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Distributed Source Coding for Real-Time ECG Signal Monitoring∗

Hung-Tsai WU†, Wei-Ying TSAI††, Nonmembers, and Wen-Whei CHANG†a), Member

SUMMARY Wireless patient monitoring is an active research area with
the goal of ubiquitous health care services. This study presents a novel
means of exploiting the distributed source coding (DSC) in low-complexity
compression of ECG signals. We first convert the ECG data compression
to an equivalent channel coding problem and exploit a linear channel code
for the DSC construction. Performance is further enhanced by the use of
a correlation channel that more precisely characterizes the statistical de-
pendencies of ECG signals. Also proposed is a modified BCJR algorithm
which performs symbol decoding of binary convolutional codes to better
exploit the source’s a priori information. Finally, a complete setup system
for online ambulatory ECG monitoring via mobile cellular networks is pre-
sented. Experiments on the MIT-BIH arrhythmia database and real-time
acquired ECG signals demonstrate that the proposed system outperforms
other schemes in terms of encoder complexity and coding efficiency.
key words: wireless patient monitoring, distributed source coding, ECG
data compression, mobile cellular networks

1. Introduction

Electrocardiogram (ECG) signal is a recording of the elec-
trical activity of the heart and is a clinical diagnostic tool for
cardiac diseases. Uncompressed raw ECG signals require
high data rates and thus consume excessive bandwidth and
energy. This may limit its practical applicability in ubiqui-
tous health care systems. To realize such systems and re-
duce the constraints on the patient, wireless transmission of
signals from ECG sensors to a remote medical server is es-
sential. However, wireless transmission is known to be one
of the largest contributors to power consumption in ambula-
tory sensors [1]. Thus, compression of ECG signals prior
to transmission should be used to reduce the data redun-
dancy. Such redundancy typically appears in intra-beat cor-
relation between adjacent samples and inter-beat correlation
between adjacent heartbeats. With this in mind, ECG data
compression aims to achieve maximum data volume reduc-
tion while preserving the clinical information content upon
reconstruction. As for online ambulatory monitoring, the
sensor calls for real-time compression with the added re-
striction of low power operation.

Many ECG data compression methods have been pro-
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posed, including direct time-domain methods and transfor-
mation methods [2], [3]. Most of the methods adopt one-
dimensional (1-D) representations for ECG signals and fo-
cus on the utilization of the intra-beat correlation between
adjacent samples. Since the ECG signals have both intra-
and inter-beat correlation, better algorithms have been pro-
posed to get the most benefit from both types of correla-
tion [4], [5]. These methods generally start with a prepro-
cess which converts 1-D ECG signals to 2-D data arrays
through the combined use of QRS detection and period
normalization. The constructed 2-D ECG data arrays are
then ready to be further compressed by the beat-based gain-
shape vector quantization (GSVQ) [4] or the wavelet-based
JPEG2000 image compression standard [5]. When applied
directly to online patient monitoring, however, these meth-
ods are expected to show some limitations for use on the
sensors due to power and delay constraints. First, JPEG2000
incurs significant encoding delay because it operates on an
entire 2-D data array and must buffer an array-size’s worth
of ECG samples before it can start encoding. This could
severely hamper the real-time feasibility of the compres-
sion scheme as power and memory are scarce at the sensors.
Second, the method in [4] takes an entire heartbeat segment
as the input for GSVQ, which differs from other VQ-based
schemes [3]. As the vector dimension is increased the recon-
structed signal will suffer higher levels of distortion unless
the codebook size is also increased. With such a combi-
nation, the computational burden sometimes limits its prac-
tical applicability to the online ECG monitoring. Finally,
most of the current methods have in common that they re-
duce the data redundancy by exploiting source statistics at
the encoder. Implementation of such systems require much
more computation for the encoder than for the decoder. This
asymmetry is well-suited for the traditional broadcasting
paradigm, where source signals are compressed once at the
encoder and decoded many times. In contrast, online mon-
itoring applications may require the dual system, where the
bulk of the computation is shifted from the encoder to the
decoder.

It has recently been shown [6] that the traditional bal-
ance of complex encoders and simple decoders can be re-
versed within the framework of distributed source coding
(DSC). This new paradigm is the consequence of Slepian-
Wolf theorem [7], which stated that separate encoding and
joint decoding of two correlated sources are as efficient
as their joint encoding and decoding. Slepian-Wolf codes
are generally derived based on binning of linear channel
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codes, but fundamentally harder for practical applications
due to the general statistics of the correlation channel be-
tween source sequence and side information [8]. In this
study, we propose a low-complexity encoding algorithm
that uses inter-beat correlation of ECG signals to reduce the
data redundancy and provide a joint decoding algorithm that
uses the correlation as side information in a maximum a
posteriori probability (MAP) algorithm. With DSC, low-
complexity compression of ECG signals can be achieved by
leveraging knowledge of the source statistics at the decoder
only. Finally, we develop a complete setup system for field
testing of the proposed ECG data compression technique.
The patient unit comprises a wireless sensor for ECG sig-
nal acquisition and an embedded system development board
for data compression. The compressed ECG data are fed to
a Bluetooth-enabled mobile telephone and then transmitted
to the remote server via mobile cellular networks. Upon re-
ceiving the compressed data, the server reconstructs ECG
signals and displays them on a screen for health monitoring.

