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Abstract: The proposed control system comprises a computation controller and a tracking
controller. The computation controller containing a recurrent neural network identifier is the
principal controller, and the tracking controller is designed to achieve L2 tracking performance with
a desired attenuation level. To investigate the effectiveness of the proposed control system the
design methodology is used to control a wing rock motion, manifested by a limit-cycle oscillation
predominantly for an aircraft operating at subsonic speeds and high angles of attack. Simulation
results demonstrate that the proposed control system can achieve favourable tracking performance
for the wing rock motion.

1 Introduction

Neural-network-based control techniques have represented
an alternative design direction for control problems [1–8].
The key element is the approximation theory, where the
parameterised neural network identifier can approximate the
unknown plant dynamic model after learning [1]. Based on
this property the neural-network-based controllers have
been developed to compensate for the effects of nonlinea-
rities and system uncertainties, so that the stability,
convergence and robustness of the control system can be
improved. The basic issues of neural network control are to
provide online learning algorithms that do not require
preliminary offline tuning. Some of these online learning
algorithms are based on the gradient descent method, and
some are based on the Lyapunov stability theorem.

However, most of the neural networks are feedforward
neural networks (FNNs); they belong to static mapping
networks. Without the aid of tapped delays the FNNs are
unable to represent a dynamic mapping. Although several
approaches have used the FNNs with tapped delays to deal
with dynamic systems these FNNs require a large number of
neurons to represent dynamic responses [1]. On the other
hand, the recurrent neural network (RNN) has capabilities
superior to FNN, such as its dynamic response and its
information storing ability [9]. Since the RNN has an
internal feedback loop, it captures the dynamic response
of a system with feedback through delays. Thus RNN is
a dynamic mapping network. Several approaches have
demonstrated that RNN is superior to FNN for system
identification and control [9–l2].

High-performance aircraft often require operating at
subsonic speeds and high angles of attack. They may
become unstable or enter into a self-induced limit cycle

oscillation, mainly rolling motion known as wing rock
motion [13]. The aerodynamic rolling moment is a complex
nonlinear function. This wing rock motion is a concern
because it may have adverse effects on maneuverability,
tracking accuracy, and operational safety. Such oscillations
lead to a significant loss in lift and can cause a serious safety
problem during maneuvres such as landing or takeoff. The
control of wing rock motion is significant importance.
However, the underlying mechanism of the wing rock
motion is still not very clear because with modern combat
aircraft it is difficult to isolate the various flow phenomena.

Recently, several theoretical and experimental studies
have been performed to understand the dynamics of the
wing rock motion and to predict the amplitude and
frequency of limit cycle oscillation [14–16]. A series of
papers have considered the control of the wing rock motion
based on output feedback linearisation theory and adaptive
control technique [17–20]. In the feedback linearisation
design approaches the feedback control gain should be
preselected by trial and error to achieve the desired
performance; however, this trial procedure is time-consum-
ing and the system model is required [19, 20]. In the
adaptive techniques, the knowledge of the structure of the
aerodynamic functions is required; however, the structure is
difficult to obtain [17, 18].

This paper develops a neural-network-identification-
based adaptive control (NNIAC) system to achieve
L2 tracking performance for the wing rock motion. Since
RNN captures the dynamic response, it is used to identify
the unknown system dynamic function. All the weights of
the RNN are tuned based on the Lyapunov function to
achieve favourable identification performance. And, by the
L2 control design technique, the effects of the approximation
error on the tracking performance can be attenuated to
arbitrary specified level. The proposed NNIAC design
method is applied for a wing rock motion control.
Simulation results demonstrate that the developed NNIAC
system can achieve favourable tracking performance
without knowledge of the system dynamic function.

2 Problem statement of wing rock motion

The delta wing of an aircraft is represented schematically in
Fig. 1. This delta wing has one degree of freedom, and the
dynamical system includes the wing (a flat uniform plate)
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and the parts of the string that rotate with it. The aerodynamic
rolling moment is a complex nonlinear function of the rolling
angle, roll rate, angle of attack and sideslip angle. The
nonlinear motion equation for an 80� slender delta wing has
been developed by Elzebda et al. [13] as

€ff ¼ pU2
1Sb=2Ixx

� �
Cl þ u ð1Þ

where f is the roll angle, an over-dot denotes a derivative
with respect to time, u is the control effort which represents
the aileron deflection, p is the density of air, U1 is the
freestream velocity, S is the wing reference area, b is the
chord, Ixx is the mass moment of inertia, and Cl is the roll
moment coefficient. The roll-moment coefficient is written
as [13]

