
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 21, 59-84 (2005) 

59  

On Preventing Type Flaw Attacks on Security Protocols 
With a Simplified Tagging Scheme* 

 
YAFEN LI, WUU YANG AND CHING-WEI HUANG 

Department of Computer and Information Science 
National Chiao Tung University 

Hsinchu, 300 Taiwan 

 
A type flaw attack on a security protocol is an attack in which a field in a message 

that was originally intended to have one type is subsequently interpreted as having an-
other type. Heather et al. proved that type flaw attacks can be prevented by tagging each 
field with the information that indicates its intended type. We simplify Heather et al.’s 
tagging scheme by combining all the tags inside each encrypted component into a single 
tag and by omitting the tags on the outermost level. The simplification process reduces 
the sizes of messages in the security protocol. We also formally prove that our simplified 
tagging scheme is as secure as Heather et al.’ with the strand space method. 
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1. INTRODUCTION 
 

A type flaw attack on a security protocol is an attack in which a field of a message 
that was originally intended to have one type is subsequently interpreted as having an-
other type [3]. For example, consider the Neuman-Stubblebine protocol [7]: 

 
Initial exchange 
Msg 1. A → B : A, Na 
Msg 2. B → S : B, {A, Na, Tb}Shared(B,S), Nb 
Msg 3. S → A : {B, Na, Kab, Tb}Shared(A,S), {A, Kab, Tb}Shared(B,S), Nb 
Msg 4. A → B : {A, Kab, Tb}Shared(B,S), {Nb}kab

 
 
Subsequent authentication 
Msg 5. A → B : Na′, {A, Kab, Tb}Shared(B,S) 
Msg 6. B → A : Nb′, {Na′}Kab  
Msg 7. A → B : {Nb′}Kab  
 
In [1], Carlsen described a type flaw attack on the Neuman-Stubblebine protocol. 

The attack is shown below, where Px denotes the penetrator which masquerades as the 
principal x: 
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Msg 1. Pa → B : A, NP 
Msg 2. B → Ps : B, {A, NP, Tb}Shared(B,S), Nb 
Msg 4. Pa → B : {A, NP, Tb}Shared(B,S), {Nb}NP

 
 
In the attack, the two penetrators Pa and Ps (which could possibly be the same at-

tacker) collaborate to cheat B. B will decode message 4 with the secret key Shared(B, S) 
shared by B and the real server S to obtain NP, which B is fooled into believing is the 
secret session key between B and A. Once the protocol for the initial exchange is 
compromised, subsequent authentication can be attacked in a trivial manner. 

Heather et al. [3] proved that type flaw attacks can be prevented by tagging each 
field with the information that indicates its intended type. The Neuman-Stubblebine pro-
tocol with Heather et al.’s tags is shown below. We follow the notation in [3]. A pair of 
curly brackets with a suitable superscript and/or a subscript indicates encryption. Items in 
the same components are separated with commas. 

 
Initial exchange 
Msg 1. A → B : (agent, A), (nonce, Na) 
Msg 2. B → S : (agent, B), ({|nonce, timestamp|}shared, 

{(nonce, Na), (timestamp, ,)} ),(
shared

SBSharedbT (nonce, Nb) 

Msg 3. S → A : ({|agent, nonce, shared, timestamp|}shared, 
{(agent, B), (nonce, Na), (shared, Kab), (timestamp, ,)} ),(

shared
SASharedbT  

({|agent, shared, timestamp|}shared, 
{(agent, A), (shared, Kab), (timestamp, ),)} ),(

shared
SBSharedbT (nonce, Nb) 

Msg 4. A → B : ({|agent, shared, timestamp|}shared, 
{(agent, A), (shared, Kab), (timestamp, ),)} ),(

shared
SBSharedbT  

({|nonce|}shared, {(nonce, ))}shared
kb ab

N  

 
Subsequent authentication 
Msg 5. A → B : (nonce, Na′), ({|agent, shared, timestamp|}shared, 

{(agent, A), (shared, Kab), (timestamp, ),)} ),(
shared

SBSharedbT  
Msg 6. B → A : (nonce, Nb′), ({|nonce|}shared, {(nonce, ))}shared

Ka ab
N ′  

Msg 7. A → B : ({|nonce|}shared, {(nonce, ))}shared
Kb ab

N ′  
 
In this paper, we simplify the tagging scheme by combining all the tags inside each 

encrypted component into a single tag and by omitting the tags on the outermost level. 
The Neuman-Stubblebine protocol with our simplified tags is shown below:  

 
Initial exchange 
Msg 1. A → B : A, Na 
Msg 2. B → S : B, {(agent, nonce, timestamp), (A, Na, b

shared
SBSharedb NT ,)} ),(  

Msg 3. S → A : {(agent, nonce, shared, timestamp), (B, Na, Kab, ,)} ),(
shared

SASharedbT  
{(agent, shared, timestamp), (A, Kab, Tb)}Shared(B,S), Nb 

Msg 4. A → B : {(agent, shared, timestamp), (A, Kab, Tb)}Shared(B,S),  
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{(nonce, shared
kb ab

N )}  
 

Subsequent authentication 
Msg 5. A → B : Na′, {(agent, shared, timestamp), (A, Kab,

shared
SBSharedbT ),()}  

Msg 6. B → A : N b′, {(nonce, shared
Ka ab

N )}′  

Msg 7. A → B : {(nonce, shared
Kb ab

N )}′  
 
Consider the fourth message in the protocol. Note that, in our simplified tagging 

scheme, the outermost-level tags − {|agent, key, timestamp|}shared and {|nonce|}shared − are 
omitted. Furthermore, the three tags insides the encrypted component − agent, key, and 
timestamp − are combined into a single tag − (agent, key, timestamp). Because in a secu-
rity protocol, the number of different possible tag types is very limited, the combined tag 
can be represented with a single, small integer. 

Following Heather-Lowe-Schneider’s proof method [3] (which will be referred to as 
the HLS-scheme in this paper), we can also prove that our simplified tagging scheme is 
as secure as the HLS-scheme. The proofs proceed in two stages. In the first stage, we first 
define an A-scheme in which all tags inside each encrypted component are combined into 
a single tag. We show that the A-scheme is as secure as the HLS-scheme. In the second 
stage, the A-scheme is further simplified. We define a B-scheme in which the outer-
most-level tags are omitted and the simplifications done in the A-scheme are employed. 
We then show that the B-scheme is as secure as the A-scheme. We can then conclude that 
the B-scheme, our simplified tagging scheme, is as secure as Heather et al.’s (full) tag-
ging scheme. 