The rest of this paper is organized as follows. Section 2
describes the ECG fundamentals and presents a preprocess
which converts 1-D ECG signals to 2-D data arrays. Details
of the algorithms for low-complexity encoding and joint de-
coding are provided in Sects. 3 and 4, respectively. Section 5
presents the simulation results of various data compression
schemes using the MIT-BIH arrhythmia database [9]. Both
the hardware architecture and software implementation re-
quired for wireless ECG signal monitoring are provided in
Sect. 6. Finally, Sect. 7 gives our conclusions.

2. Correlation Channel Modelling

DSC refers to the problem of lossless compression of two
correlated binary sources with coders that do not commu-
nicate with each other. Constructing a proper correlation
model is the first step in applying DSC to data compres-
sion and one that conditions all subsequent steps of the im-
plementation. We generally assume that the statistical de-
pendence between the two sources is modelled by a virtual
channel analogous to a binary symmetric channel (BSC) de-
fined by a bit error rate (BER). The input of the correlation
channel is the first source X and its output is the second
source Y = X ⊕ Z referred to as side information, where
Z represents the bit error sequence. The lower the BER,
the better DSC is at exploiting the correlation and achiev-
ing lower data rates with the same average distortion. Thus,
there is a need to develop a correlation channel with low
BER that can be corrected by conventional channel codes.
To begin, we apply a preprocessor which can be viewed as a
cascade of two stages. In the first stage, the QRS complex in
each heartbeat is firstly detected for segmenting and align-
ing a 1-D ECG signal to a 2-D data array and in the second
stage, the constructed 2-D ECG data array is compressed by
GSVQ. Figure 1 shows the block diagram of the proposed
ECG data compression scheme.

(a)

(b)

Fig. 1 Block diagrams of the proposed ECG data compression scheme.
(a) Encoder and (b) decoder.

2.1 ECG Data Sources

Two types of ECG sources are provided: the acquisition
from the MIT-BIH arrhythmia database [9] and the real-time
acquisition through an ambulatory sensor. For the online
testing, we use the wearable BtECG sensor [10] with ECG
electrodes placed on the chest of the patient. The real-time
acquired ECG data are sampled at 250 Hz with a resolution
of nres = 12 bits/sample. On the other hand, ECG records
taken from the MIT-BIH arrhythmia database are primarily
used in computer simulations to evaluate the performance
of the proposed scheme. The database is composed of 48
ECG records and each record is about half-hour in duration.
The ECG data were sampled at 360 Hz and each sample has
a resolution of nres = 11 bits/sample. In the experiments,
we use two datasets formed by taking eight records from the
MIT-BIH arrhythmia database. For each ECG record, the
dataset with the first 1500 beats is used for training, and the
dataset with the other 100 beats is used for testing.

The ECG waveform of a normal heartbeat consists of a
P wave, a QRS complex, and a T wave. The P wave corre-
sponds to the sequential depolarization of the right and left
atria. The QRS complex is produced when the ventricles
depolarize and squeeze the blood from the right ventricle to
the aorta. The T wave occurs due to ventricular repolariza-
tion. An ECG signal tends to exhibit considerable similarity
between adjacent heartbeats, along with short-term correla-
tion between adjacent samples. Thus, by dividing an ECG
waveform into heartbeat segments with length equal to the
beats, there should be a large correlation between individual
segments.

2.2 2-D Data Array Construction

ECG itself is 1-D in the time domain, but can be viewed as
a 2-D signal in terms of its implicit periodicity. The QRS
complex is the most characteristic wave in an ECG wave-
form and hence, its peak can be used to identify each beat.
In consideration of speed and accuracy, the first-derivative
approach presented in [11] was adopted to detect the QRS
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complexes. The QRS complexes have the maximum varia-
tion in the slopes. Based on this property and an adaptive
threshold was applied, the method evaluated the slope in the
time domain and use it to locate the onset of the QRS com-
plex. Then, an ECG signal is divided into heartbeat seg-
ments and each segment is stored as one row of a 2-D data
array. Having constructed the array as such, the intra-beat
correlation is in the horizontal direction of the array and the
inter-beat correlation is in the vertical direction. Since the
heartbeat segments may have different lengths, each row of
the array is period normalized to a fixed length of Np = 288
samples via linear interpolation. This choice was based on
the observation that the average value of the detected heart-
beat lengths is about 0.8 second, which corresponds to 288
samples for a 360-Hz sampling frequency. Accordingly, the
original heartbeat length was represented with nl = 9 bits
and transmitted as side information. Afterwards each row of
Np samples is segmented uniformly into vectors with length
M for a further application of the GSVQ.

