secrecy if there is a strand s in which the value of a particular
variable v (which is intended to remain secret) becomes known to the penetrator, even if
the secret keys have not been compromised. In this case, strand s represents a penetrator
strand. There is a breach of authentication if there is a penetrator strand s1 without a cor-
responding honest strand s2, even if the secret keys have not been compromised. Here, s1
and s2 are related by two substitutions, sub1 and sub2, that agree on some set of variables
X. In this case, strand s1 represents a penetrator strand. Note that if s1 is an honest strand,
there must be a corresponding honest strand s2.

3. THE A-SCHEME

3.1 Defining the A-Scheme

In this subsection, we present the model that will be used to prove the first point − a
protocol under our simplified tagging scheme (but with the outermost-level tags) is as

PREVENT TYPE-FLAW ATTACKS

65

secure as that under Heather et al.’s (full) tagging scheme. That is, if there is an attack on
a protocol under the A-scheme, then there must exist a corresponding attack under the
HLS-scheme. This model is based on the strand space model discussed in [2, 3, 7].

Our proof proceeds as follows. First, we model the abilities of a penetrator with the
penetrator strands in the A-scheme. Then, we show that every penetrator strand in the
A-scheme corresponds to a penetrator strand in the HLS-scheme. Hence, the A-scheme
will not introduce any new security attacks that are not present in the HLS-scheme.

3.1.1 Tags and facts

Tags As in [3], we assume that atomic values are partitioned into types, including agent,
nonce, time-stamp, public key, etc., and we will adopt the obvious names for each tag.
The types of tags can be defined as follows:

Tag ::= agent | nonce | timestamp | public | … |{|Tag*|}Tag

We assume that the tag for an encrypted item includes an indication of the encryp-

tion algorithm (e.g., DES or RSA public key encryption) that is claimed to have been
used to produce the message. We include this algorithm tag because we want to be able
to model the case where a key is used in the wrong algorithm. We also include the type of
body within the encryption tag.

Tagged Facts We represent the tagged facts as (Tags, Facts) pairs, where the tags give
the claimed types of the corresponding facts:

Fact ::= Atom | Tag
FactTaggedFace}{

TaggedFact ::= Tag* × Fact*

A tagged fact tf is simple if tf = (t, f), where t ∈ Tag and f ∈ Fact. We also adopt the

perfect encryption assumption1, that is, that an honest agent can tell whether it has cor-
rectly decrypted a message. We will use the notations ts and fs to represent a set of tags
and a set of facts, respectively. We also use the pair (ts, fs) to represent a set of ordered
pairs of simple tagged facts (t1, f1), (t2, f2), …, (tk, fk) (here, ts and fs must have exactly the
same number of elements). We also use tf to represent a tagged fact. We often want to
talk about the tag or fact components of a tagged fact, so we define projection functions
as follows:

(ts, fs)1 = ts,
(ts, fs)2 = fs.

Sub-Tagged-Fact Relation The sub-tagged-fact relation ⊏ is defined inductively as
follows:

1 This can be implemented by including sufficient redundancy within the encryption scheme.

YAFEN LI, WUU YANG AND CHING-WEI HUANG

66

• (t, f) ⊏ (t, f) (reflexive)
• (t, f) ⊏ (ts, fs) if (t, f) ⊏ (ti, fi), for some (ti, fi) in (ts, fs)
• (ts, fs) ⊏ (ts′, fs′) if (ti, fi) ⊏ (ts′, fs′) for every (ti, fi) in (ts, fs)
• (ts, fs) ⊏ ({|ts|}tk, {(ts′, fs′))}tk

k if (ts, fs) ⊏ (ts′, fs′)

Sub-Fact Relation The sub-fact relation ⊏ is defined in terms of the Sub-tagged-fact
relation as follows:

• f ⊏ (ts, fs) if ∃ t ∈ Tag, (t, f) ⊏ (ts, fs)
• fs ⊏ (ts′, fs′) if fi ⊏ (ts′, fs′), for every fi in fs

Correct Tagging We will now define what it means for a tagged fact to be correctly
tagged:

• WellTagged(agent, x) ⇔ x ∈ Agent
• WellTagged(nonce, x) ⇔ x ∈ Nonce
• WellTagged(timestamp, x) ⇔ x ∈ Timestamp
• WellTagged(shared, x) ⇔ x ∈ Sharedkey
• WellTagged(public, x) ⇔ x ∈ Publickey
• WellTagged(private, x) ⇔ x ∈ Privatekey
• WellTagged(ts, fs) ⇔ WellTagged(ti, fi), for every pair (ti, fi) in (ts, fs)
• WellTagged({|ts|}tk, x) ⇔ ∃(ts, fs) ∈ TaggedFact, ∃k ∈ Fact, x = {(,)}ts fs k

tk ∧
WellTagged(ts, fs) ∧ WellTagged(tk, k)

Top-Level Correct Tagging We will now define what it means for a tagged fact to be
correctly tagged at the outmost level:

