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A Bayesian Approach to Video Object Segmentation via Merging 3-D Watershed
Volumes

Yu-Pao Tsai, Chih-Chuan Lai, Yi-Ping Hung, and Zen-Chung Shih

Abstract—In this letter, we propose a Bayesian approach to
video object segmentation. Our method consists of two stages. In
the first stage, we partition the video data into a set of three-dimen-
sional (3-D) watershed volumes, where each watershed volume is
a series of corresponding two-dimensional (2-D) image regions.
These 2-D image regions are obtained by applying to each image
frame the marker-controlled watershed segmentation, where the
markers are extracted by first generating a set of initial markers
via temporal tracking and then refining the markers with two
shrinking schemes: the iterative adaptive erosion and the veri-
fication against a presimplified watershed segmentation. Next,
in the second stage, we use a Markov random field to model the
spatio-temporal relationship among the 3-D watershed volumes
that are obtained from the first stage. Then, the desired video
objects can be extracted by merging watershed volumes having
similar motion characteristics within a Bayesian framework. A
major advantage of this method is that it can take into account the
global motion information contained in each watershed volume.
Our experiments have shown that the proposed method has
potential for extracting moving objects from a video sequence.

Index Terms—Markov random field, three-dimensional (3-D)
watershed volume, video object segmentation, watershed segmen-
tation.

I. INTRODUCTION

V IDEO object segmentation plays an important role in
many advanced video applications (such as in MPEG-4 or

in virtual reality), but still remains a challenging research topic.
A popular approach to video object segmentation is to com-

bine a technique for single image segmentation with a temporal
tracking procedure [20]. Unfortunately, single image segmenta-
tion is itself a very difficult problem (which may not be easier
than video object segmentation). Other techniques in [12], [15]
consider video sequences to be three-dimensional (3-D) signals
and extend two-dimensional (2-D) methods to them, although
the time axis does not play the same role as the spatial axis.
The drawback of this technique is that a moving object in one
frame must overlap with its corresponding object in the next
frame. If the motion distance of the object is large, the object
may become disconnected from one frame to the next. Most of
the unsupervised segmentation algorithms only utilize low-level
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features such as color, texture, motion, frame difference and
histogram [9], [20]. However, without high-order information,
semantic video object extraction is hard to achieve. Therefore,
many researches have allowed a certain degree of human inter-
action. For example, the methods introduced in [2], [4] require
some human interaction for the initial segmentation of the first
image in the video. In fact, almost all the automatic algorithms
developed for extracting video objects have some limitations.
For example, the automatic method proposed in [20] can only
extract homogeneous regions, instead of complete objects.

Realizing that there exists no generic automatic algorithm ap-
plicable to all kinds of video sequences, we focus on the problem
of extracting video objects having similar motion characteristic.
The method proposed in this letter consists of two stages: 1)
generation of 3-D watershed volumes and 2) Bayesian merging
of 3-D watershed volumes. Details of the two stages will bde-
scribed in Sections II and III. Experimental results will be shown
in Section IV, and the conclusion will be given in Section V.

II. GENERATION OF 3-D WATERSHED VOLUMES

Watershed algorithm has been become popular technique for
image segmentation [5], [13], [18]. In this letter, we apply wa-
tershed technique to video object segmentation by constructing
3-D watershed volumes. Given a video clip
we can regard the data as one volume image. Our method first
partitions the volume image into a set of 3-D watershed vol-
umes, where each 3-D watershed volume is a series of cor-
responding 2-D image regions. Fig. 1 shows the flowchart of
our method for generating 3-D watershed volumes. These 2-D
image regions are obtained by applying to each image frame the
marker-controlled watershed segmentation described in Step 2
of Section II-B. The procedure for generating 3-D watershed
volumes can be divided into two phases: initial segmentation
and temporal tracking. Details of these two phases are described
below.

A. Initial Segmentation

In the initial phase, the first frame of the video clip is
partitioned into a set of 2-D regions by applying the watershed
segmentation algorithm to the gradient image of . However,
the basic watershed transformation tends to produce over-seg-
mentation due to noise or local irregularities in the gradient
image. Since overly segmented regions may not be reliable
enough for the next phase of temporal tracking, we adopt
a preprocessing method called “topographic simplification”
to alleviate the over-segmentation problem. In our current
implementation, the topographic surface of the gradient image
is simplified by removing the local minima [19]. First, we
apply a dilation operation with a structuring element of 2
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Fig. 1. Flowchart of generating 3-D watershed volumes.

2 pixels, i.e., let . Next, we apply to
a “reconstruction by erosion” [17] from , i.e.,

let . Notice that using a larger
can eliminate more local minima. Finally, we can obtain a

reasonable segmentation of by applying the basic watershed
transformation to the simplified gradient image .