GSVQ [12] is a product code technique which orga-
nizes the set of reproduction vectors as the Cartesian prod-
uct of a vector codebook describing the shape of input vec-
tors and a scalar codebook describing the gain. To begin,
an input vector of length M is scaled in amplitude by a
gain to produce the shape vector. Afterwards the GSVQ
encoder searches through the shape codebook for the code-
vector that best matches the gain-normalized input vector,
and then sends the corresponding index to the DSC encoder.
Here the shape codebook consisting of N = 2n codevectors
is trained using the well-known LBG algorithm [13]. By
increasing the vector dimension and codebook size, the data
redundancy could be reduced, but the resulting improvement
in compression performance will be offset by the accompa-
nying increase in computational complexity and encoding
delay. With this in mind, values of M = 4 and N = 64
were empirically determined and used throughout the exper-
iments. As a consequence, each heartbeat segment is repre-
sented by a total of nv = Np/M = 72 GSVQ indexes of
bit-length n = 6. In the testing dataset each record contains
100 beats and among them, the GSVQ indexes of the first
beat are transmitted without compression and used as side
information Y , and those of the remaining nc = 99 beats are
used as the source sequences X for a further application of
the proposed DSC-based compression.

A preliminary experiment was first conducted on two
ECG records to examine the BER of the correlation channel
for the case of GSVQ with N = 64 and M = 4. The results
show that the calculated BER for records 102 and 220 of the
MIT-BIH arrhythmia database are 20.47% and 18.40%, re-
spectively. It is apparent that these BERs are too high to be
corrected by conventional channel codes and hence, further
process is needed toward DSC encoding. Recognizing this,
we propose using the GSVQ in conjunction with a multiple-
choice index assignment scheme. The first step is to use the
GSVQ indexes of the training dataset to construct a refer-
ence model consisting of Np/M indexes, each of which oc-
curs the most frequent in the corresponding shape codevec-

tor. Upon quantizing an input vector, the indexes associated
with the top-three closest shape codevectors are compared
with the reference model to search for the one that has the
minimal Hamming distance. Proceeding in this way, the cal-
culated BER of the correlation channel for records 102 and
220 can be reduced to 7.35% and 5.59%, respectively.

3. Low-Complexity Encoding Algorithm

Computation and delay limitations have made real-time
compression an important feature for online ambulatory
monitoring systems. For this investigation we formulate
the ECG data compression as an asymmetric DSC problem,
where X is the source to be compressed and Y is the side in-
formation available at the decoder. Within the DSC frame-
work, the encoding can be thought of as a technique which
generates syndromes of the linear channel code to correct
the errors introduced by the correlation channel. Viewing
from this perspective, designing a DSC encoder becomes a
well-defined two-step process: finding a good channel code
and constructing a syndrome former (SF) for this code.

3.1 Distributed Source Coding

According to Shannon’s source coding theory [14], a rate
given by the joint entropy H(X,Y) is sufficient for joint en-
coding of two sources X and Y . As for separate encoding,
the Slepian-Wolf theorem [7] states that X and Y can be loss-
lessly recovered if and only if coding rates RX and RY satisfy
the following entropy bounds: RX ≥ H(X|Y), RY ≥ H(Y |X)
and RX + RY ≥ H(X,Y). Here we consider an asymmet-
ric DSC problem, where the side information Y is assumed
losslessly available at the decoder and the source X is com-
pressed as much as possible. Assume Y can be compressed
at its entropy RY = H(Y), asymmetric DSC corresponds to
RX ≥ H(X|Y), regardless of the encoder’s access to side in-
formation Y . It is clear that the compression performance
of DSC crucially depends on the correlation between X and
Y , since the descending correlation rises the conditional en-
tropy H(X|Y).

A practical construction of DSC can be transformed to
an equivalent channel coding problem with decoder side in-
formation [6], [15]. Toward this end, the binning approach
of linear channel codes provides a general framework for
constructing DSC encoder/decoder pairs. For an (n, k) lin-
ear channel code, the k × n generator matrix G specifies
the code space containing all the valid codewords, and the
(n−k)×n parity-check matrix H specifies its null space such
that GHT = 0k×(n−k). To apply the code binning, a total of
2n source sequences x of length n are viewed as the virtual
codewords of the linear channel code. Then, the codeword
space of source sequence x is divided into 2n−k bins such
that the same distance property is preserved in each bin.
Each bin consists of 2k codewords and can be indexed by
a length-(n − k) syndrome, defined as s = xHT . This con-
straint makes sure that all source sequences in a bin share
the same syndrome and that all valid codewords of a linear
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Fig. 2 Block diagram of the DSC encoder/decoder pair.

channel code belong to the bin with syndrome s = 0.

