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Abstract

In this paper, we give another approach to the pseudo-achromatic index and the achromatic
index of a graph and study upper bounds for them. We have obtained the following best possible
upper bounds:

(i) P(G)<SP(G)< [(e(G) + £ (G))/2]; and
(il) ¥'(G)< PH(G)< max, <x< | p2) min{| pA(G)/2k].2k(HG) — 1) + 1}.

Using these bounds, the pseudo-achromatic indices of graphs of certain types are obtained
which generalize the results of Bouchet (1978), Chiang and Fu (1995), Geller and Kronk (1974
and Jamison (1989) for achromatic indices to pseudo-achromatic indices.

1. Introduction

Let G = (V,E) be a simple graph and p(G), ¢(G) and A(G) the order, size and
maximum degree of G, respectively. A collection D = {E|,E;,...,E,} of nonempty
subsets of E is a decomposition of G if E is a disjoint union of E;, Ea,..., E,.
If every set in the decomposition D of G is a matching, then we say that D is a
proper decomposition of G. The decomposition graph D(G) is defined as follows: (i)
V(D(G)) = D; and (ii) for i # j, {E.E;} € E(D(G)) if and only if V({E;)s) N
V({E;)g) # ¢ where (E;)¢ is the edge-induced subgraph of G. If D(G) is a complete
graph, then we say the decomposition D of G is complete.

By a proper edge k-coloring of a graph we mean a proper decomposition of G
into D = {Ey,E;,...,Ex}. A pseudo-achromatic edge k-coloring of G is a complete
decomposition of G into D = {E},E,,....E;}. In either case, the set E;, i = 1,2,...,k,
is called a color class of D and the vertex set of (E;)¢ is called the support of E;.
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The chromatic index y'(G) of G can be defined as the smallest # such that G has a
proper pseudo-achromatic edge n-coloring of G. The pseudo-achromatic index ¥(G)
of G is the largest number m such that G has a pseudo-achromatic edge m-coloring of
G, and the achromatic index W'(G) is the largest number # such that G has a proper
pseudo-achromatic edge /-coloring of G.

Example 1. Consider the graph C4. Fig. 1 shows that ¥/(C4) =2 and ¥§(Cs) = 3.
The achromatic number, the vertex version of achromatic index, was discussed in
[7-9] and generalized to pseudo-achromatic number in [2, 3]. The generalization is
meaningful. For example, in the personnel attribution, we are concerned if there are
related people between each pair of different departments as communication representa-
tives of these two departments and we donot care if there are related people in the same
department. In this situation, the concept of pseudo-achromatic number is much more
meaningful. The achromatic index of complete graphs and complete multipartite graphs
has been studied in [4, 6, 10]. In particular, Bouchet [4] proved a remarkable result.

Theorem 1.1. Suppose q is odd and p = q* +q+ 1. Then V' (K,) = pq if and only
if a projective plane of order q exists. Indeed, if W' (K,) = pq, then the supports
of the color classes in any proper pseudo-achromatic edge ¥V'(K,)-coloring form the
lines of a projective plane with the vertices of K, as points.

Jamison [10] and Chiang and Fu [5] gave the best possible upper bounds for the
achromatic indices of the complete graph and the regular complete multipartite graph,
respectively. Chiang and Fu [5] also determined the achromatic numbers of regular
complete multipartite graphs of certain kinds.

Theorem 1.2. Let ¢ be an odd order of a projective plane. Let n and m be positive
integers such that n|(q + 1) and m = q(q + 1)/n, and Kym be the regular complete
n-partite graph with m vertices in each class of the partition. Then ¥'(Kym)) =

g(n — )m.

Studying the upper bounds for the achromatic index of a general graph, we find that
it is appropriate to consider the pseudo-achromatic index of a graph. In Section 2, we

Fig. 1.
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find the following upper bounds both of which are best possible.

(1) PGS PUG)<[(e(G) + 1'(G))/2]; and

(i) P (G)<S PG < max, <4< 2] min{|(pA(G))/2k],2k(A(G) — 1) + 1}.