In this letter, the above procedure of “topographic simplifi-
cation followed by watershed transformation” will be referred
to as the presimplified watershed segmentation, and will be ap-
plied again to each subsequent frame for the purpose of refining
the extracted markers, as described in Step 1.3.

B. Temporal Tracking

In the second phase, our algorithm repeats the following two
steps for each subsequent frame in the video clip: 1) marker ex-
traction and 2) marker-controlled watershed segmentation. The
task of marker extraction is to extract reliable seed regions based
on the segmented regions obtained from the previous frame.
Given these reliable markers, the marker-controlled watershed
segmentation can not only accurately extract the boundaries of
the watershed regions, but also can detect newly emerging re-
gions.

Step1—Marker Extraction: Marker extraction is crucial to
the success of the temporal tracking phase and deserves some
special attention here. Our method for extracting markers con-
sists of the following three substeps:

Step 1.1—Region label propagation by motion-based back-
ward projection: First, initial markers are obtained by using
backward pixel projection based on backward motion vectors.
That is, for each pixel in the current frame, we assign to the
region label of the corresponding pixel in the previous frame
to it. The correspondence is determined by using the backward
motion vector . Here, we choose to use backward motion
to avoid generating empty and conflicting areas in the current
frame. The dense field of backward motion vectors is estimated
by using a template-matching algorithm that adopts adaptive
windows, similar to the one used in [6]. To save the computation
time, we first estimate a sparse field of motion vectors at every
4 4 pixel spacing. Then, the dense pixel-wise motion vectors
are computed using bilinear interpolation. The approximation
error can be dealt with the following process.

Fig. 2. Example of Step 1.2 for marker extraction. (a) Initial marker with
unreliable pixels colored in grey. (b) Cross-shaped structuring element of 5
pixels. (c) Border pixels removed with the normal erosion. (d) Interior pixels
obtained with the normal erosion. (e) Eroded marker after the first iteration of
adaptive erosion. (f) After the second iteration (stable and stopped).

Step 1.2—Removing unreliable pixels from initial markers
by iterative adaptive erosion: Since motion vectors are usu-
ally not very accurate, we must remove unreliable region
assignments due to erroneous pixel correspondences. In order
to reduce the possibility of generating false boundaries in
the next substep, the extracted markers should be as large as
possible, and completely contained in their true corresponding
regions—which are unfortunately unknown to the computer.

Consider an initial marker . A pixel is regarded
as an unreliable pixel if it has an unreliable region propagation,
that is, if is greater than , where denotes the
local mean of textural error centered round pixel (that is, the
error of texture, including intensity and color, between the cor-
responding pixels)

(1)

where and its eight neighbors having the
same region label as p , is the number of elements in the
set , and denotes the global mean of textural error for
the whole area of marker

(2)
where is the number of the pixels in marker . The reason
for constraining to 2 and 16 is to prevent using an unreason-
able large or unreasonable small threshold. The two numbers, 2
and 16, are determined according to our experiments.

In this substep, we apply an iterative adaptive erosion to trim
off “unreliable border pixels” of the initial markers, as illustrated
in Fig. 2. The adaptive erosion (erode if “unreliable”) is per-
formed iteratively with a cross-shaped structuring element of 5
pixels, shown in Fig. 2(b), until the result becomes stable. No-
tice that the adaptively eroded marker shown in Fig. 2(e) is a
union of the normally eroded marker [shown in Fig. 2(d)] and
the reliable pixels, colored in white, are contained in the border
portions [shown in Fig. 2(c)].

Note that using a lower can eliminate more marker pixels.
In the case of foreground and background objects, which are
not distinctive, should be set conservatively. We found that

works well for most MPEG-4 test sequences in hand.
The resulting markers with different values of using frame 116
of the “foreman” sequence are shown in Fig. 3. Pixels in black
represent any undefined areas.
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Fig. 3. Markers extracted from frame 116 of sequence “foreman” with
different the value of k after Step 1.2 for marker extraction. (a) k = 0:8. (b)
k = 1:2.

Fig. 4. Example of Step 1.3 for marker extraction. (a) Two different markers
are overlaid by the watershed lines obtained from presimplified watershed
segmentation. (b) The shrunk marker after removing the doubtful portions.

Fig. 5. Markers extracted from frame 116 of sequence “foreman” with
different the value of k after Step 1.3 for marker extraction. (a) k = 0:8. (b)
k = 1:2.