3.2 Syndrome Former

A block diagram for the proposed DSC encoder/decoder
pair is shown in Fig. 2, where the GSVQ index sequence
is treated as the source sequence to compress. The DSC
encoder behaves like a SF that maps a source sequence x
of length n to its syndrome s of length n − k. By grouping
source sequences into bins and transmitting the bin index in-
stead of the source sequence, a compression ratio of n : n−k
is achieved. The design of SF usually consists of selecting
a channel code with a certain rate and correction capabil-
ity matched to the fidelity requirement of data compression.
In this work, we apply a rate-compatible punctured convo-
lutional (RCPC) code that is obtained from puncturing the
parity bits of a recursive systematic convolutional (RSC)
mother code [16]. To begin, let us first consider an (n, k)
RSC code with generator matrix G = [Ik, Pk×(n−k)], where Ik

is a k × k identity matrix and Pk×(n−k) denotes a submatrix
containing k × (n − k) generator polynomials. It has been
shown [15] that the SF for RSC codes can be implemented
using an n × (n − k) transfer matrix HT = [PT

k×(n−k), In−k]T .
Proceeding in this way, we first select a (2, 1) RSC code and
use it as the mother code for puncturing to produce a (6, 4)
RCPC code. More precisely, we start with the 1×2 generator
matrix of the mother code and replace each element in the
matrix by its 4-th polycyclic pseudocirculant [16], leading to
an expanded matrix with dimension 4 × 8. Afterwards, two
of the columns corresponding to parity bits are punctured to
produce a 4 × 6 generator matrix of the (6, 4) RCPC code.
As indicated in [16], following the above procedures will en-
able us to construct a recursive systematic RCPC code and
hence, its SF implementation proceeds in a way similar to
the RSC code.

4. Joint Decoding Algorithm

Goal of the joint decoder is to use the received syndrome
sequence together with the side information to identify the
original source sequence. As shown in Fig. 2, the DSC de-
coder consists of an inverse syndrome former (ISF) and a
convolutional decoder matched to the underlying correlation
channel. The decoder begins with the ISF and adds its out-
put to the side information, whose result is then fed into the
channel decoder to perform the error-correcting decoding. If
the RCPC channel code is sufficiently powerful, adding the
ISF output to the output of the channel decoder will recover
the original source sequence.

4.1 Inverse Syndrome Former

SF and ISF are functions that map the codeword space of
source sequence to the syndrome space and vice versa. The
transfer matrix HT fulfills the function of a SF and, by tak-
ing the left inverse of the SF, a matching ISF can be im-
plemented using the matrix (H−1)T . Suppose at time t, the
source sequence xt = c1(st) is a codeword c1 taken from the
bin with syndrome st. The SF will map the sequence xt to
st and sends the syndrome to the decoder. Upon receiving
st, the ISF will find an arbitrary sequence c2(st) = st(H−1)T

from the bin indexed by the syndrome st. Now let the side
information be denoted by yt = xt ⊕ zt, where zt is the bit
error sequence introduced by the correlation channel. By
adding c2(st) to the side information yt, we obtain

yt ⊕ c2(st) = c1(st) ⊕ c2(st) ⊕ zt = c3(0t) ⊕ zt, (1)

where c3(0t) denotes a valid codeword c3 with all-zero syn-
drome 0t. Implicit in this equation is the fact that the sum of
any two codewords in the same bin leads to a valid code-
word with all-zero syndrome [17]. Hence, if the channel
code is sufficiently powerful, the channel decoder can re-
cover the valid codeword c3(0t). Since c3(0t) = xt ⊕ c2(st),
adding back the ISF output sequence c2(st) yields the origi-
nal source sequence xt.

4.2 Modified BCJR Algorithm

In the proposed system RSC codes are used to construct the
SF-ISF pair, so the soft-output channel decoding can be im-
plemented efficiently by the BCJR algorithm [18]. The com-
monly used BCJR algorithm is derived on the basis of a bit-
level trellis diagram and hence, it can only exploit bitwise
source a priori knowledge. Although the GSVQ has been
applied to reduce the data redundancy, but due to vector
length constraints, the GSVQ indexes will still exhibit con-
siderable redundancy. Such residual redundancy appears on
index-level, either in terms of a non-uniform distribution or
in terms of time-correlation between consecutive indexes. In
order to better exploit the residual redundancy, we propose
a modified BCJR algorithm which uses the GSVQ indexes
rather than single index-bits as the bases for the trellis-based
decoding of a binary convolutional code. Assume that an
(n, k) RSC encoder maps an input symbol ut of length k
to an n-length codeword rt = (ut, ut), where ut and ut de-
note the systematic and parity symbol, respectively. For
convenience, we say that the trellis diagram of RSC code
forms a finite-state machine defined by its state transition
function fs(ut, σt−1) and output function fo(ut, σt−1). More
precisely, the channel codeword associated with the branch
from state σt−1 to state σt = fs(ut, σt−1) can be written as
rt = fo(ut, σt−1). With respect to an implementation of DSC
it has to be emphasized that rt = c3(0t) refers to a valid
codeword with all-zero syndrome, and r̃t refers to its noise-
corrupted version introduced by the correlation channel, i.e.,
r̃t = rt ⊕ zt. We denote the sequence consisting of T noisy
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codewords by r̃T
1 = {r̃1, r̃2, . . . , r̃T }. Viewing from this per-

spective, the channel decoder takes the sequence r̃T
1 as input

and produces as its output the a posteriori probability (APP)
for each systematic symbol ut, which is denoted by P(ut |r̃T