Since we adopt the same model and proof techniques employed in [2, 3], the defini-
tions in this paper (in sections 3, 4, and 5) are adapted from those in the above works, 
with modifications needed to reflect our simplified tagging scheme. We provide these 
definitions in order to help the reader to understand the proofs which we will give later. 

Attacks based on type flaws are quite common in security protocols. Meadows [5] 
also discussed a similar type flaw attack on the Needham-Schroder protocol [6]. The 
Woo-Lam protocol π1 [9] is also vulnerable to type flaw attacks [3]. 

The remainder of this paper is organized as follows: Section 2 defines the strand 
space model [2]. Section 3 defines the A-scheme and shows that the A-scheme is as se-
cure as the HLS-scheme. In section 4, we define the B-scheme and show that the 
B-scheme is as secure as the A-scheme. Section 5 concludes this paper. 

2. BACKGROUND 

2.1 Strand Spaces 

Our proof method is based on strand spaces [2]. We will briefly review strand 
spaces and their notations. In this section, A denotes the set of all possible messages that 
can be sent or received by principals in a protocol. T denotes the set of atomic messages. 
K denotes the set of keys. The elements of A are called terms (or facts). There are a unary 
operator and two binary operators defined on A:  
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• A unary operator inv: K → K. inv maps a member of a key pair to the other for an 
asymmetric key and maps a symmetric key to itself.  

• Two binary operators for encryption and joining, respectively are  

encr: K × A → A 
join : A × A → A 

We will write inv(K) as K-1, encr(K, m) as {m}K, and join(a, b) as ab. We will refer 
to the set of ciphertexts of the form {h}k as E and to the set of terms of the form ab as C. 
A term (fact) f is simple if f ∈ T ∪ K ∪ E. 

A 
•+(A, Na) 
⇓ 
•−(B, {A, Na, kab, Tb}Kas

, {A, Kab, Tb}Kas
, Nb) 

⇓ 
•+({A, Kab, Tb}Kbs

, {Nb}Kab
) 

Fig. 1. A strand. 

A strand represents a sequence of events that a principle may be engaged in. That is, 
each strand is a sequence of message transmissions and receptions. Formally, it has the 
form 〈± a1, ± a2, …, ± an〉, where + a represents the transmission of message a and − a 
represents the reception of message a. An element of the strand is called a node. 

A graph structure is defined on strands with two types of edges (Fig. 1 shows a sam-
ple strand): 

 
• If nodes ni and ni+1 are consecutive steps on the same strand, then we write ni ⇒ ni+1. 

This represents the causal relationship between ni and ni+1.  
• If nodes ni = + a and nj = − a, then we write ni → nj. This means that node ni sends a 

message which is received by node nj.  
 
A bundle is a finite subgraph of this graph. It consists of a number of strands, le-

gitimate or otherwise, hooked together, where one strand sends a message and another 
strand receives the message. Fig. 2 shows a sample bundle that involves three strands. 
Formally, let C be a set of edges, and let NC be the set of nodes incident with any edge in 
C. C is a bundle if  

 
1. C is finite.  
2. If n1 ∈ NC and n1 has a negative sign, then there is a unique n2 such that the edge n2 → 

n1 ∈ C.  
3. If n1 ∈ NC and n2 ⇒ n1, then the edge n2 ⇒ n1 ∈ C. 
4. C is acyclic.  

 
We will speak of a node as being in the bundle C if, in fact, it is in NC. 
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Fig. 2. A bundle. 

2.2 Honest Agents 

2.2.1 Strand templates 

As in [3], we assume that each role in the protocol is defined by a strand template. A 
strand template is defined as follows:  

 
StrandTemplate ::= (Sign × Template)* 

           Sign ::= + | − 
       Template ::= Var | Fn(Var*) | Tag

TemplateTemplate }{ *  
 
As in [3], the template g(v1, …, vn) represents the function g applied to variables 

v1, …, vn. It is only defined when they are applied to arguments of the correct types. The 
template tag

kt represents template t encrypted using key k and an encryption algorithm 
corresponding to tag. For example, the roles A, B, and S in the Neuman-Stubblebine 
protocol [7] would be defined by the following three strand templates:  

 
tempa ≅< +(a, na), − ({b, na, kab, tb}Shared(a,s), x, nb), + (x, {nb}kab

) > 
tempb ≅< − (a, na), + (b, {a, na, tb}Shared(b,s), nb) 

− ({a, kab, tb}Shared(b,s), {nb}kab
) > 

temps ≅< − (b, {a, na, tb}Shared(b,s), nb) 
+ ({b, na, kab, tb}Shared(a,s), {a, kab, tb}Shared(b,s), nb) > 

 
All strands representing an execution of a particular role can be obtained by instan-

tiating the free variables of the corresponding strand template. 
 
Definition  An honest strand is one that results from the application of a substitution to 
a strand template. 
 

Formally, a substitution is a function that maps a variable to a simple fact. Such a 
substitution function can be lifted to the templates and the strand templates:  
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sub  : var → simple fact 
subt : template → fact 
subs : strand template → honest strand 
 

These are defined as 

)))( ,( ..., )),( ,(()) ,( ..., ), ,((

))}(({)}({

))),( ..., ),((())..., ,((

),()(

1111

)(

11

kkkk

tk
ksubt

tk
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∈∀=
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2.3 Penetrators 

 
Two ingredients characterize a penetrator’s capabilities: a set of keys known ini-

tially to the penetrator and a set of penetrator traces that allow the penetrator to generate 
new messages from the messages he intercepts. 

The atomic actions available to the penetrator (i.e., a penetrator trace) include the M 
(text message), F (flushing), T (tee), C (concatenation), S (separation), K (key), E (en-
cryption), and D (decryption) strands. According to [1, 7], it is possible to extend the set 
of penetrator traces given here to model other abilities of the penetrator. 
 
Definition  Each penetrator strand is one that results from the application of a substitu-
tion to a penetrator trace. 
 
2.4 Security Properties 
 

As in [3], failures of a security protocol include failures of secrecy and authentica-
tion.  