In Section 3, we show that the upper bound in (ii) actually gives the exact values of
the achromatic indices of the graphs mentioned in Theorems 1.1 and 1.2. Furthermore.
the pseudo-achromatic indices of these graphs are obtained.

2. The main results
The following lemmas are well known.

Lemma 2.1. Let G be a graph. Then y'(GY< P (G)<V(G).

Lemma 2.2. Let H be a subgraph of G. Then W' (H)Y<W'(G), and Y, (H)< ¥4(G).
Now we are ready to prove our first inequality.

Theorem 2.3. For any graph G, V(G)<Y(G)<|(e(G) + ' (G)/2].

Proof. It suffices to show that P{(G)<|(e(G) + ¥ (G))/2]. Let ¥ (G) = n. Then
there exists a proper complete decomposition D = {E|,E;,...,E,}. Let ¥((G) = m
and D' = {F|,Fs,...,F,} be a complete decomposition of G. It is clear that for
I1<i#j<m, F;UF; £E, k =1,2,...,n. Hence, at least m —n sets of D’ contains at
least two edges from different sets in D. Thus 2(m — n) + n<e(G). So that ¥(G) ==
m<[(e(G) + 7(G)2). O

By considering the star graph K , (that is, the complete bipartite graph with bipar-
tition (X, Y) of the vertex set such that |[X| =1 and |Y| = ¢), it is not difficult to see
that ¥/(K, ,) = Y(Ki.4) = q = (g + q)/2] for every positive integer g. This shows
that the upper bound in Theorem 2.3 is best possible. Moreover, we can use this bound
to obtain a Nordhaus—Gaddum type theorem [1, 11] for the achromatic index and the
pseudo-achromatic index.

Corollary 2.4. For any graph G of order p, we have
(i) 2[(p + 1)/2] - 1<¥(G) + V(C)<P(G) + Pi(G) < L((p+4)(p = 1))/4.
(i) 0< P/(G)P(G)< WH(G)PHGI< L L((p+4)(p — 1))/4)).
And all the bounds are attainable.

Proof. Alavi and Behzad [1] proved that for an arbitrary graph G of order p the
following inequalities hold:

(i) 2(p + 1)/2] —1<(G) + (' (G)<p +2(p - 2)/2],

(i) 0K/ (G (G)<(p - DQ2Lp/2] - 1)
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By these results and Lemma 2.2, we have

(G +1(6) | e(G) + 7/(G)

2[’4}1 _ 1< UG+ YU <

2 2
P pr2A5E |-
S 4 2 = 4 '

While,

(p+Hp-1)

2
0< ¥H(G)PL(G)< %(G)Q___“___J _ %(G)) <l l(p+4)(p— 1)J .

4

A

Hence (ii) holds. [

For (i) the equalities hold for P, and P3. For (ii) the equality holds on the left-hand
side for complete graphs while on the right-hand side equality holds for P;.

Even though the upper bound obtained in Theorem 2.3 is the best possible, the
difference between Y(G) and |(e(G)+ x'(G))/2] can be bigger than any positive
integer. For example, consider the double star S,,, p>g as described in Fig. 2
(that is, K;, and K;, which share an edge). Then ¥'(S,,) = p, e(G) = p+
g — 1 and Y'(S,,) = Y4(S,,) = p. Hence the difference between Y¢(G) and
[(e(G) + 7' (G))/2] is [(g — 1)/2] and can be made arbitrarily large by suitable choices
of p and g.

An easy upper bound on pseudo-achromatic index can be obtained by simple count-
ing. Denote the degree of a vertex v by d(v). Since any two color classes share a
vertex, we must have

¥5(G) d(v)
< .
("7)= 3 (%
veV(G)
This is easy to compute if the degree sequence of G is known. For example, if G is
r-regular, the right-hand side becomes p(G)(;) = (r — 1)e(G). The bound obtained
also gives the value of the pseudo-achromatic index for friendship graphs (even if this

is very easy to get otherwise). Another upper bound can be obtained in a different way.

Fig. 2.
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Theorem 2.5. Let G be a graph of order p and size e with maximum degree A,
A22. Then ¥'(G)< Y (G)< max) <y« o) min{| pA/2k|,2k(4 1)+ 1}.

