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Improved Quantitative Measures of 
Robustness for Multivariable Systems 

Homg-Giou Chen and Kuang-Wei Han 

Abs*uct- Asymptotically stable linear systems subject to unstruc- 
tured time varying perturbations are considered. Allowable perturbation 
bounds are obtained such that the perturbed systems remain stable. These 
bounds are derived iteratively by means of adjusting a sequence of Lya- 
punov matrices. In comparison with existing methods, less conservative 
quantitative measures of robustness are obtained. 

I. NOMENCLATURE 

R" 
P ,  
A' 
gmax  (A) 
g m i n  (A) 
A-l 

llvll 
P > O  
P > O  

P > Q  

P > Q  

Real vector space of dimension n. 
QRBM (Quantitative Robustness-Bound Measure). 
Transposed matrix of A. 
Maximum singular value of matrix A. 
Minimum singular value of matrix A. 
Inverse matrix of an invertible matrix A. 
Square root of positive-definite matrix A. 
Euclidean norm of vector U. 
Square symmetric matrix P being positive-definite. 
Square symmetric matrix P being 
positive-semidefinite. 
Square symmetric matrices P and Q that satisfy 

Square symmetric matrices P and Q that satisfy 
P - Q > O .  

P - Q > O .  

11. INTRODUCTION 
Recently, the aspect of developing explicit upper bound on the 

perturbation of linear systems, such that the perturbed systems 
remain stable, has received much attention. Starting with Patel et 
al. [l], Patel and Toda [2], and Lee [3], considerable effort has 
been given on the reduction of conservatism in quantitative measures 
of robustness with increasingly complicated ways of defining the 
structure of perturbations [4]-[7]. In these literatures, perturbations 
are broadly categorized as being unstructured or structured. For 
unstructurally perturbed systems, while it is assumed that only the 
norm bound of the perturbation is available, robustness measures 
can be derived by use of the Lyapunov theory [I], [2]. Since the 
robustness measures derived for the unstructured cases are generally 
used to propose robustness bounds for the structured cases, it is 
desirable to always derive less conservative robustness measures for 
unstructurally perturbed systems. 

In this correspondence, new robustness measures for unstruc- 
turally perturbed systems are derived. By way of integrating matrices 
specified within a pair of Lyapunov equations, less conservative 
Quantitative Robustness-Bound Measure (QRBM) can be achieved. 
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111. PROBLEM FORMULATION 
We consider systems described by the differential equation 

z( t ) /dt  = A z ( t )  + f ( z ( t ) ,  t )  (1) 

where A E R"'" is the stable nominal matrix, and f ( z ( t ) ,  t) is an 
unstructured perturbing function with the property of f ( 0 ,  t) = 0 
for all time t. It is assumed that, while an exact expression of the 
perturbation cannot be written explicitly, an estimate of some bound 
on the perturbation is available. The problem which we investigate 
in this correspondence is to derive a less conservative quantitative 
bound on the perturbing function f ( z ( t ) ,  t) such that the perturbed 
system described by (1) remains stable. 

For unstructurally perturbed systems described by ( l ) ,  the 
Lyapunov-based method of deriving QRBM' s has been considered 
as well established for a long time [l], [2]. Existing results are the 
following two theorems where sufficient conditions for the stability 
of the system described by (1) were expressed as upper norm-bounds 
of the perturbing function f ( z ( t ) ,  t ) .  

Theorem I: (Theorem 1 of [2]) The perturbed system described 
by (1) is stable if 

Ilf(t, t) l l l l l~I I  5 PQ E gmin(Q)/gmax(P) (2) 

for all (2, t) E R"+lwith nonzero t, where Q E R"'" is some 
symmetric positive-definite matrix, and P E R" ' " is the symmetric 
positive-definite matrix that fulfils the Lyapunov equation 

(3) 

Theorem2: (Lemma 2 of [2]) The bound PQ defined in (2) is 
maximum (i.e., the least conservative result of PQ denoted as PI) 
when the matrix Q = I is assigned in the Lyapunov equation (3), 
where 1 is the n x n identity matrix. 