There is a breach of secrecy if there is a strand s in which the value of a particular 
variable v (which is intended to remain secret) becomes known to the penetrator, even if 
the secret keys have not been compromised. In this case, strand s represents a penetrator 
strand. There is a breach of authentication if there is a penetrator strand s1 without a cor-
responding honest strand s2, even if the secret keys have not been compromised. Here, s1 
and s2 are related by two substitutions, sub1 and sub2, that agree on some set of variables 
X. In this case, strand s1 represents a penetrator strand. Note that if s1 is an honest strand, 
there must be a corresponding honest strand s2. 

3. THE A-SCHEME 

3.1 Defining the A-Scheme 
 

In this subsection, we present the model that will be used to prove the first point − a 
protocol under our simplified tagging scheme (but with the outermost-level tags) is as 
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secure as that under Heather et al.’s (full) tagging scheme. That is, if there is an attack on 
a protocol under the A-scheme, then there must exist a corresponding attack under the 
HLS-scheme. This model is based on the strand space model discussed in [2, 3, 7].   

Our proof proceeds as follows. First, we model the abilities of a penetrator with the 
penetrator strands in the A-scheme. Then, we show that every penetrator strand in the 
A-scheme corresponds to a penetrator strand in the HLS-scheme. Hence, the A-scheme 
will not introduce any new security attacks that are not present in the HLS-scheme.   

3.1.1 Tags and facts 

Tags  As in [3], we assume that atomic values are partitioned into types, including agent, 
nonce, time-stamp, public key, etc., and we will adopt the obvious names for each tag. 
The types of tags can be defined as follows:   
 

Tag ::= agent | nonce | timestamp | public | … |{|Tag*|}Tag 
 
We assume that the tag for an encrypted item includes an indication of the encryp-

tion algorithm (e.g., DES or RSA public key encryption) that is claimed to have been 
used to produce the message. We include this algorithm tag because we want to be able 
to model the case where a key is used in the wrong algorithm. We also include the type of 
body within the encryption tag. 
 
Tagged Facts  We represent the tagged facts as (Tags, Facts) pairs, where the tags give 
the claimed types of the corresponding facts: 
 

Fact ::= Atom | Tag
FactTaggedFace}{  

TaggedFact ::= Tag* × Fact* 
 
A tagged fact tf is simple if tf = (t, f), where t ∈ Tag and f ∈ Fact. We also adopt the 

perfect encryption assumption1, that is, that an honest agent can tell whether it has cor-
rectly decrypted a message. We will use the notations ts and fs to represent a set of tags 
and a set of facts, respectively. We also use the pair (ts, fs) to represent a set of ordered 
pairs of simple tagged facts (t1, f1), (t2, f2), …, (tk, fk) (here, ts and fs must have exactly the 
same number of elements). We also use tf to represent a tagged fact. We often want to 
talk about the tag or fact components of a tagged fact, so we define projection functions 
as follows: 

 
(ts, fs)1 = ts, 
(ts, fs)2 = fs. 
 

Sub-Tagged-Fact Relation  The sub-tagged-fact relation ⊏ is defined inductively as 
follows: 
 

1 This can be implemented by including sufficient redundancy within the encryption scheme. 
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• (t, f) ⊏ (t, f) (reflexive) 
• (t, f) ⊏ (ts, fs) if (t, f) ⊏ (ti, fi), for some (ti, fi) in (ts, fs) 
• (ts, fs) ⊏ (ts′, fs′) if (ti, fi) ⊏ (ts′, fs′) for every (ti, fi) in (ts, fs) 
• (ts, fs) ⊏ ({|ts|}tk, {(ts′, fs′) )}tk

k if (ts, fs) ⊏ (ts′, fs′) 
 
Sub-Fact Relation  The sub-fact relation ⊏ is defined in terms of the Sub-tagged-fact 
relation as follows: 
 

• f ⊏ (ts, fs) if ∃ t ∈ Tag, (t, f) ⊏ (ts, fs) 
• fs ⊏ (ts′, fs′) if fi ⊏ (ts′, fs′), for every fi in fs 

 
Correct Tagging  We will now define what it means for a tagged fact to be correctly 
tagged: 
 

• WellTagged(agent, x) ⇔ x ∈ Agent 
• WellTagged(nonce, x) ⇔ x ∈ Nonce 
• WellTagged(timestamp, x) ⇔ x ∈ Timestamp 
• WellTagged(shared, x) ⇔ x ∈ Sharedkey 
• WellTagged(public, x) ⇔ x ∈ Publickey 
• WellTagged(private, x) ⇔ x ∈ Privatekey 
• WellTagged(ts, fs) ⇔ WellTagged(ti, fi), for every pair (ti, fi) in (ts, fs) 
• WellTagged({|ts|}tk, x) ⇔ ∃(ts, fs) ∈ TaggedFact, ∃k ∈ Fact, x = {( , )}ts fs k

tk ∧ 
WellTagged(ts, fs) ∧ WellTagged(tk, k) 

Top-Level Correct Tagging  We will now define what it means for a tagged fact to be 
correctly tagged at the outmost level: 

• TopLevelWellTagged(agent, x) ⇔ x ∈ Agent 
• TopLevelWellTagged(nonce, x) ⇔ x ∈ Nonce 
• TopLevelWellTagged(timestamp, x) ⇔ x ∈ Timestamp 
• TopLevelWellTagged(shared, x) ⇔ x ∈ Sharedkey 
• TopLevelWellTagged(public, x) ⇔ x ∈ Publickey 
• TopLevelWellTagged(private, x) ⇔ x ∈ Priavtekey 
• TopLevelWellTagged(ts, fs) ⇔ TopLevelWellTagged(ti, fi), for every pair (ti, fi) in 

(ts, fs) 
• TopLevelWellTagged({|ts|}tk, x) ⇔ ∃(ts, fs) ∈ TaggedFact, ∃k ∈ Fact, x ={( , )}ts fs k

tk  

Note that in TopLevelWellTagged({|ts|}tk, x), we intentionally leave out the two require-
ments WellTagged(ts, fs) and WellTagged(tk, k). 

3.1.2 Origination 

We will next discuss the origination of a fact or tagged fact. If S is a set of tagged 
facts, the term of node n is + tf for some tf ∈ S, and for each node n′ previous to n, the 
term of n′ is not in S; then, n is an entry point to S. The node n is the origination of a 
tagged fact tf if n is the entry point of the set of tagged facts {tf ′ | tf ⊏ tf ′}. Similarly, the 
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node n is the origination of a fact f, if n is the entry point of {tf ′ | f ⊏ tf ′}. A fact or 
tagged fact uniquely originates in a bundle C if it originates on a unique node of C. 