Proof. Let f be a complete edge ¥((G)-coloring of G. By Lemma 2.1 and Vizing’s
theorem, we know that ¥§(G) > A(G) = A. Suppose that the smallest color class S of
f consists of & edges. Then 1 <k<[5].

Since (S)g has at most 2k vertices and the degree of each vertex is at most 4, the
number of edges not in S but incident with some edges in S is at most 2k(A4 — 1).
Hence, P4(G)<2k(4 — 1) + 1. On the other hand, since each color class consists of
at least k edges, the edge set E(G) can be decomposed into at most | p4/2k| color
classes. Therefore, P5(G)< | pA4/2k|. Hence,

PG < min{{%J ,2k(A— 1)+ 1}
and

A4
4 < i ﬂ_ —
lpS(G)\lsrl?g)fﬁjmm{[ZkJ’Zk(A 1)—}—1}.

K]

Since | pA/2k| is nonincreasing as a function of k and | p4/2k] <2k(4 — 1)+ 1 when
k=|p/2], we have ¥'(G)< P (G) < max, ¢p <z, min{| p4/2k|,2k(A — 1)+ 1}, [

To see that the upper bound in Theorem 2.5 is best possible, let us consider the
graphs P; and Cj, the path and the cycle of order k, respectively. We note here
that Y/(G)<P(G)<m(G), where m(G) = max{n: [(n — 1)/2(A(G) — 1)|n<e(G)},
since it is easy to check that m(G) is always larger than the upper bound in Theorem
2.5. This upper bound is appropriate in this case.

The following result is known [8].

Lemma 2.6. Let m = max{n: [(n — 1)/2\n<k}. Then,
_ iof ; — [m=1
(i) For k=2, W(Py) = {Z I if mis odd and k = ["3=m,

otherwise.
if mis odd and k = ["51\m + 1,

m— 1
.. k? ) 4 — .
(ii) For k=3 (Ci) { m otherwise.

Using Theorem 2.5 and Lemma 2.6, we can get the following results.

Corollary 2.7. For every k=1, let m = max{n: [(n — 1)/2|n<k}. Then,

m-—1 if mis odd and k = ["=L1]m,
%(PHI):{ Jmis 5" Im

m otherwise.
Proof. Since the line graph L(Piy1) of Py is a path P, we have P/ (Py.) =
Y(P)=m—11if mis odd and k = [(m — 1)/2]m, and W(P;) = m otherwise.
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By the upper bound we mentioned before Lemma 2.6, all we need to show is that
there is no pseudo-achromatic edge m-coloring of Py, for the case when m is odd and
k = [(m — 1)/2]m. Suppose to the contrary, ¥i(Pr+1) = m. Let m = 2h + 1. Then,
either there is a color class of fewer than /4 edges, or all the color classes consist of
exactly & edges. In either case, not all the color classes can meet. This contradicts the
definition of pseudo-achromatic edge m-coloring. [

Corollary 2.8. For every k=3, Y(Cy) = m where m = max{n: [(n — 1)/2|n<k}.

Proof. Since the line graph of C; is Cy, by Lemma 2.6(ii), we need only show that
there is a pseudo-achromatic edge m-coloring of C; for the case when m is odd and
k= [(m—1)/2]m + 1. In that case, there is an achromatic edge m-coloring for Pj;.
Identifying the first and the last vertices, we get a pseudo-achromatic edge m-coloring
of Ck. Ol

Obviously, by Corollaries 2.7 and 2.8, the upper bound obtained in Thoerem 2.5 is
best possible. Since the line graph of Py, is P; and the line graph of Cy is Cy, we can
get the following results about the pseudo-achromatic numbers which were previously
obtained by Bories [5].

Corollary 2.9. For every k=2, let m = max{n: [*5t|n<k}. Then

fm—=1 ifmisodd and k = [Z]m,
Ps(Pe) = {m otherwise.

Corollary 2.10. For every k=3, VYs(Ci) = m where m = max{n: [(n — 1)/2|n<k}.