1 ).
These APPs are used to obtain an estimate ût according to
the MAP criterion. Then, the corresponding channel code-
word r̂t = ĉ3(0t) is added with the ISF output c2(st) to obtain
the decoded GSVQ index x̂t. Finally, the shape codevector
corresponding to x̂t is multiplied by the gain and then fed
into the period recovery module for signal reconstruction.

We next derive a modified BCJR algorithm which com-
putes the APP of a systematic symbol ut = i given the se-
quence r̃T

1 . Taking the trellis state σt into consideration, we
first rewrite the APP as follows:

P(ut = i|r̃T
1 ) = C

∑
σt

αi
t(σt)β

i
t(σt), (2)

where αi
t(σt)= P(ut = i, σt, r̃t

1), βi
t(σt)= P(r̃T

t+1|ut = i, σt, r̃t
1),

and C = 1/P(r̃T
1 ) is a normalizing factor. For the recursive

implementation, the forward and backward recursions are to
compute the following metrics:

αi
t(σt) =

∑
σt−1

∑
j

P(ut = i,ut−1 = j, σt, σt−1, r̃t
1) (3)

=
∑
σt−1

∑
j

α
j
t−1(σt−1)γi, j(r̃t, σt, σt−1),

βi
t(σt) =

∑
σt+1

∑
j

P(ut+1 = j, σt+1, r̃T
t+1|ut = i, σt, r̃t

1) (4)

=
∑
σt+1

∑
j

β
j
t+1(σt+1)γ j,i(r̃t+1, σt+1, σt),

and in (3)

γi, j(r̃t, σt, σt−1) (5)

= P(ut = i, σt, r̃t |ut−1 = j, σt−1, r̃t−1
1 )

= P(σt |ut = i, σt−1)P(r̃t |ut = i, σt−1)P(ut = i|σt−1).

Having a proper representation of the branch metric
γi, j(r̃t, σt, σt−1) is a critical step in applying symbol decod-
ing to error mitigation. As a practical manner, several ad-
ditional factors must be considered to take advantage of the
trellis structure and BSC assumption of the correlation chan-
nel. First, making use of the trellis structure, the value of
P(σt |ut = i, σt−1) is either one or zero depending on whether
symbol i is associated with the transition from state σt−1 to
state σt = fs(ut, σt−1). For BSC channels, the second term
in (5) is reduced to

P(r̃t |ut = i, σt−1) = P(r̃t |rt = fo(ut, σt−1)) (6)

= P(c3(0t) ⊕ zt |c3(0t))

= (1 − ε)n−d · εd,
where ε is the BER of the correlation channel, and d denotes
the Hamming distance between rt and r̃t. To exploit the
source a priori information on index-level, we rewrite the
last term in (5) as

P(ut = i|σt−1) = P(c3(0t) = fo(ut, σt−1)) (7)

= P(xt = fo(ut, σt−1) ⊕ c2(st)).

The first equality follows the fact that if σt−1 is known, there
is a one-to-one mapping between the systematic symbol and
the output codeword for RSC codes. As for the second
equality, it demonstrates that we can integrate the proba-
bility distribution of GSVQ indexes which was trained in
advance into the branch metric. Clearly, the accuracy of the
APP computation can be enhanced by the use of the index-
level source a priori information.

5. Simulation Results

Computer simulations were conducted to compare the per-
formance of various compression schemes for ECG signals.
Two ECG compression approaches based on DSC, denoted
by DSC1 and DSC2, are presented and investigated. They
both applied a (6, 4) RCPC code for construction of the SF-
ISF pair and performed trellis-based MAP decoding to cor-
rect the errors introduced by the correlation channel. Un-
like the DSC1 which uses a conventional BCJR decoder, the
channel decoder in the DSC2 uses the modified BCJR algo-
rithm which performs symbol decoding to incorporate the
index-level source a priori knowledge. The ECG sources
include eight records taken from the MIT-BIH arrhythmia
database, numbered by 101, 102, 109, 112, 118, 122, 214,
and 220. For each ECG record, we perform QRS detec-
tion and period normalization so that all the heartbeat seg-
ments have a fixed length of Np = 288 samples. Let nsam

denote the total number of original samples in the record,
nres bits/sample the original resolution, nc the number of
testing beats, nb the length of the bin index, nv = Np/M
the number of vectors per beat, and nl the number of bits
used to code the original heartbeat length. The parameter
values used in the experiment for nres, nc, nb, nv and nl were
11, 99, 2, 72, and 9, respectively.