3.1.3 Strand templates 

As in [3], we use the strand templates to define roles in a protocol. A strand template 
is defined as follows:  

 
StrandTemplate ::= (Sign × TaggedTemplate)*  

           Sign ::= + | − 
TaggedTemplate ::= Tag* × Template* 

Template ::= Var | Fn(Var*) | Tag
TemplatelateTaggedTemp *}{  

 
As in [3], the template g(v1, …, vn) represents the function g applied to variables 

v1, …., vn. It is only defined when they are applied to arguments of the correct types. The 
template 3

2}1{ t
tt  represents template t1 encrypted with key t2 and algorithm t3. A tagged 

template tt is simple if tt = (t, t′), where t ∈ Tag and t′ ∈ Template. 
For example, the role A in the Neuman-Stubblebine protocol [7] would be defined 

by the following strand template: 
 

tempa ≅ 
<  +(  (agent, nonce), (a, na)), 

−(  ({|agent, nonce, key, timestamp|}shared, 
{|agent, key, timestamp|}shared, nonce) 

       ({(agent, nonce, key, timestamp), (b, na, kab, ,)} ),(
shared

saSharedbt  
       {(agent, key, timestamp), (a, kab, ,)} ),(

shared
sbSharedtb nb)), 

+(  ({|agent, key, timestamp|}shared, {|nonce|}shared), 
       ({(agent, key, timestamp), (a, kab, ,)} ),(

shared
sbSharedtb  

       {(nonce, >)))}shared
kb ab

n  
 
Definition  An honest strand is one that results from the application of a substitution to 
a strand template. 

 
All strands representing an execution of a particular role can be formed by instanti-

ating the free variables of the corresponding strand template. Formally, a substitution is a 
function mapping a variable to a simple fact. A substitution can be lifted to the templates, 
the tagged templates, and the strand templates:  

 
sub  : var → simple fact 
subt : template → fact 
subtt : tagged template → tagged fact 
subs : strand template → honest strand 

 
These are defined as 



YAFEN LI, WUU YANG AND CHING-WEI HUANG 

 

68 

 

subt(v) = sub(v) 
subt(g(v1, …, vn)) = (g(sub(v1), …, sub(vn))), ∀g ∈ Fn 
subt ))}(({)}({ )(

tk
ksubt

tk
k ttsubtttt =  

subtt(tt) = (t1, …, tk, subt(t′1), …, subt(t′k)) 
where tt = (t1, …, tk, t′1, …, t′k) and each (ti, t′i) is a simple tagged template 
of tt 

subs(s) = ((s1, subtt(tt1)), …, (sk, subtt(ttk))) 
        where s = ((s1, tt1), …, (sk, ttk)) and each si ∈ {+, −}. 
 
We also assume that each strand template is always consistently tagged; that is, the 

same tags are always given to the same variables. We also assume that simple tagged 
facts on honest strands are always well tagged, at least on the outermost level. 
 
Honest Strand Assumption  If the simple tagged fact (t, f) originates on an honest 
strand, then TopLevelWellTagged(t, f). 
 

This assumption implies a number of facts: 
 
• If an honest agent introduces a simple term for a variable, then he/she introduces a 

value of the expected type.  
• An honest agent will only tag a fact as an encryption if it is indeed created as an en-

cryption. The encryption tag will include the identity of the algorithm used and the tags 
of the body. However, the agent might receive ill-tagged keys from the penetrator. 
Hence, the key used for encryption might not have the expected type. 

 
3.1.4 Penetrator traces 
 

Following [1, 7], we assume that there is some set T of simple facts that the pene-
trator can produce and some set Kp of keys that the penetrator has available. Penetrator 
traces under the tagging scheme are exactly analogous to those in [3], but with modifica-
tions to the M, C, S, and R traces. 

A penetrator trace is one of the following strands: M, F, T, C, S, K, E, D, or R. 
 
M Text Message  〈+ (t, f)〉 for f ∈ T. The penetrator spontaneously generates a text 

message from the simple fact available to him/her. Note that the M strand only pro-
duces simple tagged facts, and that non-simple tagged facts can be produced by means 
of concatenation: 

F Flushing  〈− (ts, fs)〉; 
T Tee  〈− (ts, fs), + (ts, fs), + (ts, fs)〉; 
C Concatenation  〈− (ts1, fs1), …, − (tsk, fsk), + (ts1, …, tsk, fs1, …, fsk)〉; 
S Separation 〈− (t1, …, tk, f1, …, fk), + (t1, f1), …, + (tk, fk)〉; 
K Key  〈+ (tk, k)〉 with WellTagged(tk, k) and k ∈ Kp; 
E Encryption  〈− (tk, k), − (ts, fs), + ({|ts|}tk, ;))},{( 〉

tk
kfsts  

D Decryption  〈− (tk′, k′), − ({|ts|}tk, .),(  ),)},{( 〉+ fstsfsts tk
k Here, tk and tk′ are tags rep-
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resenting inverse key types, and k′ is the decryption key corresponding to k when they 
are considered as keys of types tk′ and tk, respectively. 

R Retagging  〈− (t, f), + (t′, f)〉. Note that the R strand only applies to simple tagged 
facts. Non-simple tagged facts can be retagged by means of separation, retagging of 
particular components, and then concatenation. No other penetrator traces interfere 
with the tags of their messages. 

 
We now have the following lemma. 

 
Lemma 1  Every simple tagged fact (t, f) that is top-level-ill-tagged (i.e., not top-level- 
well-tagged) originates on an R or M strand. 
 
3.2 Transforming Bundles 

 
In this subsection, we will explain the transformation of arbitrary bundles into 

well-tagged bundles. We will show that, given a bundle C in the A-scheme, we can con-
struct a corresponding bundle C ′ in the HLS-scheme in which all the terms are well-   
tagged. We will proceed in two steps: (1) We will define the properties the transformation 
φ must satisfy. (2) We will then show that such a transformation φ can always be con-
structed. 
 