Step 1.3—Removing unreliable pixels by checking with a
presimplified watershed segmentation: Here, we first gener-
ated a reasonably fine segmentation of the current frame by
applying the presimplified watershed segmentation described in
Section II-A, with a small value of parameter . For each gen-
erated watershed region, check if it contains only one marker
and the sole marker occupies more than half of the watershed
region. If so, the sole major marker will be retained for driving
the marker-controlled watershed segmentation in the next step.
Otherwise, the marker pixel in this watershed region will be
considered “unreliable,” and will be removed from the markers,
as illustrated in Fig. 4. Fig. 5 shows the final markers obtained
by applying this substep to the markers shown on Fig. 3. We
can see that after this step, small and ambiguous pieces of the
marker are removed.

Step 2—Marker-Controlled Watershed Segmentation: Based
on the reliable markers obtained from the last step, we can then
extract more precise region boundaries by using the marker-
controlled watershed segmentation [8], [20]. One problem ac-
companying marker-controlled segmentation is that no newly
exposed regions can be extracted without creating new markers.
To solve this problem, we modify the marker-controlled water-
shed algorithm slightly. For the flooding process of the marker-
controlled watershed algorithm used in [20], when the water

Fig. 6. New region is labeled if the dynamics of a catchment basin exceeds a
certain threshold.

Fig. 7. Demonstration of detecting new region by using dynamic thresholding.
(a) Frame 26. (b) Frame 27. (c) Segmented result of frame 26. (d) Segmented
result of frame 27.

coming from two different basins is about to meet, the two
basins are merged if “both have the same label” or “at least
one of them is unlabeled.” Our modification for creating new
markers is if the dynamics of an unlabeled basin larger than a
certain threshold [7], [10], the basin will be given a new label
(Fig. 6). Fig. 7 shows the result of detecting new regions using
frame 26 and 27 of the “coastguard” sequence. The big boat is
entering the image from the left, and the background water can
be detected as a new region.

III. BAYESIAN MERGING OF WATERSHED VOLUMES

Once the 3-D watershed volumes are generated, as described
in Section II, we need to merge them into a set of desired video
objects. Here, we propose a Bayesian approach to merging wa-
tershed volumes having similar motion characteristics, hoping
that more global motion information can be utilized within a
formal framework. Here, we use a Markov random field (MRF)
to model the spatial and temporal relationships among different
watershed volumes. A closely related work is the one done by
Gelgon and Bouthemy, which uses region-level MRFs to track
a spatial image partition [3]. Another work proposed by Patras
et al. [12] labels watershed segments by MAP. The labeling cri-
terion is the maximization of the conditional a posteriori prob-
ability of the labeling field given the motion hypothesis, the es-
timate of the label field of the previous frame, and image in-
tensities. However, our method is different from theirs, not only
in how the MRF is applied (we employ the MRF after tracking
while they do it before tracking), but also in how the class-con-
ditional probability is modeled.
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A. Extraction of Features From 3-D Watershed Volume

Before applying the Bayesian merging to 3-D watershed vol-
umes, the representative features for each watershed volume
need to be extracted. Motion information is an important cue
to produce semantic objects. Hence, for each watershed volume

, we construct a feature vector based on motion informa-
tion. We first decompose each watershed volume into a set
of regions , where de-
notes a region which can be obtained by intersecting frame
with the watershed volume , and are the indices
of the beginning frame and the ending frame of the watershed
volume , respectively. Note that the indices of the beginning
and ending frames of the watershed volumes can vary for the
watershed volume due to the appearance or disappearance of
objects in the scene.

In practical situations, image motion of a rigid object can be
approximately modeled by a small number of motion parame-
ters. If two regions roughly correspond to the same 3-D rigid
object, the motion parameter should be about the same. From
the above observation, we compute a motion parameter vector

for each region by applying the least-median squares
(LMedS) robust estimator [13] to the backward dense motion
field obtained from Step 1.1 of Section II-B. The motion pa-
rameters can be estimated by

(3)

where is a parameterized motion field, is defined as
the two-norm operator, and is the motion vector of pixel
in frame . After the parameters for all the regions in the wa-
tershed volume are determined, we can construct a motion
feature vector: . Notice that
the dimensionality of is , where is
the dimension of . In our current implementation, the motion
characteristics of are described by a constant motion field,
that is, , where and and
are the coordinates of the mean motion vector.

B. Proposed Method

In this work, we assume that the number of video objects to
be extracted (including the background objects) is known. Given
a set of 3-D watershed volumes , where

is the number of 3-D watershed volumes, a volume adjacency
graph (VAG) can be constructed to express the neighborhood
relationship among 3-D watershed volumes. Each node in the
graph corresponds to a watershed volume, and between two vol-
umes exists an arc if the volumes are spatially connected. Next,
we define a label field on the
VAG. Given , we estimate the labeling field

by maximizing the a posteriori probability (MAP). Using the
Bayes rule, the a posteriori probability density function can be
expressed as

(4)

The first term on the right-hand side of (4) is the conditional
probability distribution . It is modeled as a Gaussian

distribution, which implies that each object should have min-
imum motion variance

(5)

where is the mean of the parameter vectors of all water-
shed volumes in frame whose corresponding labels are ,
is a function of the size of the video object.