The system performance is evaluated in terms of the
percent root mean square difference (PRD) and the compres-
sion ratio (CR). The CR is defined as

CR =
nsam · nres

nc · (nv · nb + nl)
. (8)

The PRD is used to evaluate the reconstruction distortion
and is defined by

PRD(%) =

√∑nsam

i=1 [xori(i) − xrec(i)]2∑nsam

i=1 xori(i)2
× 100, (9)

where xori and xrec represent the original and reconstructed
ECG signals, respectively. The training and testing dataset
are organized as mentioned in Sect. 2.1. The 2-D ECG
data array of the proposed scheme is constructed using the
GSVQ with a vector dimension of M = 4 and a codebook
size of N = 2n = 64. Starting with a (2, 1) RSC mother code
with generator matrix [1, 37/21]oct, we constructed the (6, 4)
binary RCPC code by replacing each element in the matrix
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Table 1 Encoder complexity analysis of different compression methods.

VQ [3] FSVQ [3] DSC2

Avg. PRD 2.99% 2.89% 2.65%

(M, n) (24, 12) (18, 9) (4, 6)

Memory Space 2n · M (2n + 1) · K · M 2n · (M + 2 · 16) + (Np/M)

Add./Beat (Np/M) · 2n · (2M − 1) (Np/M) · (2n + K) · (2M − 1) (Np/M) · [2n · (2M − 1) + M − 1 + 3 · (2n − 1)]

Multi./Beat (Np/M) · 2n · M (Np/M) · (2n + K) · M (Np/M) · (2n + 2) · M

Table 2 PRD comparison between the proposed method and other methods.

Record CR VQ [3] FSVQ [3] JPEG2000 [5] DSC1 DSC2
101 25.86 7.07% 5.54% 4.95% 5.79% 3.53%
102 21.45 8.02% 6.10% 5.65% 9.40% 3.87%
109 18.46 6.23% 4.23% 3.21% 4.08% 2.46%
112 18.64 3.04% 2.38% 1.39% 4.29% 1.39%
118 21.62 5.44% 4.48% 3.27% 3.28% 2.07%
122 19.52 3.26% 2.45% 1.96% 5.90% 1.31%
214 20.82 10.65% 8.50% 5.96% 7.04% 4.22%
220 22.72 6.55% 5.29% 3.00% 3.84% 2.32%
Avg. 21.14 6.28% 4.87% 3.67% 5.45% 2.65%

by its 4-th polycyclic pseudocirculant, and by puncturing the
6-th and 8-th column.

We first compare the computational complexity of the
proposed method with other methods that are based on VQ
and finite-state VQ (FSVQ) [3]. A FSVQ can be viewed as
a finite collection of ordinary VQ, where each successive
input vectors is encoded using a VQ determined by the cur-
rent encoder state [12]. Let K denote the number of encoder
states used in the FSVQ. The computational complexity is
measured in terms of the arithmetic capabilities and mem-
ory requirements it demands to implement the encoding pro-
cess. The arithmetic capabilities are expressed as number of
addition/multiplication operations per beat. For purposes of
fair comparison, parameter values of each method were em-
pirically determined to achieve comparable performances in
PRD and CR. If 3% PRD is taken as an upper limit in dis-
tortion, then our preliminary results suggest that CRs in the
region of 21 can be achieved by using (M, n) = (24, 12) for
VQ, (18, 9) for FSVQ with K = 8, and (4, 6) for DSC1 and
DSC2. The encoder complexity analysis results for different
schemes are given in Table 1. Notice that these three meth-
ods have in common the 2-D representation for ECG signals
and hence, the computational complexity of the preproces-
sor is not included. In accordance with (M, n) values listed
in the table, the arithmetic capabilities required for the pro-
posed method is eight (or sixty) times more effective than
FSVQ (or VQ). In addition, the memory space needed for
the proposed method is reduced thirty (or forty) times rela-
tive to FSVQ (or VQ).

The next step is to evaluate the PRD performances
of various system setups which yield comparable perfor-
mances with respect to CR and encoding complexity. To
achieve an average CR of 21.14 with similar encoding com-
plexity, (M, n) values were empirically determined to be
(4, 6) for the proposed method, and (12, 6) for VQ and four-
state FSVQ. In addition to the above-mentioned schemes,
we also simulated the JPEG2000 image codec for compres-
sion of ECG signals [5] with comparable CRs. Table 2