It can be shown that these theorems generally produce QRBM's 
that are very conservative. In the following, another Lyapunov-based 
method of deriving QRBM's is proposed. The basic idea comes 
from the generally accepted fact that, more often than not, several 
Lyapunov functions are better than one. Since the results of the 
existing two theorems are not flexible enough for mingling Lyapunov 
functions, it is necessary for us to rederive the problem specified in 
Theorem 1. 

Theorem 3: The perturbed system described by (1) is stable if 

A'P + P A  = -2Q. 

for all (z, t) E R"+l with nonzero z, where matrices P and Q fulfil 
the Lyapunov equation (3). 

Proof: Followed from the Lyapunov equation (3), a Lyapunov 
function of the stable nominal system matrix A is given by 

V(z) = z 'Pz.  ( 5 )  

Employing the quadratic function V(z) on the perturbed system 
described by (l), a sufficient condition for justifying the stability 
of the perturbed system is given by 

0 > dV(z) /dt  = (dz/dt) 'Pz + z 'P (dz /d t )  
= z'(A' P + P A ) a  + 2 f ' P z .  (6) 

Using Lyapunov equation (3), the sufficient condition for stability 
becomes 

f ' P z  5 z'Qx. (7) 
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Making a slight modification, condition (7) is equivalently given by 

and a sufficient condition for stability can be given as 

(9) 

Knowing that 

and 

condition (9) is sufficiently justified by 

omax (Q- P) II f I1 i omin (Q"' I I  5 I1 (12) 

which complete the proof. 0 
We note that Theorem 1 was derived without the modification 

stage from (7) to (8) given in the proof of Theorem 3. Thus, it 
is implicitly assumed in Theorem 1 that matrices P and Q of the 
Lyapunov equation (3) are structurally unrelated. This is certainly not 
realistic, and Theorem 3 can be looked at as the rectified version of 
Theorem 1 in this particular point of view. Comparing the proposed 
bound given in (4) with the existing bound given in (2), since 

omin (&'/')/omax (Q-'/'P) = omin ( Q1l2)omin (P-l Q1l2) 
2 omin (Q' /2)omin(Q1/2)~min (P-l) 
= omin (Q)/omax ( P )  (13) 

the proposed bound ( p c )  is always better than the existing bound 
( p ~ )  for all possible choices of matrix Q in the Lyapunov equation 
(3). In this correspondence, the following two facts are used: 

i) dmin (A + B) 2 omin (A) + omin (B), where A 2 0, B 2 0; 
ii) c m i n ( A B )  2 omin(A)Umin(B).  

More discussion of singular values and their properties can be 
found in various texts [8]. 

Heuristically, there is a particular choice of matrix Q which will 
bring forth possibly the least conservative bound. The structural 
relation between matrices P and Q of the Lyapunov equation (3) can 
not be resolved, however, without first having the Lyapunov equation 
solved. This is a common difficulty confronting the robustness 
analyses by ways of the Lyapunov-based methods. Thus, we are 
obliged to create an iterative process such that a proper choice of 
matrix Q for the Lyapunov equation (3) may be acquired with less 
conservative QRBM (pc).  

IV. REDUCING CONSERVATISM IN QRBM 
Let A be a stable system matrix, so will A' be stable. The following 

Lyapunov equations specify two symmetric positive-definite matrices 
Pi and P2 :  

A'Pi + P I A  + 2 Q i =  0 (14) 

PT'A' + APF' + 2 Q 2  = 0 (15) 

where matrices Q1 and QZ are symmetric positivs-definite. Simul- 
taneously, we have the following alternative expressions of (14) and 
(15): 

PTIA' + APT' + 2PF1Q1PT1 = 0 (16) 
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Employing Theorem 3, the Lyapunov equations (14) and (17) pro- 
vide us with two QRBM's ( p c )  for the perturbed system described 
by (1). These are 

112 = Umin(Q:/z)omin(PzQ:/2). (19) 

Without loss of generality, it is assumed in the followings that 
matrices Q1 and QZ are always normalized such that 

(20) omin(Q1) = cmin(Q2) = 1. 