• TopLevelWellTagged(agent, x) ⇔ x ∈ Agent
• TopLevelWellTagged(nonce, x) ⇔ x ∈ Nonce
• TopLevelWellTagged(timestamp, x) ⇔ x ∈ Timestamp
• TopLevelWellTagged(shared, x) ⇔ x ∈ Sharedkey
• TopLevelWellTagged(public, x) ⇔ x ∈ Publickey
• TopLevelWellTagged(private, x) ⇔ x ∈ Priavtekey
• TopLevelWellTagged(ts, fs) ⇔ TopLevelWellTagged(ti, fi), for every pair (ti, fi) in

(ts, fs)
• TopLevelWellTagged({|ts|}tk, x) ⇔ ∃(ts, fs) ∈ TaggedFact, ∃k ∈ Fact, x ={(,)}ts fs k

tk

Note that in TopLevelWellTagged({|ts|}tk, x), we intentionally leave out the two require-
ments WellTagged(ts, fs) and WellTagged(tk, k).

3.1.2 Origination

We will next discuss the origination of a fact or tagged fact. If S is a set of tagged
facts, the term of node n is + tf for some tf ∈ S, and for each node n′ previous to n, the
term of n′ is not in S; then, n is an entry point to S. The node n is the origination of a
tagged fact tf if n is the entry point of the set of tagged facts {tf ′ | tf ⊏ tf ′}. Similarly, the

PREVENT TYPE-FLAW ATTACKS

67

node n is the origination of a fact f, if n is the entry point of {tf ′ | f ⊏ tf ′}. A fact or
tagged fact uniquely originates in a bundle C if it originates on a unique node of C.

3.1.3 Strand templates

As in [3], we use the strand templates to define roles in a protocol. A strand template
is defined as follows:

StrandTemplate ::= (Sign × TaggedTemplate)*

 Sign ::= + | −
TaggedTemplate ::= Tag* × Template*

Template ::= Var | Fn(Var*) | Tag
TemplatelateTaggedTemp *}{

As in [3], the template g(v1, …, vn) represents the function g applied to variables

v1, …., vn. It is only defined when they are applied to arguments of the correct types. The
template 3

2}1{ t
tt represents template t1 encrypted with key t2 and algorithm t3. A tagged

template tt is simple if tt = (t, t′), where t ∈ Tag and t′ ∈ Template.
For example, the role A in the Neuman-Stubblebine protocol [7] would be defined

by the following strand template:

tempa ≅
< +((agent, nonce), (a, na)),

−(({|agent, nonce, key, timestamp|}shared,
{|agent, key, timestamp|}shared, nonce)

 ({(agent, nonce, key, timestamp), (b, na, kab, ,)}),(
shared

saSharedbt
 {(agent, key, timestamp), (a, kab, ,)}),(

shared
sbSharedtb nb)),

+(({|agent, key, timestamp|}shared, {|nonce|}shared),
 ({(agent, key, timestamp), (a, kab, ,)}),(

shared
sbSharedtb

 {(nonce, >)))}shared
kb ab

n

Definition An honest strand is one that results from the application of a substitution to
a strand template.

All strands representing an execution of a particular role can be formed by instanti-

ating the free variables of the corresponding strand template. Formally, a substitution is a
function mapping a variable to a simple fact. A substitution can be lifted to the templates,
the tagged templates, and the strand templates:

sub : var → simple fact
subt : template → fact
subtt : tagged template → tagged fact
subs : strand template → honest strand

These are defined as

YAFEN LI, WUU YANG AND CHING-WEI HUANG

68

subt(v) = sub(v)
subt(g(v1, …, vn)) = (g(sub(v1), …, sub(vn))), ∀g ∈ Fn
subt))}(({)}({)(

tk
ksubt

tk
k ttsubtttt =

subtt(tt) = (t1, …, tk, subt(t′1), …, subt(t′k))
where tt = (t1, …, tk, t′1, …, t′k) and each (ti, t′i) is a simple tagged template
of tt

subs(s) = ((s1, subtt(tt1)), …, (sk, subtt(ttk)))
 where s = ((s1, tt1), …, (sk, ttk)) and each si ∈ {+, −}.

We also assume that each strand template is always consistently tagged; that is, the

same tags are always given to the same variables. We also assume that simple tagged
facts on honest strands are always well tagged, at least on the outermost level.

Honest Strand Assumption If the simple tagged fact (t, f) originates on an honest
strand, then TopLevelWellTagged(t, f).

This assumption implies a number of facts:

• If an honest agent introduces a simple term for a variable, then he/she introduces a

value of the expected type.
• An honest agent will only tag a fact as an encryption if it is indeed created as an en-

cryption. The encryption tag will include the identity of the algorithm used and the tags
of the body. However, the agent might receive ill-tagged keys from the penetrator.
Hence, the key used for encryption might not have the expected type.

3.1.4 Penetrator traces

Following [1, 7], we assume that there is some set T of simple facts that the pene-
trator can produce and some set Kp of keys that the penetrator has available. Penetrator
traces under the tagging scheme are exactly analogous to those in [3], but with modifica-
tions to the M, C, S, and R traces.

A penetrator trace is one of the following strands: M, F, T, C, S, K, E, D, or R.