presents the PRD performances of various schemes for eight
ECG records. The results clearly demonstrate the improved
performance achievable using the proposed method in com-
parison to other methods. Compared with DSC1, the better
performance of DSC2 can be attributed to its ability to com-
pute the APP taking the index-level source a priori infor-
mation into consideration. Notice that the JPEG2000 codec
operates on an entire 2-D data array and must buffer a total
of nc ∗ Np samples before it can start encoding. Thus, al-
though the JPEG2000 performs well in all the tests, the long
delay may limit its practical applicability to online moni-
toring systems. Next, we compare the original and recon-
structed ECG signals to illustrate further from a subjective
point of view. Although the proposed method shows good
results for normal ECG signals, it may suffer from irregu-
lar rhythms mainly due to the QRS detection stage and the
common drawback of VQ schemes. First, because of the
limited size of GSVQ codebook, not all types of QRS com-
plex morphology can be stored therein. Second, to utilize
the inter-beat correlation, the performance of the proposed
algorithm depends heavily on the accuracy of the QRS de-
tection scheme. For the simple detection algorithm based
on the first-derivatives [11], the number of QRS false detec-
tions may increase significantly in the presence of noise and
varying QRS morphology. The following test cases demon-
strate how the proposed algorithm performs with and with-
out changes in QRS complex morphology. Figure 3 shows a
10-sec segment of a normal sinus rhythm trace from record
220. The experimental results for record 112 with severe
baseline drift and record 101 with varying QRS morphology
are shown in Figs. 4 and 5, respectively. The results indicate
that characteristic features are well preserved and hence, the
proposed method DSC2 is suitable for various morpholo-
gies of ECG data. Finally, we examine how the PRD perfor-
mance of DSC2 changes as a function of its training dataset
size. The results are indicated in Fig. 6 for different ECG
records. As should be expected, the PRD decreases as the
number of heartbeats from each ECG record used for train-
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(a)

(b)

Fig. 3 (a) Original and (b) reconstructed normal sinus rhythm traces
from record 220.

(a)

(b)

Fig. 4 (a) Original and (b) reconstructed ECG traces from record 112
that exhibits baseline drift.

(a)

(b)

Fig. 5 (a) Original and (b) reconstructed ECG traces from record 101
that exhibits varying QRS morphology.

ing increases. In these experiments good performance was
reached using a training dataset with more than 400 beats
per ECG record.

6. Real-Time Implementation

In this section, we describe the main design features of a

Fig. 6 PRD performance for different training dataset sizes.

Fig. 7 Mobile ECG signal monitoring system.

complete setup system for field testing of real-time acquired
ECG signals. As shown in Fig. 7, the proposed system com-
prises a BtECG sensor [10] for ECG data acquisition, an em-
bedded system development board WinFast PXA310 [19]
for signal compression, and a PC as the back-end server for
signal reconstruction and monitoring. In addition, wireless
communication techniques such as Bluetooth and mobile
cellular networks are involved in the real-time implemen-
tation.

6.1 Hardware Architecture

The hardware architecture starts with a patient unit consists
of two main components, whose specifications are shown
in Table 3. For the acquisition of ECG signals, the patient
unit uses the wearable BtECG sensor with ECG electrodes
placed on the chest of the patient. A built-in class II Blue-
tooth module enables the sensor’s wireless transmission of
ECG data in a range of 10 meters. The low-complexity
ECG encoding algorithm is implemented on the WinFast
PXA310 development board, which is connected to a Blue-
tooth adapter for communication with the BtECG sensor.
The board is equipped with a Marvell PXA310 processor
and runs the Windows Embedded CE 6.0 operating system.
The compressed ECG data are transmitted through a wire-
less link to the back-end server for signal reconstruction,
which includes a Bluetooth link between the board and a
mobile telephone, WCDMA to a base station, and Inter-
net to the server. In the proposed system we use a com-
mercially available Bluetooth-enabled 3G mobile telephone
SAMSUNG S3370. Before building up a Bluetooth link, the
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Table 3 The specification of the patient unit.

BtECG sensor

Size: 5.5 cm × 3.5 cm × 1.6 cm
Channel: one ECG channel
ADC resolution: 12 bits
Sampling rate: 250 Hz
Band-pass filter: 0.1 Hz and 40 Hz

WinFast PXA310
mini-board

Size: 11 cm × 9.5 cm × 3.5 cm
Marvell PXA 310 processor:

-Intel XScale core with 624 MHz
-2 × 256 kB SRAM
-USB 1.1 and other peripheral

OS: WinCE 6.0

Bluetooth module

Version: v2.1+EDR
Frequencies: 2.402–2.48 GHz
RF power coverage: 10 meters (Class II)
Theoretical data rate: 3 Mbps

board uses Service Discovery Protocol (SDP) to discover
nearby devices in terms of their addresses and Radio Fre-
quency Communication (RFCOMM) channel numbers. Se-
rial Port Profile (SPP) and Dial-Up Networking (DUN) pro-
file are used by the board for communication with the sen-
sor and the mobile telephone, respectively. In addition, the
board creates a virtual COM port to receive ECG data from
the sensor. The board also creates another port to establish
the link to the mobile telephone, and uses it as a modem to
access the Internet via mobile cellular networks. Afterwards
ECG data are transmitted from the board to the server using
TCP protocol.