3.2.1 Defining the transformation function 
 

The following definition captures the required properties of the transformation func-
tion φ: 
 
Definition  Given a bundle C, we define 
 

φ : tagged fact → tagged fact 
 
as a transformation function for C if:  
 
1. φ preserves the outermost-level tags. That is, if φ(ts, fs) = (ts′, fs′), then ts = ts′.  
2. φ returns well-tagged terms, that is, WellTagged(φ(ts, fs)).  
3. φ is the identity function over well-tagged terms. That is, if WellTagged(ts, fs), then 

φ(ts, fs) = (ts, fs).  
4. φ(t1, …, tk, f1, …, fk) = (t1, …, tk, φ(t1, f1)2, …, φ(tk, fk) 2).     
5. ).)},({  ,}({))},{( ,}({

2),(
tk

ktk
tktk

k
tk fststsfststs φφφ =  

6. φ respects inverses of keys. That is, if k and k′ are inverses of each other when consid-
ered as keys of types tk and tk′, respectively, then φ(tk, k) and φ(tk′, k′) are also in-
verses of each other when considered as keys of types tk and tk′, respectively.  

7. If (t, f) is a simple tagged fact of C that is (top-level-)ill-tagged, then the penetrator can 
always find a fact f ′ in T 2 such that (t, f ′) is (top-level-)well-tagged.  

 

2 T is the set of simple facts that the penetrator can produce. 
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3 SimpleTaggedFacts(C) is the set of simple tagged facts in C. 
4 TaggedFacts(C) is the set of tagged facts in C. 

8. When φ is applied to a simple tagged fact tf of C that is top-level-ill-tagged, it pro-
duces a fact that is essentially new. That is, ∀tf ∈ SimpleTaggedFacts(C)3 ∀f ∈ T 
[[¬TopLevelWellTagged(tf) ∧ f ⊏ φ(tf)] ⇒ ∀tf ′ ∈ TaggedFacts(C)4[tf ⊏ tf ′ ⇒ f � 

φ(tf ′)]]. 
 

Note that the transformation function φ is injective over the tagged facts of C. We 
can show that it is always possible to find the required φ. 
 
Lemma 2  Given a bundle C, there exists a transformation function φ for C. 
 
3.2.2 Transforming honest strands 

 
In this subsection, we will show that if a strand S = subs(temp) obtained by instanti-

ating a template temp with respect to the substitution sub is an honest strand, then the 
strand obtained by transforming each term of S with φ is also an honest strand. Consider 
the strand S′ = subs′(temp) with respect to the substitution sub′, defined as 

 
sub′(v) = φ (t, sub(v))2, 

 
where t is the unique tag for v in temp. Note that S ′ is also an honest strand. 
 
Lemma 3  Let φ, sub, and sub′ be defined as above. subtt and subtt′ are derived from 
sub and sub′, respectively. Then φ(subtt(tt)) = subtt′(tt). 
 
Lemma 4  If a strand S = subs(temp) obtained by instantiating a template temp with 
respect to the substitution sub is an honest strand, then the strand obtained by transform-
ing each term of S using the transformation φ is also an honest strand. 
 
3.2.3 Transforming penetrator strands 

 
We will show that, given the penetrator strands in a bundle C and a transformation φ, 

we can construct corresponding penetrator strands in a bundle C′ that are well-tagged. 
We will consider each penetrator trace in turn. 
 
M Text Message  Let S = 〈+ (t, x)〉 with x ∈ T. Define S ′ = 〈+ φ(t, x)〉, which is a well- 

tagged M strand because φ(t, x) ∈ T.  
F Flushing  Let S = 〈− tf〉. Define S ′ = 〈− φ(tf)〉, which is a well-tagged F strand.  
T Tee  Let S = 〈− tf, + tf, + tf〉. Define S′ = 〈− φ(tf), + φ(tf), + φ(tf)〉, which is a well- 

tagged T strand.  
C Concatenation  Let S = 〈− (t1, f1), …, − (tk, fk), + (t1, …, tk, f1, …, fk)〉. Define S′ =   

〈− φ(t1, f1), …, − φ(tk, fk), + φ(t1, …, tk, f1, …, fk)〉. Because φ(t1, …, tk, f1, …, fk) = (φ(t1, 
f1)1, …, φ(tk, fk)1, φ(t1, f1)2, …, φ(tk, fk)2), S′ is a well-tagged C strand.  
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S Separation  Let S = 〈− (t1, …, tk, f1, …, fk), + (t1, f1), …, + (tk, fk)〉. Define S′ = 〈     
+ φ(t1, …, tk, f1, …, fk), − φ(t1, f1), …, − φ(tk, fk)〉. Because φ(t1, …, tk, f1, …, fk) = (φ(t1, 
f1)1, …, φ(tk, fk)1, φ(t1, f1)2, …, φ(tk, fk)2), S′ is a well-tagged S strand.  

K Key  Let S = 〈+ (tk, k)〉 with WellTagged(tk, k) and k ∈ Kp. Define S′ = 〈+ φ(tk, k)〉 = 
〈+ (tk, k)〉, which is a well-taged K strand.  

E Encryption  Let S = 〈− (tk, k), −(ts, fs), + ({|ts|}tk, 〉))},{( tk
kfsts , where ts = GetTags(ts, 

fs). Define S′ = 〈− φ(tk, k), − φ(ts, fs), + φ({|ts|}tk, 〉))},{( tk
kfsts . Because φ({|ts|}tk, 

))},{( tk
kfsts = ({|ts|}tk, ),)},({

2),(
tk

ktkfsts φφ S′ is a well-tagged E strand.  
D Decryption  Let S = 〈− (tk′, k′), − ({|ts|}tk, ,),(  ),)},{( 〉+ fstsfsts tk

k where k and k′, which 
have types tk and tk′, respectively, are inverses of each other. Define S′ = 〈− φ(tk′, k′), 
− φ ({|ts|}tk, .),(  ),)},{( 〉+ fstsfsts tk

k φ  Because ,({  ,}({))},{( ,}({ tstsfststs tktk
k

tk φφ =   
),)}

2),(
tk

ktkfs φ S′ is a well-tagged D strand.  
R Retagging  Let S = 〈− (t1, f), + (t0, f)〉. We proceed in two stages in this case. First,    

− φ(t1, f) is a well-tagged F strand. Second, if ¬TopLevelWellTagged(t0, f), then + φ(t0, 
f) is a well-tagged M strand. We will replace the R strand in S with an F and an M 
strands in S′. This situation is illustrated in Fig. 3.  

 

Fig. 3. If ¬TopLevelWellTagged(t0, f), then replace the R strand in (a) with an F and an M strands  
in (b). 