M Text Message 〈+ (t, f)〉 for f ∈ T. The penetrator spontaneously generates a text

message from the simple fact available to him/her. Note that the M strand only pro-
duces simple tagged facts, and that non-simple tagged facts can be produced by means
of concatenation:

F Flushing 〈− (ts, fs)〉;
T Tee 〈− (ts, fs), + (ts, fs), + (ts, fs)〉;
C Concatenation 〈− (ts1, fs1), …, − (tsk, fsk), + (ts1, …, tsk, fs1, …, fsk)〉;
S Separation 〈− (t1, …, tk, f1, …, fk), + (t1, f1), …, + (tk, fk)〉;
K Key 〈+ (tk, k)〉 with WellTagged(tk, k) and k ∈ Kp;
E Encryption 〈− (tk, k), − (ts, fs), + ({|ts|}tk, ;))},{(〉

tk
kfsts

D Decryption 〈− (tk′, k′), − ({|ts|}tk, .),(),)},{(〉+ fstsfsts tk
k Here, tk and tk′ are tags rep-

PREVENT TYPE-FLAW ATTACKS

69

resenting inverse key types, and k′ is the decryption key corresponding to k when they
are considered as keys of types tk′ and tk, respectively.

R Retagging 〈− (t, f), + (t′, f)〉. Note that the R strand only applies to simple tagged
facts. Non-simple tagged facts can be retagged by means of separation, retagging of
particular components, and then concatenation. No other penetrator traces interfere
with the tags of their messages.

We now have the following lemma.

Lemma 1 Every simple tagged fact (t, f) that is top-level-ill-tagged (i.e., not top-level-
well-tagged) originates on an R or M strand.

3.2 Transforming Bundles

In this subsection, we will explain the transformation of arbitrary bundles into

well-tagged bundles. We will show that, given a bundle C in the A-scheme, we can con-
struct a corresponding bundle C ′ in the HLS-scheme in which all the terms are well-
tagged. We will proceed in two steps: (1) We will define the properties the transformation
φ must satisfy. (2) We will then show that such a transformation φ can always be con-
structed.

3.2.1 Defining the transformation function

The following definition captures the required properties of the transformation func-
tion φ:

Definition Given a bundle C, we define

φ : tagged fact → tagged fact

as a transformation function for C if:

1. φ preserves the outermost-level tags. That is, if φ(ts, fs) = (ts′, fs′), then ts = ts′.
2. φ returns well-tagged terms, that is, WellTagged(φ(ts, fs)).
3. φ is the identity function over well-tagged terms. That is, if WellTagged(ts, fs), then

φ(ts, fs) = (ts, fs).
4. φ(t1, …, tk, f1, …, fk) = (t1, …, tk, φ(t1, f1)2, …, φ(tk, fk) 2).
5.).)},({ ,}({))},{(,}({

2),(
tk

ktk
tktk

k
tk fststsfststs φφφ =

6. φ respects inverses of keys. That is, if k and k′ are inverses of each other when consid-
ered as keys of types tk and tk′, respectively, then φ(tk, k) and φ(tk′, k′) are also in-
verses of each other when considered as keys of types tk and tk′, respectively.

7. If (t, f) is a simple tagged fact of C that is (top-level-)ill-tagged, then the penetrator can
always find a fact f ′ in T 2 such that (t, f ′) is (top-level-)well-tagged.

2 T is the set of simple facts that the penetrator can produce.

YAFEN LI, WUU YANG AND CHING-WEI HUANG

70

3 SimpleTaggedFacts(C) is the set of simple tagged facts in C.
4 TaggedFacts(C) is the set of tagged facts in C.

8. When φ is applied to a simple tagged fact tf of C that is top-level-ill-tagged, it pro-
duces a fact that is essentially new. That is, ∀tf ∈ SimpleTaggedFacts(C)3 ∀f ∈ T
[[¬TopLevelWellTagged(tf) ∧ f ⊏ φ(tf)] ⇒ ∀tf ′ ∈ TaggedFacts(C)4[tf ⊏ tf ′ ⇒ f �

φ(tf ′)]].

Note that the transformation function φ is injective over the tagged facts of C. We
can show that it is always possible to find the required φ.

Lemma 2 Given a bundle C, there exists a transformation function φ for C.

3.2.2 Transforming honest strands

In this subsection, we will show that if a strand S = subs(temp) obtained by instanti-

ating a template temp with respect to the substitution sub is an honest strand, then the
strand obtained by transforming each term of S with φ is also an honest strand. Consider
the strand S′ = subs′(temp) with respect to the substitution sub′, defined as

sub′(v) = φ (t, sub(v))2,

where t is the unique tag for v in temp. Note that S ′ is also an honest strand.

Lemma 3 Let φ, sub, and sub′ be defined as above. subtt and subtt′ are derived from
sub and sub′, respectively. Then φ(subtt(tt)) = subtt′(tt).

Lemma 4 If a strand S = subs(temp) obtained by instantiating a template temp with
respect to the substitution sub is an honest strand, then the strand obtained by transform-
ing each term of S using the transformation φ is also an honest strand.