6.2 Software Implementation

The software implementation of the proposed system can be
divided into two phases. The first phase runs on the WinFast
PXA310 development board and is responsible for compres-
sion of real-time acquired ECG signals. To this end, we
apply the development tools provided by Windows Embed-
ded CE 6.0 platform builder. On the other hand, the second
phase is realized on the server for signal reconstruction and
is developed using MATLAB 7.6. The software implemen-
tation on the board typically comprises three stages:
1) System initialization: First, raw ECG data coming from
the BtECG sensor are stored in recvBuf with a buffer size
of 4 KB. A COM port and a network socket are created for
communication with the mobile telephone and the server,
respectively. To transmit data to the server, the IP address
and the port of the server will be specified.
2) Signal processing: The PXA 310 processor is notified to
read the data in recvBuf and perform QRS detection when
the buffer is full. Once the peak of R wave within each
beat has been detected, the board will proceed with period
normalization and ECG data compression. Afterwards the
compressed ECG data will be stored in the sendBuf prior to
transmission.
3) Wireless communication: After each complete beat has
been compressed, the board will retrieve and transmit the
data from the sendBuf to the server based on TCP proto-
col. To this end, we use the Windows Sockets (Winsock)
application programming interface provided by Microsoft.

To make the applications on the board more respon-
sive to the input/output, multithreading programming tech-
nique is used for software development on the board. More
precisely, while one thread is used to perform ECG data
compression, two other threads are responsible for receiving
data from the sensor and for transmitting data to the server,
respectively. Finally, upon receiving the compressed data,
the server will reconstruct and display the ECG signals on a
screen for patient monitoring.

6.3 Experimental Results

In the experiment, we first collect a dataset of 1500 beats
and use it for off-line training of the GSVQ codebook. Other
system parameters are the same as those used in computer
simulations. Experimental results on real-time acquired
ECG signals demonstrate that an average PRD of 0.66%
can be achieved with a compression ratio of 16.76. Com-
pared with off-line computer simulations, the lower PRD
can be attributed to the fact that real-time acquired ECG sig-
nals are measured on a healthy person. On the other hand,
computer simulations were conducted on the MIT-BIH ar-
rhythmia database and hence, the GSVQ codebook may not
be large enough to characterize various irregular heart func-
tions. As for the lower CR, it is a consequential result of
differences in sampling rate and resolution.

With respect to meeting real-time requirements, some
experiments were conducted to evaluate the system setup
in terms of execution time and consumed memory size.
First, we applied multiple application programming inter-
faces (APIs) to measure the elapsed time required by com-
pressing a single heartbeat segment. The average elapsed
time was empirically determined to be about 54.5 ms per
beat. The maximum amount of memory usage reported here
is 464 KB, including the buffers recvBuf and sendBuf with
the size of 4 KB each and the large-size overheads intro-
duced by the Windows Embedded CE 6.0 operating system.
The analysis results indicates that the system setup meets
the real-time requirements and can be used even with poor
processing hardware and under low communication chan-
nel capacity. Moreover, the proposed system setup repre-
sents the basis for more experiments which will be focused
on deployment of new algorithms in wireless telecardiology
applications. For example, we now investigate new biomet-
ric techniques which read the compressed ECG instead of
raw ECG to obtain unique features for human identification.
As biometric templates created from the compressed ECG
are substantially reduced in size, it is expected to achieve
faster biometric authentication and treatment of emergency
cardiac patients.

7. Conclusions

This study presents a novel means of exploiting the temporal
correlation of ECG signals in the design of low-complexity
compression algorithm within the DSC framework. We first
emphasize the importance of matching the statistical depen-
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dency of ECG signals to the correlation channel on which
the DSC design is based. This task was done by converting
a 1-D ECG signal to 2-D data array through the combined
use of QRS detection, period normalization, and GSVQ.
Performance is further enhanced by the use of a modified
BCJR algorithm which performs symbol decoding of bi-
nary convolutional codes by exploiting the source a priori
information on index-level. The results of off-line computer
simulations demonstrated that the proposed scheme outper-
forms other codecs in terms of encoder complexity and cod-
ing efficiency. Finally, a complete setup system for online
ECG signal monitoring via mobile cellular networks is pre-
sented. The system comprises a patient unit for signal ac-
quisition and compression, and a remote server for signal
reconstruction. Experiments on real-time acquired ECG sig-
nals demonstrated that the proposed system provides a pow-
erful aid to wireless patient monitoring applications. Still,
there are drawbacks in the proposed method when sudden
changes appear in QRS amplitudes. We speculate that fur-
ther performance improvements are possible by the appli-
cation of computationally more expensive QRS detection
algorithms. Continuing this research, we will address our-
selves to the study of designing an ECG compression algo-
rithm utilizing the inter-beat correlation without miscella-
neous preprocessing.
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