 
On the other hand, if TopLevelWellTagged(t0, f), we will show that an earlier R 

strand has an initial node labelled with − (t0, f) or an earlier M strand produces the tagged 
fact + (t, f) for some t ∈ Tag in C.  

If t1 = t0, we are done. Here, we have a well-tagged F strand and a well-tagged M 
strand. Otherwise, ¬TopLevelWellTagged(t1, f). According to Lemma 1, the top-level-ill- 
tagged simple tagged fact must originate on an M or R strand. If the top-level-ill-tagged 
simple tagged fact (t1, f) originates on an M strand, then we are done. Otherwise, the sim-
ple tagged fact (t1, f) originates on an R strand. Then let the R strand be 〈− (t2, f) + (t1, f)〉. 

If t2 = t0, we are done. If not, (t2, f) originates on another M or R strand. We may re-
peat the above argument for (t2, f). 

Continuing in this way, we can find a sequence of earlier and earlier R strands or a 
sequence of earlier and earlier R strands and an M strand. Because the bundle is finite, 
this argument eventually stops. Hence, we may construct the corresponding penetrator 
strands as follows:  
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1. Remove nodes n0′ and nk.  
2. Each of the negative nodes on the R strands is replaced with an F strand.  
3. Other nodes on the R strands are replaced with an M strand and some T strands if the 

terms of nodes are the same. Suppose the terms of nodes n′k-1, n′2 and n′1 are the same. 
We have the situation shown in Fig. 4.   

4. If tk = t0 (that is, we can find an earlier R strand with an initial node labelled with  
− (t0, f) or an earlier M strand with a node labelled with − (t0, f)), then the → successor 
of n0′ in C becomes the → successor of φ(n) in C′. This is shown in part (1) of Fig. 4. 
If not (that is, we can find an earlier M strand to produce (t, f) for some t ∈ Tag), then 
we use an M strand to produce φ(t0, f) = (t0, f). The → successor of n0′ in C becomes 
the → successor of the node on the M strand in C′. This is shown in part (2) of Fig. 4.  

 
Fig. 4. If TopLevelWellTagged(t0, f), then replace the R strands with some F, M, and T strands. 

 
3.2.4 Unique origination 

 
We will now consider the question of unique origination. We want to show that, if a 

fact f0 originates on an honest node in C′ in the HLS-scheme, then f0 originates on the 
corresponding honest node in C in the A-scheme. On the other hand, suppose that f0 
originates on a penetrator node in C′. There are four possibilities to consider: 
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1. f0 originates on an M strand corresponding to an occurrence of f0 on the corresponding 
M strand in C.  

2. f0 originates on a K strand corresponding to an occurrence of f0 on the corresponding K 
strand in C. 

3. f0 originates on an M strand corresponding to an occurrence of a top-level-ill-tagged 
fact (t, f) on an R strand in C, with f0 ⊏ φ(t, f).  

4. f0 originates on an M strand corresponding to an occurrence of a top-level-well-tagged 
fact (t, f) on an R strand in C, with f0 ⊏ (t, f).  

 
The above four possibilities do not cause any problems, for if the term originates 

multiple times in C′, then f0 originates multiple times in C. 
The above result is summarized in the following theorem. 

 
Theorem 5  If C is a bundle under the A-scheme, then there exist a transformation φ 
and a bundle C′ in the HLS-scheme, such that 
1. C′ contains the tagged fact φ(tf) for each tagged fact tf of C; 
2. C′ contains the corresponding honest strand for each honest strand of C;  
3. if facts uniquely originate in C, then they also uniquely originate in C′; 
4. all tagged facts of C′ are well-tagged.  
 
3.3 Secrecy and Authentication 
 

In this subsection, we will prove our first result: if there is a type flaw attack on a 
protocol under the A-scheme, there is a type flaw attack under the HLS-scheme. We will 
discuss secrecy and authentication separately. 
 
Theorem (Secrecy)  Let temp be the strand template for some role in the A-scheme. Let 
(t, v) be a tagged variable. Let h be a positive integer. Let Keys be a set of function tem-
plates. Let C be a bundle in the A-scheme, and let C′ be the well-tagged bundle obtained 
by transforming C. (Note that C′ is in the HLS-scheme.) If there is a failure of secrecy in 
C, then there will be a failure of secrecy in C′ as well. 

 
Theorem (Authentication)  Let temp1 and temp2 be the templates for two roles in the 
A-scheme. Let X be the set of variables in the templates. Let h1 and h2 be two positive 
integers. Let Keys be a set of function templates. Let C be a bundle in the A-scheme, and 
let C′ be a well-tagged bundle in the HLS-scheme, obtained by transforming C. If there is 
a failure of authentication in C, then there will be a failure of authentication in C′ as well. 

4. THE B-SCHEME 

4.1 Defining the B-Scheme 

In this subsection, we will present the new model that will be used to prove the sec-
ond point: a protocol under the simplified tagging scheme without the outermost-level 
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tags is as secure as one under the simplified tagging scheme with the outermost-level 
tags; hence, is as secure as one under Heather et al.’s (full) tagging scheme. That is, if 
there is an attack upon a protocol under the B-scheme, then there must be a 
corresponding attack under the A-scheme (and, hence, under the HLS-scheme). The 
implication of this result is that, even without the outermost-level tags, we can still 
prevent all type flaw attacks. This B-scheme is based on the previous A-scheme. 

4.1.1 Strand templates 

The new strand template is defined as follows:  
 
StrandTemplate ::= (Sign × Template*)* 
         Sign ::= + | − 
TaggedTemplate ::= Tag* × Template* 

Template ::= Var | Fn(Var*) | Tag
TemplatelateTaggedTemp }{ *  

 
Note that in StrandTemplate, the outermost-level tags are omitted in the above defi-

nition. For example, the role A in the Neuman-Stubblebine protocol [7] would be defined 
by the following strand template:  

 
tempa ≅ 

<  +(  a, na), 
−(  {(agent, nonce, key, timestamp), (b, na, kab, ,)} ),(

shared
saSharedbt  

       {(agent, key, timestamp), (a, kab, ), ,)} ),( b
shared

sbShared ntb  
   +(  {(agent, key, timestamp), (a, kab, ,)} ),(

shared
sbSharedtb  

       {(nonce, ))}shared
kb ab

n > 
 
The strand template in this B-scheme is almost exactly the same as that in the pre-

vious A-scheme defining the same role in the same protocol except that the outer-
most-level tags are omitted in this B-scheme. 
 