3. A sharp bound

In this section, along the approach developed by Jamison in [10], we expand the
upper bound obtained in Theorem 2.5 into a form which reveals that the upper bound
gives the exact value of the achromatic indices of the graphs mentioned in Theorems
1.1 and 1.2. As a consequence, we get the pseudo-achromatic indices of all these
graphs.

Lemma 3.1. Let G be a graph of order p with maximum degree A. Then for k=1,
we have
() P5(G)<2(4— Dk +1 if4(A—1)/€2+21€<pA <HA— D +(44=2)e+2; and
(i) P4(G)< | pA/2(k + 1)] if 4(A— 1 +@4—2)k+2 < pA < 44— 1)k +1)
+2(k + 1).
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Proof. Let g(x, v,z) = 2(x — 1)z, h(x, y,z) = xy/2z. Then it is clear that g(x, y,z) is
increasing in z and A(x, y,z) is decreasing in z. Further,

g(d. p.k) + 1< [A(4, p.k)] < g(4, p.k) + L<h(4, p,k)
4
24— 1)k+1<%
S Ap=4(4 — DK + 2k
Also,
g(4, p. k) + 1< |h(A, pk + 1)| < g(4, p, k)Y + 1<HA, pk+ 1)
24— Dk + 1< pdj2(k + 1)
S Ap=4(4 — 1)k + (44 — )k + 2.
So for fixed &, if A4 and p satisfy that
AA - DE +2k<pA < 44— DYk + 17 420k + 1),
then we have
9(4, p. k) + 1< |h(4, p, k)| if k<k,
and
g(4, p.k) + 1= h(4, p,k)| if k > k.

Therefore max| <y <| p4) min{| p4/2k],2k(4 — 1) + 1} = max{g(4, p,k), |h(4, p,
F+ 1)]}. Since 4(4 — DE + (44 — 2)k + 2 is located between 4(4 — 1)k’ + 2k
and 4(4 — 1)k +1)* +2(k + 1) for every k=1, we have

max min{| pA4/2k|,2k(4 — 1)+ 1}
I<k<[f]
JA P Y+ if 44— DE + 2k < p4
<44 — DE + (44— Dk +2,
W4, pk+1)]  if 44— D + (44— 2)k +2 < pA
< A= 1)k + 1) +2(k + 1)

Hence the lemma holds. [

Theorem 3.2. Suppose q is an odd order of a projective plane and p = ¢* + q + 1.
Then Y4(K,) = pq.

Proof. Here, we have 4 = ¢* +¢q, p = ¢*> + ¢ + 1. It is easy to check that pA =
(*+9)(g*+q+1) lies between 4((g°+9)—1)((g — 1)/2)*+(4(g*+9)—2)-((g — 1)/2)+2
and 4((¢> + q) — 1)((g + 1)/2)> + 2 - (¢ + 1)/2. Hence by Lemma 3.1 and Theorem
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1.1, we have ‘I’g(Kp)SAp/Z(%l%- 1) = pg = P/(K,). By Lemma 2.1, we have
Yo(Kp)=pg. O

Theorem 3.3. Let g be an odd order of a projective plane. Let n and m be positive
integers such that n | (q + 1) and m = q(q + 1)/n, and K, be the regular complete
n-partite graph with m vertices in each class of the partition. Then Y¢(Kum) =

qg(n — )m.

Proof. Here we have A=(n—1)m=[(n~ 1)/n] glg+1), p=nm=¢q(g+1). It is
easy to check that pAd = [(n — 1)/n]-g*(q+ 1) lies between 4([(n — 1)/n]-g(qg+ 1) —
1D((g — 1)/2)* + (4((n — 1)/n) - q(g + 1) — 2)[(g — 1)/2] + 2 and 4([(n — 1)/n] - q(q +
1) = 1)((g+ 1)/2)2 + 2 - [(¢ + 1)/2]. So we have ¥4(Kumy)<4p/2([(q — 1)j2] + 1)
= {l(n—1)/n}-g* (g +1/qg+1} = q(n — )m = P'(Kym))- Hence Pi(Kum) =
g(n—1m. O
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