Cl ¼ c0 þ c1fþ c2
_ffþ c3jfj _ffþ c4j _ffj _ffþ c5f

3 ð2Þ

The aerodynamic parameters ci; i ¼ 0; 1; . . . ; 5 are nonlinear
functions for different angles of attack [13, 14]. Substituting
(2) into (1) yields

€ff ¼ f ðf; _ffÞ þ u ð3Þ

where

f ðf; _ffÞ ¼ b0 þ b1fþ b2
_ffþ b3jfj _ffþ b4j _ffj _ffþ b5f

3

ð4Þ

and the parameters bi; i ¼ 0; 1; . . . ; 5 are given by

bi ¼ pU2
1Sb=2Ixx

� �
ci ð5Þ

To observe the dynamic behaviour, the open-loop system
time response with u ¼ 0 was simulated for two
initial conditions: a small initial condition ðfð0Þ ¼ 6�;
_ffð0Þ ¼ 3�=sÞ and a large initial condition ðfð0Þ ¼ 30�;
_ffð0Þ ¼ 10�=sÞ: The phase-plane plots of these simulations

are shown in Fig. 2. For the small initial condition a limit
cycle oscillation is obtained, and for the large initial
condition the roll angle is divergent. Thus, it is shown that
the uncontrolled wing rock motion will be unstable for some
initial conditions.

3 Neural-network-identification-based adaptive
control

The control problem is to design a control system so that the
output f can track the command trajectory fm; where the
tracking error vector is defined as

E ¼ e _ee½ 	T¼ fm 
 f _ffm 
 _ff
� �T ð6Þ

Assuming that the parameters of the wing rock motion
system in (3) are well known, there exists an ideal controller
as [21]

uid ¼ 
f ðf; _ffÞ þ €ffm þ k2 _ee þ k1e ð7Þ
Substituting (7) into (3) gives the following equation:

€ee þ k2 _ee þ k1e ¼ 0 ð8Þ
If k1 and k2 are chosen to correspond to the coefficients
of a Hurwitz polynomial, it implies lim

t!1
e ¼ 0: However,

the system dynamic function f ðf; _ffÞ in (7) is a nonlinear
time-varying function and it cannot be obtained exactly, so
the ideal controller uid cannot be implemented.

3.1 Description of recurrent neural network
identifier

To obtain the ideal controller an RNN identifier as shown in
Fig. 3 is used to identify the unknown system dynamic
function f ðf; _ffÞ: The RNN maps according to

Fig. 1 Scheme of delta wing

a Plan view
b End view
c Side view

Fig. 2 Phase-plane portraits of uncontrolled wing rock

Fig. 3 Network structure of recurrent neural network
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f ðNÞ ¼
Xl

k¼1

wkFkðjxiðNÞ 
 mikj; dik; rk;FkðN 
 1ÞÞ ð9Þ

where xi; i ¼ 1; 2; . . . ; n contain the input variables, N is the
number of iterations, wk represents the connective weights
between the hidden layer and the output layer, Fk represents
the firing weight of the kth neuron in the hidden layer, mik

and dik are the centre and width of the activation function,
respectively, and rk is the internal feedback gain. The firing
weight can be represented as

FkðNÞ ¼ e
netkðNÞ ð10Þ
where

netkðNÞ ¼
Xn

i¼1

½xiðNÞ þ FkðN 
 1Þrk 
 mik	2

d2
ik

ð11Þ

or

netkðNÞ ¼
Xn

i¼1

s2
ik½xiðNÞ þ FkðN 
 1Þrk 
 mik	2 ð12Þ

with sik ¼ 1=dik is the inverse radius of the radial basis
function. For simplicity of discussion, define the vectors m,
s and r collecting all parameters of the hidden layer as

m ¼ ½m11 � � �mn1 m12 � � �mn2 � � � � � � m1l � � �mnl	T ð13Þ

s ¼ ½s11 � � � sn1 s12 � � � sn2 � � � � � � s1l � � � snl	T ð14Þ

r ¼ ½r1 � � � rl	T ð15Þ
Then the output of the RNN identifier can be represented in
a vector form as [22]