Definition  An honest strand is one that results from the application of a substitution to 
a strand template. 
 

All strands representing an execution of a particular role can be formed by instanti-
ating the free variables of the corresponding strand template. Formally, a substitution is a 
function that maps a variable to a simple fact. A substitution can be lifted to the templates, 
the tagged templates, and the strand templates:  

 
sub  : var → simple fact 
subt : template → fact 
subtt : tagged template → tagged fact 
subs : strand template → honest strand 
 

These are defined as follows: 
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subt(v) = sub(v) 
subt(g(v1, …, vn)) = (g(sub(v1), …, sub(vn))), ∀g ∈ Fn 
subt ))}(({)}({ )(

tk
ksubt

tk
k ttsubtttt =  

subtt(tt) = (t1, …, tk, subt(t′1), …, subt(t′k)) 
where tt = (t1, …, tk, t′1, …, t′k) and each (ti, t′i) is a simple tagged fact of tt 

subs(s) = ((s1, subt(t1)), …, (sk, subt(tk))) 
        where s = ((s1, t1), …, (sk, tk)) and each si ∈ {+, −} 
 
We also assume that each strand template is consistently tagged; that is, the same 

tags are always given to the same variables.  

4.1.2 Penetrator traces 

Penetrator traces in the B-scheme are analogous to those in the A-scheme. We also 
assume that there is some set T of simple facts that the penetrator can produce and some 
set Kp of keys that the penetrator has available. A penetrator trace is one of the following 
strands: M′, F′, T ′, C′, S′, K′, E′, or D′. Note that we do not need the R′ strands in this 
B-scheme because the outermost-level tags are omitted.  

 
M′ Text message  <+ f> for f ∈ T. Note that an M′ strand only produces simple facts 

and non-simple facts can be produced by means of concatenation: 
F′ Flushing  <− fs>. 
T′ Tee  <− fs, + fs, + fs>. 
C′ Concatenation  <− fs1, …, − fsk, + (fs1, …, fsk)>. 
S′ Separation  <− (f1, …, fk), + f1, …, + fk>. 
K′ Key  <+ k> with some tk ∈ Tag such that WellTagged(tk, k) and k ∈ Kp. 
E′ Encryption  <− k, − fs, + {(ts, ,)} >tk

kfs  where ts is the set of tags of facts in fs and tk 
is the interpreted key type of k. 

D′ Decryption  <− k′, − {(ts, , ,)} >+ fsfs tk
k  where tk and tk′ are tags representing in-

verse key types and k′ is the decryption key corresponding to k when they are consid-
ered to be keys of the types tk′ and tk, respectively. 

4.2 Transforming Bundles 

In this subsection, we will show that each bundle in the B-scheme can be trans-
formed into a corresponding bundle in the A-scheme. 

4.2.1 Transforming honest strands 

Every honest strand in the B-scheme can be transformed into an honest strand in the 
A-scheme by prepending the corresponding outermost-level tags of the strand template. 
For example, the strand produced by role A in the Neuman-Stubblebine protocol [7] is 
shown in Fig. 5.   
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Fig. 5. Transforming honest strands. 

 
4.2.2 Transforming penetrator strands 
 

Since we know how to transform honest strands, what we need to do now is trans-
form the penetrator strands. Let C be a bundle in the B-scheme. Initially, let C′ be the set 
of the honest strands obtained by transforming the honest strands of C. Let P = C − C′, 
which contains the penetrator strands and the → edges of C. Let NC and NC ′ be the sets of 
nodes incident with an edge in C and C′, respectively. Let NP = NC − NC ′. 

Now we want to transform the edges in P. Depending on the sources and targets of 
the edges as well as the signs on the nodes, we will consider each edge in turn until the 
set P becomes an empty set. There are five cases as discussed below.  
 
First, we consider edges from NC ′ to NP. 

If there exists a → edge in P from a node u(+ (ts, fs)) in NC ′ to a node v(− fs) in NP 
(shown in Fig. 6), then we can replace the v(− fs) node with a v(− (ts, fs)) node, add a 
new edge u → v to C′, and remove the original edge u → v from P. 

 
Fig. 6. We prepare to replace the edge u → v. 
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Second, we consider edges from NC ′ to NC ′. 
If there exists a → edge in P from the node u to another node w in NC ′ (shown in Fig. 

7), then there are two cases to consider. 

 

Fig. 7. Create a new edge u → w. 

 
Case 1. If the outermost-level tags of u and w are the same, then we are done.  
Case 2. Otherwise, we can use an S strand to separate term(u) into simple tagged facts. If 

there are sub-facts in term(w) that are not the sub-facts in term(u), we can use 
some M and K strands to produce these sub-facts. We then use R strands to 
change the tags and use a C strand to concatenate the tagged facts. Finally, add 
the R, M, K, S strands and the appropriate → edges to the set C′, and remove the 
edge u → w from P. This is done in Fig. 8.  

 
Fig. 8. The case ts ≠ ts′. 
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Third, we consider edges from NC ′ to NP. 
If there exists a ⇒ edge in P from a node u in NC ′ to a node v in NP (that is, u and v 

are in the same strand) such that v has a positive sign and the predecessors of both u and 
v on the same strand have the outermost-level tags (shown in Fig. 9), then we can find 
the outermost-level tag of v as follows: 

 

Fig. 9. Finding the outermost-level tag of v. 

 
Case 1. If v belongs to a T ′ (tee) strand, then the outermost-level tags of the node v and 

the node following v are the same as those of u.  
Case 2. If v belongs to a C′ (concatenation) strand, then the outermost-level tag of v is 

the concatenation of the outmost-level tags of the predecessors on the same 
strand.  

Case 3. If v belongs to an S′ (separation) strand, then we substitute some M and R strands 
and an S strand for the S′ strand. The S strand separates the tagged fact. The M 
and K strands produce facts that are terms of nodes in the S′ strand but are not 
terms of nodes in the S strand. Finally, we adjust the related edges properly.  

Case 4. If v belongs to an E′ (encryption) strand, then we have the situation shown in  
Fig. 10. 

 
Fig. 10. An E′ strand. 

 
If tk ≠ tk′, then we can use an R strand to retag the term (tk, k) with (tk′, k) and adjust 

the related edges. This is shown in Fig. 11. 
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Fig. 11. Introduce an R strand. 