3.2.3 Transforming penetrator strands

We will show that, given the penetrator strands in a bundle C and a transformation φ,

we can construct corresponding penetrator strands in a bundle C′ that are well-tagged.
We will consider each penetrator trace in turn.

M Text Message Let S = 〈+ (t, x)〉 with x ∈ T. Define S ′ = 〈+ φ(t, x)〉, which is a well-

tagged M strand because φ(t, x) ∈ T.
F Flushing Let S = 〈− tf〉. Define S ′ = 〈− φ(tf)〉, which is a well-tagged F strand.
T Tee Let S = 〈− tf, + tf, + tf〉. Define S′ = 〈− φ(tf), + φ(tf), + φ(tf)〉, which is a well-

tagged T strand.
C Concatenation Let S = 〈− (t1, f1), …, − (tk, fk), + (t1, …, tk, f1, …, fk)〉. Define S′ =

〈− φ(t1, f1), …, − φ(tk, fk), + φ(t1, …, tk, f1, …, fk)〉. Because φ(t1, …, tk, f1, …, fk) = (φ(t1,
f1)1, …, φ(tk, fk)1, φ(t1, f1)2, …, φ(tk, fk)2), S′ is a well-tagged C strand.

PREVENT TYPE-FLAW ATTACKS

71

S Separation Let S = 〈− (t1, …, tk, f1, …, fk), + (t1, f1), …, + (tk, fk)〉. Define S′ = 〈
+ φ(t1, …, tk, f1, …, fk), − φ(t1, f1), …, − φ(tk, fk)〉. Because φ(t1, …, tk, f1, …, fk) = (φ(t1,
f1)1, …, φ(tk, fk)1, φ(t1, f1)2, …, φ(tk, fk)2), S′ is a well-tagged S strand.

K Key Let S = 〈+ (tk, k)〉 with WellTagged(tk, k) and k ∈ Kp. Define S′ = 〈+ φ(tk, k)〉 =
〈+ (tk, k)〉, which is a well-taged K strand.

E Encryption Let S = 〈− (tk, k), −(ts, fs), + ({|ts|}tk, 〉))},{(tk
kfsts , where ts = GetTags(ts,

fs). Define S′ = 〈− φ(tk, k), − φ(ts, fs), + φ({|ts|}tk, 〉))},{(tk
kfsts . Because φ({|ts|}tk,

))},{(tk
kfsts = ({|ts|}tk,),)},({

2),(
tk

ktkfsts φφ S′ is a well-tagged E strand.
D Decryption Let S = 〈− (tk′, k′), − ({|ts|}tk, ,),(),)},{(〉+ fstsfsts tk

k where k and k′, which
have types tk and tk′, respectively, are inverses of each other. Define S′ = 〈− φ(tk′, k′),
− φ ({|ts|}tk, .),(),)},{(〉+ fstsfsts tk

k φ Because ,({ ,}({))},{(,}({ tstsfststs tktk
k

tk φφ =
),)}

2),(
tk

ktkfs φ S′ is a well-tagged D strand.
R Retagging Let S = 〈− (t1, f), + (t0, f)〉. We proceed in two stages in this case. First,

− φ(t1, f) is a well-tagged F strand. Second, if ¬TopLevelWellTagged(t0, f), then + φ(t0,
f) is a well-tagged M strand. We will replace the R strand in S with an F and an M
strands in S′. This situation is illustrated in Fig. 3.

Fig. 3. If ¬TopLevelWellTagged(t0, f), then replace the R strand in (a) with an F and an M strands
in (b).

On the other hand, if TopLevelWellTagged(t0, f), we will show that an earlier R

strand has an initial node labelled with − (t0, f) or an earlier M strand produces the tagged
fact + (t, f) for some t ∈ Tag in C.

If t1 = t0, we are done. Here, we have a well-tagged F strand and a well-tagged M
strand. Otherwise, ¬TopLevelWellTagged(t1, f). According to Lemma 1, the top-level-ill-
tagged simple tagged fact must originate on an M or R strand. If the top-level-ill-tagged
simple tagged fact (t1, f) originates on an M strand, then we are done. Otherwise, the sim-
ple tagged fact (t1, f) originates on an R strand. Then let the R strand be 〈− (t2, f) + (t1, f)〉.

If t2 = t0, we are done. If not, (t2, f) originates on another M or R strand. We may re-
peat the above argument for (t2, f).

Continuing in this way, we can find a sequence of earlier and earlier R strands or a
sequence of earlier and earlier R strands and an M strand. Because the bundle is finite,
this argument eventually stops. Hence, we may construct the corresponding penetrator
strands as follows:

YAFEN LI, WUU YANG AND CHING-WEI HUANG

72

1. Remove nodes n0′ and nk.
2. Each of the negative nodes on the R strands is replaced with an F strand.
3. Other nodes on the R strands are replaced with an M strand and some T strands if the

terms of nodes are the same. Suppose the terms of nodes n′k-1, n′2 and n′1 are the same.
We have the situation shown in Fig. 4.