fðx;m; s; r;wÞ ¼ wTFðx;m; s; rÞ ð16Þ
where x ¼ ½x1 x2 . . . xn	T ; w ¼ ½w1 w2 . . . wl	T and
F ¼ ½F1 F2 . . . Fl	T : From the universal approximation
theorem it has been proven that there exists an optimal RNN
identifier such that it can uniformly approximate the
unknown system dynamic function [22]. Thus,

fðf; _ffÞ¼ f 
ðx; m
; s
; r
; w
ÞþD¼w
TF
ðx; m
; s
; r
ÞþD

ð17Þ
where D denotes a matching error, w
 and F
 are the
optimal parameter vectors of w and F; respectively, and m
;
s
 and r
 are the optimal parameter vectors of m, s and
r, respectively. The optimal weighting vectors w
; m
; s


and r
 that are needed to best approximate the system
dynamic function are difficult to determine. Thus an RNN
identifier is defined as

f̂f ¼ ŵwTF̂Fðx; m̂m; ŝs; r̂rÞ ð18Þ
where ŵw andF̂F are the estimated vectors of w
 and F
;
respectively, and m̂m; ŝs and r̂r are the estimated vectors of m
;
s
 and r
; respectively. Define the estimated error ~ff as

~ff ¼ f 
 f̂f ¼ ~wwTF̂Fþ ŵwT ~FFþ ~wwT ~FFþ D ð19Þ
where ~ww ¼ w
 
 ŵw and ~FF ¼ F
 
F̂F: In the following, some
tuning laws are developed to tune online the weights of the
RNN to achieve favourable identification of the system
dynamic function. To achieve this goal the Taylor
expansion linearisation technique is employed to transform
the nonlinear activation function into a partially linear form,
i.e. [23]

~FF¼

~FF1
~FF2

..

.

~FFl

2
6664

3
7775¼

@F1

@m
@F2

@m

..

.

@Fl

@m

2
66664

3
77775jm¼m̂m ~mmþ

@F1

@s
@F2

@s

..

.

@Fl

@s

2
66664

3
77775js¼ŝs ~ssþ

@F1

@r
@F2

@r

..

.

@Fl

@r

2
66664

3
77775jr¼r̂r ~rrþh

ð20Þ
or

~FF ¼ AT ~mm þ BT ~ss þ CT ~rr þ h ð21Þ
where ~mm ¼ m
 
 m̂m; ~ss ¼ s
 
 ŝs; ~rr ¼ r
 
 r̂r; h is a vector of
higher-order terms,

A ¼ @F1

@m

@F2

@m
� � � @Fl

@m

� 

jm¼m̂m;

B ¼ @F1

@s

@F2

@s
� � � @Fl

@s

� 

js¼ŝs; C ¼ @F1

@r

@F2

@r
� � � @Fl

@r

� 

jr¼r̂r

and @Fk=@m; @Fk=@s and @Fk=@r are defined as

@Fk

@m

� 
T

¼ 0 � � � 0
ðk
1Þ�l

@Fk

@m1k

� � � @Fk

@mnk

0 � � � 0
ðl
kÞ�l

� 

ð22Þ

@Fk

@s

� 
T

¼ 0 � � � 0
ðk
1Þ�l

@Fk

@s1k

� � � @Fk

@snk

0 � � � 0
ðl
kÞ�l

� 

ð23Þ

@Fk

@r

� 
T

¼ 0 � � � 0|fflffl{zfflffl}
ðk
1Þ

@Fk

@rk

0 � � � 0|fflffl{zfflffl}
ðl
kÞ

2
4

3
5 ð24Þ

Substituting (21) into (19) gives

~ff ¼ ~wwTF̂Fþ ŵwTðAT ~mm þ BT ~ss þ CT ~rr þ hÞ þ ~wwT ~FFþ D

¼ ~wwTF̂Fþ ~mmT Aŵw þ ~ssT Bŵw þ ~rrT Cŵw þ e ð25Þ

where ŵwT AT ~mm ¼ ~mmT Aŵw; ŵwT BT ~ss ¼ ~ssT Bŵw and ŵwT CT ~rr ¼
~rrT Cŵw are used since they are scales, and the approximation
error 1 ¼ ŵwTh þ ~wwT ~FFþ D:

3.2 Adaptive controller design

The NNIAC wing rock motion control system is shown in
Fig. 4, where the adaptive controller comprises a compu-
tation controller and a tracking controller as

uac ¼ ucp þ utr ð26Þ

where the computation controller is chosen as

ucp ¼ 
f̂f þ €ffm þ k2 _ee þ k1e ð27Þ

By substituting (26) into (3) and using (25), the tracking
error dynamic equation can be obtained as follows:

_EE ¼ AmE 
 dmð f 
 f̂f þ utrÞ
¼ AmE 
 dmð ~wwTF̂Fþ ~mmT Aŵw þ ~ssT Bŵw þ ~rrT Cŵw þ eþ utrÞ

ð28Þ
where

Am ¼ 0 1


k1 
k2

� 


and dm ¼ ½0 1	T : The following theorem shows the
properties of this adaptive control system.