 
If ts ≠ ts′ (as shown in Fig. 10), then we use an S strand to separate (ts, fs), create 

some M and K strands to produce facts that are sub-facts of (ts′, fs) but are not sub-facts 
of (ts, fs), use R strands to change the tags, and use a C strand to concatenate the tagged 
facts. We then add the M, K, R, and C strands to C′. We replace the term (ts, fs) of node u 
with (ts′, fs) and adjust the related edges. The outermost-level tag of the term of node v is 
{|ts′|}tk′. This is shown in Fig. 12. 

 
Fig. 12. Replace the − (ts, fs) tag of node u with − (ts′, fs) in Fig. 10. 
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Case 5. If v belongs to a D′ (decryption) strand, then we have the situation shown in  
Fig. 13.  

 
Fig. 13. A D′ strand. 

 
If tk and tk′ are not tags representing inverse key types, then we can use an R strand 

to change the tag of w (shown in Fig. 13) to (tk″, k) (shown in Fig. 14). (Note that t″ is 
chosen to be the inverse key type of tk.) The outermost-level tag of v is GetTags(the en-
cryption body of the second node). This is shown in Fig. 14. 

 
Fig. 14. Use an R strand to change the tag of w. 

 
Finally, we replace the outermost-level tag of v with the tag we have built up and 

move the new edges from P to C′. 
 

Fourth, we consider edges from NP to NP. 
If there exists a → edge in P from a node u(+ f) in NP on an M′ or K′ strand to a 

node v(− f) in NP (as shown in Fig. 15), then we can select an appropriate tag t ∈ Tag. We 
replace (+ f) with (+ (t, f)), which is an M or K strand, replace (− f) with (− (t, f)), add the 
edge u → v to C′, and remove the original edge u → v from P. 
 
Finally, we consider edges from NP to NC ′. 

If there exists a → edge in P from a node u(+ f) in NP on an M′ or K′ strand to a 
node v(− (t, f)) in NC ′ (shown in Fig. 16), then we will consider the following two cases.  
 



PREVENT TYPE-FLAW ATTACKS 

 

81 

 

 

 
Fig. 15. An M′ or K′ strand in NP. 

 
Fig. 16. An M′ or K′ strand from NP to NC′ 

 
Case 1. Suppose (t, f) is a simple fact.  

Subcase 1. If node u is on an M′ (message) strand, then we replace (+ f) with  
(+ (t, f)), which is an M strand.  
Subcase 2. If node u is on a K′ (key) strand, we do one of the following:  

• If WellTagged(t, f), then we replace (+ f) with (+ (t, f)), which is a K strand.  
• If ¬WellTagged(t, f), then we can find a tag t′ ∈ Tag such that WellTagged(t′, 

f). We replace (+ f) with (+ (t′, f)), which is a K strand, use an R strand to 
change (t, f) to (t′, f), and adjust the related edges.  

Case 2. Suppose (t, f) is not a simple fact. We can use some M, K, R, and C strands to 
produce the non-simple tagged fact (t, f). We then add the M, K, R, and C 
strands to C′ and adjust the related edges.  

 
We add the u → v edge to C′ and remove the original edge u → v from P. 

After every edge is examined in the above manner, each of the M′, K′, T′, C′, S′, E′, 
and D′ strands in C is transformed into some corresponding M, K, T, C, S, E, D, and R 
strands in C′. 

We can prove that an honest strand in the B-scheme corresponds to an honest strand 
in the A-scheme, and that they are related by similar substitutions. 
 
Lemma 6  Let temp be a strand template in the B-scheme, and let temp′ be a strand 
template that defines the same role in the same protocol in the A-scheme. Let C be a 
bundle in the B-scheme, and let C′ be a tagged bundle (in the A-scheme) obtained by 
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transforming C. For each honest strand (subs′(temp′) with respect to the substitution sub′) 
in C′, there exists a corresponding honest strand (subs(temp) with respect to the substitu-
tion sub) in C such that sub(v) = sub′(v), for every v ∈ Var. 

 
4.2.3 Unique origination 

 
Note that the facts on the honest strands in the B-scheme that are not interpreted 

according to the corresponding correct outermost-level tags must originate on the pene-
trator strands. Therefore, if a fact f originates on an honest or penetrator node in C′, then f 
originates on the corresponding honest or penetrator node, respectively, in C. 

 
4.3 Secrecy and Authentication 
 

In this subsection, we will prove our second result; that is, if there is a type flaw at-
tack on a protocol under the B-scheme, then there is a type flaw attack under the 
A-scheme. We will discuss secrecy and authentication separately. 

 
Theorem (Secrecy)  Let temp be a template in the B-scheme, and let temp′ be the tem-
plate in the A-scheme for the same role. Let (t, v) be a tagged variable. Let h be a positive 
integer. Let Keys be a set of function templates. Let C be a bundle in the B-scheme, and 
let C′ be a tagged bundle (in the A-scheme) obtained by transforming C. If there is a fail-
ure of secrecy in C, then there will be a failure of secrecy in C′ as well. 
 
Theorem (Authentication)  Let temp1 and temp2 be templates for two roles in the 
B-scheme. Let temp1′ and temp2′ be templates for the same roles in the A-scheme. Let X 
be the set of variables in the templates. Let h1 and h2 be two positive integers. Let Keys 
be a set of function templates. Let C be a bundle in the B-scheme, and let C′ be a tagged 
bundle (in the A-scheme) obtained by transforming C. If there is a failure of authentica-
tion in C, then there will be a failure of authentication in C′ as well. 

5. CONCLUSIONS 

Heather, Lowe, and Schneider showed that adding tags to fields in security mes-
sages can prevent type flaw attacks. We have further simplified their scheme by combin-
ing and omitting certain tags. The main contribution of our work is the insight that an 
attacker cannot fake the outermost-level tags. Any attempt to fake the outermost-level 
tags will be detected by the real participants in a security protocol. All type flaw attacks, 
if they ever occur, must be related to fields inside an encrypted message in a security 
protocol. 

Verification of security protocols is similar to verification of computer programs, 
and the two procedures have complimentary emphases. While we hope that a computer 
program does what it is intended for, which is explicitly prescribed in the program’s text, 
the most important property of a security protocol is that it contains no hidden holes or 
weaknesses. Such holes and weaknesses are not explicitly mentioned or even hinted at 
the description of the behavior of a security protocol. 
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