4. If tk = t0 (that is, we can find an earlier R strand with an initial node labelled with
− (t0, f) or an earlier M strand with a node labelled with − (t0, f)), then the → successor
of n0′ in C becomes the → successor of φ(n) in C′. This is shown in part (1) of Fig. 4.
If not (that is, we can find an earlier M strand to produce (t, f) for some t ∈ Tag), then
we use an M strand to produce φ(t0, f) = (t0, f). The → successor of n0′ in C becomes
the → successor of the node on the M strand in C′. This is shown in part (2) of Fig. 4.

Fig. 4. If TopLevelWellTagged(t0, f), then replace the R strands with some F, M, and T strands.

3.2.4 Unique origination

We will now consider the question of unique origination. We want to show that, if a

fact f0 originates on an honest node in C′ in the HLS-scheme, then f0 originates on the
corresponding honest node in C in the A-scheme. On the other hand, suppose that f0
originates on a penetrator node in C′. There are four possibilities to consider:

PREVENT TYPE-FLAW ATTACKS

73

1. f0 originates on an M strand corresponding to an occurrence of f0 on the corresponding
M strand in C.

2. f0 originates on a K strand corresponding to an occurrence of f0 on the corresponding K
strand in C.

3. f0 originates on an M strand corresponding to an occurrence of a top-level-ill-tagged
fact (t, f) on an R strand in C, with f0 ⊏ φ(t, f).

4. f0 originates on an M strand corresponding to an occurrence of a top-level-well-tagged
fact (t, f) on an R strand in C, with f0 ⊏ (t, f).

The above four possibilities do not cause any problems, for if the term originates

multiple times in C′, then f0 originates multiple times in C.
The above result is summarized in the following theorem.

Theorem 5 If C is a bundle under the A-scheme, then there exist a transformation φ
and a bundle C′ in the HLS-scheme, such that
1. C′ contains the tagged fact φ(tf) for each tagged fact tf of C;
2. C′ contains the corresponding honest strand for each honest strand of C;
3. if facts uniquely originate in C, then they also uniquely originate in C′;
4. all tagged facts of C′ are well-tagged.

3.3 Secrecy and Authentication

In this subsection, we will prove our first result: if there is a type flaw attack on a
protocol under the A-scheme, there is a type flaw attack under the HLS-scheme. We will
discuss secrecy and authentication separately.

Theorem (Secrecy) Let temp be the strand template for some role in the A-scheme. Let
(t, v) be a tagged variable. Let h be a positive integer. Let Keys be a set of function tem-
plates. Let C be a bundle in the A-scheme, and let C′ be the well-tagged bundle obtained
by transforming C. (Note that C′ is in the HLS-scheme.) If there is a failure of secrecy in
C, then there will be a failure of secrecy in C′ as well.

Theorem (Authentication) Let temp1 and temp2 be the templates for two roles in the
A-scheme. Let X be the set of variables in the templates. Let h1 and h2 be two positive
integers. Let Keys be a set of function templates. Let C be a bundle in the A-scheme, and
let C′ be a well-tagged bundle in the HLS-scheme, obtained by transforming C. If there is
a failure of authentication in C, then there will be a failure of authentication in C′ as well.

4. THE B-SCHEME

4.1 Defining the B-Scheme

In this subsection, we will present the new model that will be used to prove the sec-
ond point: a protocol under the simplified tagging scheme without the outermost-level

YAFEN LI, WUU YANG AND CHING-WEI HUANG

74

tags is as secure as one under the simplified tagging scheme with the outermost-level
tags; hence, is as secure as one under Heather et al.’s (full) tagging scheme. That is, if
there is an attack upon a protocol under the B-scheme, then there must be a
corresponding attack under the A-scheme (and, hence, under the HLS-scheme). The
implication of this result is that, even without the outermost-level tags, we can still
prevent all type flaw attacks. This B-scheme is based on the previous A-scheme.

4.1.1 Strand templates

The new strand template is defined as follows:

StrandTemplate ::= (Sign × Template*)*
 Sign ::= + | −
TaggedTemplate ::= Tag* × Template*

Template ::= Var | Fn(Var*) | Tag
TemplatelateTaggedTemp }{ *

Note that in StrandTemplate, the outermost-level tags are omitted in the above defi-

nition. For example, the role A in the Neuman-Stubblebine protocol [7] would be defined
by the following strand template:

tempa ≅

< +(a, na),
−({(agent, nonce, key, timestamp), (b, na, kab, ,)}),(

shared
saSharedbt

 {(agent, key, timestamp), (a, kab,), ,)}),(b
shared

sbShared ntb
 +({(agent, key, timestamp), (a, kab, ,)}),(

shared
sbSharedtb

 {(nonce,))}shared
kb ab

n >

The strand template in this B-scheme is almost exactly the same as that in the pre-

vious A-scheme defining the same role in the same protocol except that the outer-
most-level tags are omitted in this B-scheme.

Definition An honest strand is one that results from the application of a substitution to
a strand template.