Theorem 1: Consider a wing rock motion system (3) with
the control (26). In the computation controller (27), the
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adaptation laws of the recurrent neural network identifier
are designed as

_̂wŵww ¼ 
 _~ww~ww ¼ 
�1ET PdmF̂F ð29Þ

_̂mm̂mm ¼ 
 _~mm~mm ¼ 
�2ETPdm Aŵw ð30Þ

_̂sŝss ¼ 
_~ss~ss ¼ 
�3ETPdmBŵw ð31Þ

_̂rr̂rr ¼ 
_~rr~rr ¼ 
�4ET PdmCŵw ð32Þ

and the tracking controller is designed as

utr ¼
1

k
dT

mPE ð33Þ

where �1; �2; �3 and �4 are the learning rates with
positive constants and the symmetry positive definite
matrix P and the positive definite matrix Q satisfy the
following Riccati-like equation

PAm þ AT
mP þ Q 
 2

k
PdmdT

mP þ 1

r2
PdmdT

mP ¼ 0 ð34Þ

where 2r2 � k: Then the overall control system shown in
Fig. 4 gurantees the following property:Z t

0
ET QEdt � ETð0ÞPEð0Þ þ ~wwTð0Þ ~wwð0Þ

�1

þ ~mmTð0Þ ~mmð0Þ
�2

þ ~ssTð0Þ~ssð0Þ
�3

þ ~rrTð0Þ~rrð0Þ
�4

þ r2

Z t

0
e2dt

ð35Þ

for all t � 0; where k is a design gain and r is an
attenuation level.

Proof: Consider a Lyapunov function in the form

VðE; ~ww; ~mm; ~ss; ~rrÞ ¼ 1

2
ET PE þ ~wwT ~ww

2�1

þ ~mmT ~mm

2�2

þ ~ssT ~ss

2�3

þ ~rrT ~rr

2�4

ð36Þ

Differentiating (36) with respect to time and using (29)–
(32) obtains

_VVðE; ~ww; ~mm; ~ss; ~rrÞ

¼ 1

2
_EE

T
PE þ 1

2
ET P _EE þ ~wwT _~ww~ww

�1

þ ~mmT _~mm~mm

�2

þ ~ssT _~ss~ss

�3

þ ~rrT _~rr~rr

�4

¼ 1

2
ET AT

mP þ PAm

� �
E þ ~wwT _~ww~ww

�1

þ ~mmT _~mm~mm

�2

þ ~ssT _~ss~ss

�3

þ ~rrT _~rr~rr

�4


 ET Pdmð ~wwTF̂Fþ ~mmT Aŵw þ ~ssT Bŵw þ ~rrT Cŵw þ eþ utrÞ

¼ 1

2
ET AT

mP þ PAm

� �
E 
 ~wwT ET PdmF̂F


_~ww~ww

�1

� �


 ~mmT ET PdmAŵw 

_~mm~mm

�2

� �

 ~ssT ET PdmBŵw 


_~ss~ss

�3

� �


 ~rrT ET PdmCŵw 

_~rr~rr

�4

� �

 ET Pdmðeþ utrÞ

¼ 1

2
ET AT

mP þ PAm

� �
E 
 ET Pdmðeþ utrÞ ð37Þ

Using (33) and (34), (37) can be rewritten as

_VVðE; ~ww; ~mm; ~ss; ~rrÞ

¼ 1

2
ET AT

mPþPAm 
 2

k
PdmdT

mP

� �
E


1

2
eTdT

mPE
1

2
ET Pdme

¼ 1

2
ET 
Q
 1

r2
PdmdT

mP

� �
E
1

2
eT dT

mPE
1

2
ET Pdme

¼
1

2
ET QE
1

2

1

r
dT

mPEþre
� �T 1

r
dT

mPEþre
� �

þ1

2
r2e2

� 
1

2
ET QEþ1

2
r2e2 ð38Þ

where 1
r dT

mPE þ re
� �T

1
r dT

mPE þ re
� �

� 0 and eT dT
mPE ¼

ET Pdme are used. Integrating both sides of (38) yields

VðtÞ 
 Vð0Þ � 
 1

2

Z t

0
ET QEdtþ 1

2
r2

Z t

0
e2dt ð39Þ

Since VðtÞ � 0; (39) implies the following inequality

Fig. 4 Neural-network-identification-based adaptive control wing rock motion system
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1