The second term on the right-hand side of (4) is the prior
probability distribution , which is a regularization term.
To take into account the “degree” of adjacency between two
watershed volumes, we directly extend a measure of adjacency
degree between two regions proposed in [3] to that between two
watershed volumes

(6)

where is the area of the common border between
and , and and are the gravity centers of and ,
respectively. We model the prior as a Gibbs distribution. Before
defining a Gibbs distribution, we need to define the cliques.
Here, only two-site cliques are considered and straightfor-
wardly obtained from the arc of the VAG. Let be the set of
all binary cliques. The Gibbs distribution is given by

(7)

where is a normalizing constant and , the regulariza-
tion potential, is defined as

(8)

where is a Kronecker delta function. The regularization
term tends to favor identical labels for two neighboring volume
sites.

The maximum a posteriori probability (MAP) estimate of
is obtained by minimizing the following energy function

(9)

Energy minimization is performed using an ICM algorithm
proposed by Besag [1], sometimes also called the greedy algo-
rithm. At each iteration, each volume sites is visited. The label
of each site is either changed to the label that yields maximal
decrease of the energy function, or left unchanged if no energy
reduction is possible. The process stops when no more changes
can be made. The detail can be found in [16].

IV. EXPERIMENTAL RESULTS

In this section, we use the “foreman”, and “coastguard” se-
quences, shown in Figs. 8 and 9, respectively, to demonstrate
the performance of our algorithm. The experiments are run on
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Fig. 8. “Foreman” sequence: frame 1, 20, 40, 60, 80, 100. (a) Original images.
(b) After temporal tracking. (c) After Bayesian merging.

AMD Athlon 1.2 GHz PC with 384 MB RAM. The sizes of
the “foreman” sequence and the “coastguard” sequence are 352

288 and 352 240. As to the total execution time, the pro-
cessing of the “foreman” sequence with 100 frames requires 483
s and the “coastguard” sequence with 50 frames requires 131
s. In our current implementation, the gradient images are com-
puted on a weighted YUV color space, i.e., .
The weighting factors, , , and , are set to one, two, and
two, respectively, to emphasize the color components.

In the “foreman” sequence, the human body has a moderate
motion and the camera is moving as well. It can be seen from
Fig. 8(b), where cross-sections of watershed volumes are shown,
that the results obtained by marker-controlled temporal tracking
look pretty good. By setting (i.e., the number of video
objects to be extracted is 2), the watershed volumes depicted in
Fig. 8(b) can be correctly merged into two video objects: the
foreman and the background, as shown in Fig. 8(c). In this se-
quence, we have found that the similarity between the motions
of the head and the shoulder could be more easily detected when

Fig. 9. “Coastguard” sequence: frame 1, 10, 20, 30, 40, 50. (a) Original
Images. (b) After temporal tracking. (c) After Bayesian merging.

considering a longer sequence. Therefore, our method can ob-
tain better segmentation results than those obtained by Moschni
et al. [9].

In the “coastguard” sequence, the horizontal camera drift is
present while two boats are moving with different velocities and
directions. Notice that the bigger boat is entering the image from
the left, and its new emerging regions can be successfully ex-
tracted, as shown in Fig. 9(b). If we set , the proposed
Bayesian method can partition the video clip into four different
objects: the bigger boat, the smaller boat, the water and the
shore, as shown in Fig. 9(c). Compared with the results using
the method proposed by Patras et al. [12], the segmented bound-
aries we extracted are much closer to the objects.

V. CONCLUSION

In this letter, we have proposed a new method for video ob-
ject segmentation. This method first partitions the video data
into a set of 3-D watershed volumes, and then extracts video
objects by merging motion-coherent watershed volumes within
a Bayesian framework. One major contribution of this work is
that it models the prior information with a MRF over a volume
adjacency graph (VAG), where each node of the VAG is a 3-D
watershed volume and, hence, is able to take into account the
global motion information contained in each watershed volume.
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This method is appropriate for extracting objects having sim-
ilar motion because it can merge 3-D watershed volumes having
similar motion with a Bayesian framework. Another contribu-
tion is that this letter proposes an efficient way to extract reliable
markers by shrinking with two schemes: the iterative adaptive
erosion and the verification against a presimplified watershed
segmentation. Experimental results have shown that the pro-
posed method has potential for extracting moving objects from
a video sequence.
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