All strands representing an execution of a particular role can be formed by instanti-
ating the free variables of the corresponding strand template. Formally, a substitution is a
function that maps a variable to a simple fact. A substitution can be lifted to the templates,
the tagged templates, and the strand templates:

sub : var → simple fact
subt : template → fact
subtt : tagged template → tagged fact
subs : strand template → honest strand

These are defined as follows:

PREVENT TYPE-FLAW ATTACKS

75

subt(v) = sub(v)
subt(g(v1, …, vn)) = (g(sub(v1), …, sub(vn))), ∀g ∈ Fn
subt))}(({)}({)(

tk
ksubt

tk
k ttsubtttt =

subtt(tt) = (t1, …, tk, subt(t′1), …, subt(t′k))
where tt = (t1, …, tk, t′1, …, t′k) and each (ti, t′i) is a simple tagged fact of tt

subs(s) = ((s1, subt(t1)), …, (sk, subt(tk)))
 where s = ((s1, t1), …, (sk, tk)) and each si ∈ {+, −}

We also assume that each strand template is consistently tagged; that is, the same

tags are always given to the same variables.

4.1.2 Penetrator traces

Penetrator traces in the B-scheme are analogous to those in the A-scheme. We also
assume that there is some set T of simple facts that the penetrator can produce and some
set Kp of keys that the penetrator has available. A penetrator trace is one of the following
strands: M′, F′, T ′, C′, S′, K′, E′, or D′. Note that we do not need the R′ strands in this
B-scheme because the outermost-level tags are omitted.

M′ Text message <+ f> for f ∈ T. Note that an M′ strand only produces simple facts

and non-simple facts can be produced by means of concatenation:
F′ Flushing <− fs>.
T′ Tee <− fs, + fs, + fs>.
C′ Concatenation <− fs1, …, − fsk, + (fs1, …, fsk)>.
S′ Separation <− (f1, …, fk), + f1, …, + fk>.
K′ Key <+ k> with some tk ∈ Tag such that WellTagged(tk, k) and k ∈ Kp.
E′ Encryption <− k, − fs, + {(ts, ,)} >tk

kfs where ts is the set of tags of facts in fs and tk
is the interpreted key type of k.

D′ Decryption <− k′, − {(ts, , ,)} >+ fsfs tk
k where tk and tk′ are tags representing in-

verse key types and k′ is the decryption key corresponding to k when they are consid-
ered to be keys of the types tk′ and tk, respectively.

4.2 Transforming Bundles

In this subsection, we will show that each bundle in the B-scheme can be trans-
formed into a corresponding bundle in the A-scheme.

4.2.1 Transforming honest strands

Every honest strand in the B-scheme can be transformed into an honest strand in the
A-scheme by prepending the corresponding outermost-level tags of the strand template.
For example, the strand produced by role A in the Neuman-Stubblebine protocol [7] is
shown in Fig. 5.

YAFEN LI, WUU YANG AND CHING-WEI HUANG

76

Fig. 5. Transforming honest strands.

4.2.2 Transforming penetrator strands

Since we know how to transform honest strands, what we need to do now is trans-
form the penetrator strands. Let C be a bundle in the B-scheme. Initially, let C′ be the set
of the honest strands obtained by transforming the honest strands of C. Let P = C − C′,
which contains the penetrator strands and the → edges of C. Let NC and NC ′ be the sets of
nodes incident with an edge in C and C′, respectively. Let NP = NC − NC ′.

Now we want to transform the edges in P. Depending on the sources and targets of
the edges as well as the signs on the nodes, we will consider each edge in turn until the
set P becomes an empty set. There are five cases as discussed below.

First, we consider edges from NC ′ to NP.

If there exists a → edge in P from a node u(+ (ts, fs)) in NC ′ to a node v(− fs) in NP
(shown in Fig. 6), then we can replace the v(− fs) node with a v(− (ts, fs)) node, add a
new edge u → v to C′, and remove the original edge u → v from P.

Fig. 6. We prepare to replace the edge u → v.

PREVENT TYPE-FLAW ATTACKS

77

Second, we consider edges from NC ′ to NC ′.
If there exists a → edge in P from the node u to another node w in NC ′ (shown in Fig.

7), then there are two cases to consider.

Fig. 7. Create a new edge u → w.

Case 1. If the outermost-level tags of u and w are the same, then we are done.
Case 2. Otherwise, we can use an S strand to separate term(u) into simple tagged facts. If

there are sub-facts in term(w) that are not the sub-facts in term(u), we can use
some M and K strands to produce these sub-facts. We then use R strands to
change the tags and use a C strand to concatenate the tagged facts. Finally, add
the R, M, K, S strands and the appropriate → edges to the set C′, and remove the
edge u → w from P. This is done in Fig. 8.

Fig. 8. The case ts ≠ ts′.

YAFEN LI, WUU YANG AND CHING-WEI HUANG

78

Third, we consider edges from NC ′ to NP.
If there exists a ⇒ edge in P from a node u in NC ′ to a node v in NP (that is, u and v

are in the same strand) such that v has a positive sign and the predecessors of both u and
v on the same strand have the outermost-level tags (shown in Fig. 9), then we can find
the outermost-level tag of v as follows:

Fig. 9. Finding the outermost-level tag of v.