2

Z t

0
ET QE dt � Vð0Þ þ 1

2
r2

Z t

0
e2dt

¼ 1

2
ETð0ÞPEð0Þ þ ~wwTð0Þ ~wwð0Þ

2�1

þ ~mmTð0Þ ~mmð0Þ
2�2

þ ~ssTð0Þ~ssð0Þ
2�3

þ ~rrTð0Þ~rrð0Þ
2�4

þ 1

2
r2

Z t

0
e2dt ð40Þ

Thus the inequality (35) is proved.

4 Simulation results

The aerodynamic parameters of the delta wing for 25�

angle of attack are used for simulations. It is assumed that

U1 ¼ 15m=s and b ¼ 0:429m: The parameter bi for
the aerodynamic coefficients in (3) are given by b0 ¼ 0;
b1 ¼
0:01859521; b2 ¼ 0:015162375; b3 ¼
0:06245153;
b4 ¼ 0:00954708 and b5 ¼ 0:02145291 [13, 17]. For a
choice of Q¼
I; solving the Riccati-like (34) with 2r2¼k;
we have

P ¼ 1:7625 0:7812

0:7812 0:8088

� 

ð41Þ

The derivation of the NNIAC system does not need the use
of aerodynamic parameters on the structure of the
aerodynamic functions. The system parameters given are
used only for simulations. To investigate the effectiveness
of the developed control system, two initial conditions
(small initial condition fð0Þ ¼ 6�; _ffð0Þ ¼ 3�=s and large
initial condition fð0Þ ¼ 30�; _ffð0Þ ¼ 10�=s) are simulated.

Fig. 5 Time responses of NNIAC wing rock motion with k ¼ 1
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The control parameters and learning rates are selected
as k1 ¼ 0:64; k2 ¼ 1:6; �1 ¼ 20; �2 ¼ 20; �3 ¼ 20 and
�4 ¼ 20: All these parameters are chosen through trials to
achieve favourable transient control performance and the
requirement of stability.

The simulation results of the NNIAC system with k ¼ 1
for small and large initial conditions are shown in Fig. 5.
The state responses are shown in Figs. 5a and 5d, the phase-
plane portraits in Figs. 5b and 5e, and the associated control
efforts in Figs. 5c and 5f for small and large initial
conditions, respectively. Simulation results show that the
satisfactory tracking performance of the NNIAC system has
been achieved for the different initial conditions. To achieve
a small attenuation level via the L2 design technique, k is
reduced to 0.1.

The simulation results of the NNIAC system with k ¼ 0:1
for small and large initial conditions are shown in Fig. 6.

The state responses are shown in Figs. 6a and 6d, the phase-
plane portraits in Figs. 6b and 6e, and the associated control
efforts in Figs. 6c and 6f for small and large initial
conditions, respectively. From these simulation results it
can be seen that favourable tracking performance can be
achieved without any knowledge of system dynamic
functions; moreover, it can achieve better performance of
the system as the design gain k is decreased.

5 Conclusions

This paper has developed a neural-network-identification-
based adaptive control (NNIAC) system to attenuate the
effects of the approximation error on the tracking perform-
ance using the L2 tracking technique. The NNIAC system
comprised a computation controller and a tracking con-
troller. The computation controller including an RNN

Fig. 6 Time responses of NNIAC wing rock motion with k ¼ 0:1
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identifier mimics the ideal controller and the tracking
controller attenuats the effects of the approximation error.
The NNIAC system developed is used to control a wing
rock motion to demonstrate its effectiveness. Simulation
results indicate that a small attenuation level can be
achieved if the design gain k is chosen to be small.
However, this may lead to a large control signal. This
situation is a trade-off between the amplitude of control
signal and the performance of tracking error by choosing the
design gain k:
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