Case 1. If v belongs to a T ′ (tee) strand, then the outermost-level tags of the node v and

the node following v are the same as those of u.
Case 2. If v belongs to a C′ (concatenation) strand, then the outermost-level tag of v is

the concatenation of the outmost-level tags of the predecessors on the same
strand.

Case 3. If v belongs to an S′ (separation) strand, then we substitute some M and R strands
and an S strand for the S′ strand. The S strand separates the tagged fact. The M
and K strands produce facts that are terms of nodes in the S′ strand but are not
terms of nodes in the S strand. Finally, we adjust the related edges properly.

Case 4. If v belongs to an E′ (encryption) strand, then we have the situation shown in
Fig. 10.

Fig. 10. An E′ strand.

If tk ≠ tk′, then we can use an R strand to retag the term (tk, k) with (tk′, k) and adjust

the related edges. This is shown in Fig. 11.

PREVENT TYPE-FLAW ATTACKS

79

Fig. 11. Introduce an R strand.

If ts ≠ ts′ (as shown in Fig. 10), then we use an S strand to separate (ts, fs), create

some M and K strands to produce facts that are sub-facts of (ts′, fs) but are not sub-facts
of (ts, fs), use R strands to change the tags, and use a C strand to concatenate the tagged
facts. We then add the M, K, R, and C strands to C′. We replace the term (ts, fs) of node u
with (ts′, fs) and adjust the related edges. The outermost-level tag of the term of node v is
{|ts′|}tk′. This is shown in Fig. 12.

Fig. 12. Replace the − (ts, fs) tag of node u with − (ts′, fs) in Fig. 10.

YAFEN LI, WUU YANG AND CHING-WEI HUANG

80

Case 5. If v belongs to a D′ (decryption) strand, then we have the situation shown in
Fig. 13.

Fig. 13. A D′ strand.

If tk and tk′ are not tags representing inverse key types, then we can use an R strand

to change the tag of w (shown in Fig. 13) to (tk″, k) (shown in Fig. 14). (Note that t″ is
chosen to be the inverse key type of tk.) The outermost-level tag of v is GetTags(the en-
cryption body of the second node). This is shown in Fig. 14.

Fig. 14. Use an R strand to change the tag of w.

Finally, we replace the outermost-level tag of v with the tag we have built up and

move the new edges from P to C′.

Fourth, we consider edges from NP to NP.
If there exists a → edge in P from a node u(+ f) in NP on an M′ or K′ strand to a

node v(− f) in NP (as shown in Fig. 15), then we can select an appropriate tag t ∈ Tag. We
replace (+ f) with (+ (t, f)), which is an M or K strand, replace (− f) with (− (t, f)), add the
edge u → v to C′, and remove the original edge u → v from P.

Finally, we consider edges from NP to NC ′.

If there exists a → edge in P from a node u(+ f) in NP on an M′ or K′ strand to a
node v(− (t, f)) in NC ′ (shown in Fig. 16), then we will consider the following two cases.

PREVENT TYPE-FLAW ATTACKS

81

Fig. 15. An M′ or K′ strand in NP.

Fig. 16. An M′ or K′ strand from NP to NC′

Case 1. Suppose (t, f) is a simple fact.

Subcase 1. If node u is on an M′ (message) strand, then we replace (+ f) with
(+ (t, f)), which is an M strand.
Subcase 2. If node u is on a K′ (key) strand, we do one of the following:

• If WellTagged(t, f), then we replace (+ f) with (+ (t, f)), which is a K strand.
• If ¬WellTagged(t, f), then we can find a tag t′ ∈ Tag such that WellTagged(t′,

f). We replace (+ f) with (+ (t′, f)), which is a K strand, use an R strand to
change (t, f) to (t′, f), and adjust the related edges.

Case 2. Suppose (t, f) is not a simple fact. We can use some M, K, R, and C strands to
produce the non-simple tagged fact (t, f). We then add the M, K, R, and C
strands to C′ and adjust the related edges.

We add the u → v edge to C′ and remove the original edge u → v from P.

After every edge is examined in the above manner, each of the M′, K′, T′, C′, S′, E′,
and D′ strands in C is transformed into some corresponding M, K, T, C, S, E, D, and R
strands in C′.

We can prove that an honest strand in the B-scheme corresponds to an honest strand
in the A-scheme, and that they are related by similar substitutions.

Lemma 6 Let temp be a strand template in the B-scheme, and let temp′ be a strand
template that defines the same role in the same protocol in the A-scheme. Let C be a
bundle in the B-scheme, and let C′ be a tagged bundle (in the A-scheme) obtained by

YAFEN LI, WUU YANG AND CHING-WEI HUANG

82

transforming C. For each honest strand (subs′(temp′) with respect to the substitution sub′)
in C′, there exists a corresponding honest strand (subs(temp) with respect to the substitu-
tion sub) in C such that sub(v) = sub′(v), for every v ∈ Var.

4.2.3 Unique origination

Note that the facts on the honest strands in the B-scheme that are not interpreted

according to the corresponding correct outermost-level tags must originate on the pene-
trator strands. Therefore, if a fact f originates on an honest or penetrator node in C′, then f
originates on the corresponding honest or penetrator node, respectively, in C.

4.3 Secrecy and Authentication

In this subsection, we will prove our second result; that is, if there is a type flaw at-
tack on a protocol under the B-scheme, then there is a type flaw attack under the
A-scheme. We will discuss secrecy and authentication separately.

Theorem (Secrecy) Let temp be a template in the B-scheme, and let temp′ be the tem-
plate in the A-scheme for the same role. Let (t, v) be a tagged variable. Let h be a positive
integer. Let Keys be a set of function templates. Let C be a bundle in the B-scheme, and
let C′ be a tagged bundle (in the A-scheme) obtained by transforming C. If there is a fail-
ure of secrecy in C, then there will be a failure of secrecy in C′ as well.

Theorem (Authentication) Let temp1 and temp2 be templates for two roles in the
B-scheme. Let temp1′ and temp2′ be templates for the same roles in the A-scheme. Let X
be the set of variables in the templates. Let h1 and h2 be two positive integers. Let Keys
be a set of function templates. Let C be a bundle in the B-scheme, and let C′ be a tagged
bundle (in the A-scheme) obtained by transforming C. If there is a failure of authentica-
tion in C, then there will be a failure of authentication in C′ as well.

5. CONCLUSIONS

Heather, Lowe, and Schneider showed that adding tags to fields in security mes-
sages can prevent type flaw attacks. We have further simplified their scheme by combin-
ing and omitting certain tags. The main contribution of our work is the insight that an
attacker cannot fake the outermost-level tags. Any attempt to fake the outermost-level
tags will be detected by the real participants in a security protocol. All type flaw attacks,
if they ever occur, must be related to fields inside an encrypted message in a security
protocol.

Verification of security protocols is similar to verification of computer programs,
and the two procedures have complimentary emphases. While we hope that a computer
program does what it is intended for, which is explicitly prescribed in the program’s text,
the most important property of a security protocol is that it contains no hidden holes or
weaknesses. Such holes and weaknesses are not explicitly mentioned or even hinted at
the description of the behavior of a security protocol.

PREVENT TYPE-FLAW ATTACKS

83

REFERENCES

1. U. Carlsen, “Cryptographic protocol flaws: know your enemy,” in Proceedings of
Computer Security Foundations Workshop VII, 1994, pp. 192-200.

2. F. J. T. Fabrega, J. C. Herzog, and J. D. Guttman, “Strand spaces: why is a security
protocol correct?” in Proceedings of 1998 IEEE Symposium on Security and Privacy,
1998, pp. 160-171.

3. J. Heather, G. Lowe, and S. Schneider, “How to prevent type flaw attacks on secu-
rity protocols,” in Proceedings of 13th IEEE Computer Security Foundations Work-
shop, 2000, pp. 255-268.

4. G. Lowe, “A hierarchy of authentication specifications,” in Proceedings of 10th
Computer Security Foundations Workshop, 1997, pp. 31-43.

5. C. A. Meadows, “Analyzing the Needham-Schroder public-key protocol: a com-
parison of two approaches,” in E. Bertino, H. Kurth, G. Martella, and E. Montolivo,
ed., ESORICS ’96, LNCS 1146, 1996, pp. 351-346.

6. R. Needham and M. Schroeder, “Using encryption for authentication in large net-
works of computers,” Communications of the ACM, Vol. 21, 1978, pp. 993-999.

7. B. C. Neuman and S. G. Stubblebine, “A note on the use of timestamps as nonces,”
ACM Operating Systems Reviews, Vol. 27, 1993, pp. 10-14.

8. L. C. Paulson, “Proving security protocols correct,” in Proceedings of 14th Sympo-
sium on Logic in Computer Science, 1999, pp. 370-381.

9. T. Y. C. Woo and S. S. Lam, “A lesson on authentication protocol design,” ACM
Operating Systems Reviews, Vol. 28, 1994, pp. 24-37.

Yafen Li (黎雅芬) received her B.S. degree in Computer
Science and Information Engineering from National Chiao Tung
University in 2001 and the M.S. degree in Computer and Infor-
mation Science from National Chiao Tung University in 2003.
Currently she is an engineer in Trend Micro Company. She is
very interested in the study of network security.

Wuu Yang (楊武) received his B.S. degree in Computer Sci-
ence from National Taiwan University in 1982 and the M.S. and
Ph.D. degrees in Computer Science from University of Wisconsin
at Madison in 1987 and 1990, respectively. Currently he is a
professor in the National Chiao Tung University, Taiwan, R.O.C.
Dr. Yang’s current research interests include Java and network
security, programming languages and compilers, and attribute
grammars. He is also very interested in the study of human lan-
guages and human intelligence.

YAFEN LI, WUU YANG AND CHING-WEI HUANG

84

Ching-Wei Huang (黃經緯) received his B.S. degree in
Mathematics from National Tsing Hua University in 1994 and the
M.S. degree in Computer Science from National Chiao Tung Uni-
versity in 1997. Currently he is doing his Ph.D degree in
Computer Science. His current research interests include distrib-
uted systems, peer-to-peer systems, and parallel computing.