Thus, in matrix sense, relations given in (20) are expressed by 

Qi 2 1  and Q 2 2 1  (21) 

Pc'Qil'c' 2 p:I  (22) 

and relations given in (18) and (19) are expressed by 

We note that (14) and (17) can be interpolated to make new 
Lyapunov equations, so can (15) and (16) in dual manner. 
Lemma 1: Given Lyapunov equations (14) and (15), the following 

interpolated Lyapunov equations are fulfilled for all interpolating 
parameters U E (0, 1/&) and b E (0,  l/p?): 

A'Xi + XiA + 2Y1 = 0 (24) 

where 

xi = (1 - up;)  Pl + U P ! ,  (26) 

Y2 = (1 - bp:)Q2 + bPl-lQiPF1. (29) 

Pro@ Equation (24) is the direct interpolated result of (14) and 
(17). Equation (25) is the direct interpolated result of (15) and (16). 0 

Employing Theorem 3, the interpolated Lyapunov equations (24) 
and (25) provide us with two QRBM's ( p c )  for the perturbed system 
described by (1). These are 

The following lemmas provide some qualitative properties that are 
useful for producing iterative interpolating procedures from which 
a proper choice of matrix Q for the Lyapunov equation (3) can be 
acquired with less conservative QRBM ( p c ) .  

Lemma 2: Given Lyapunov equations (14) and (15) with their 
QRBM's p1 and p2 given in (18) and (19), the interpolated Lyapunov 
equations (24) and (25) defined in Lemma 1 produce new QRBM's 
vi and v2 given in (30) and (31) such that, for all interpolating 
parameters a E (0, 1/&) and b E (0,  l/p?) 

(32) min(v1, v2) 2 min{pi, p 2 ) .  
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Pruufi We shall prove that VI 2 min(p1, pz},  and the other 
relation showing that V P  2 min {PI, p ~ }  can be proved in a similar 
way. 

k m m a  3: Given Lyapunov equations (14) and (15) with their 
QRBM's p1 and p2 given in (18) and (19), the interpolated Lyapunov 
equations (24) and (25) defined in Lemma 1 produce new QRBM's 
VI and v2 given in (30) and (31). There are interpolating parameters By use of relations given in (27). (20), and (19), we obtain 
a E [amin, l/pz) and b E [bmin, l/p:) such that 

cmin(Y1) = c m i n ( ( 1 -  ap;)Q1 + a 9 Q 2 5 )  
2 (1 - a&)cmin(Ql) + aUmin(PZQ2Pz) max(v1, VZ} 2 max{pl, pa} (45) 
- - 1 - up; + up; = 1. (334 

Thus, the interpolated Lyapunov equation (24) produce the QRBM 

if the following conditions are fulfilled: 

p z ( Q 2  - 1)s + (Pz - p i P ~ ) ~  > pi (p;p:  - Qi) (46) 
V I  given in (30) such that 

which is rewritten, in matrix sense, by 

x;lYlx,l 2 EZI 

and bmin E [0, l/p:) is the smallest value that fulfils 

bmin{p~l(Ql-1)Pr1+(PF1 - ~ L L : P F ~ ) ~ }  2 p:PL2-Qz. (49) 
(36) 

Proofi Lemma 2 implies the result for the case of p1 = pz. We 
shall prove that, given pz > p1, conditions (46) and (47) lead to an 
improved QRBM with v1 2 pz. In a similar way, the other relation, 
showing that uz 2 p1, can be proved for the case of p1 > pz. 

Given Pz  > PI,  by Use Of the matrix relation given in (23), it can 
be shown that 

or 

(37) 

By definitions of matrices x1 and yl given in (26) and (271, condition 
(37) becomes 

Yl 2 E2X,2. 

(1 - &)Q1 + aPzQ2Pz 2 E2[(1 - ap;)Pi +  UP^]'. (38) p:pFz - Qz < p i p . '  - Q2 5 0. (50) 

Thus, condition (47) is automatically fulfilled and is redundant. 

(amin, l/p;) such that 

Re-  and post-multiplied by the matrix P;', we have 

(1 - ap;)PF1&1Pr1 + aPF1PzQzPzP;l 
Let condition (48) be fulfilled; there are values of a E 

(51) 2 E Z [ ( l  - a&)1+ aP,-'P2][(1 - ap;)1+ aPzP,-']. (39) 

By use of the matrix relation given in (21) and (22), condition (39) 
is sufficiently justified if 

(1 - + aPclP2PzP;l + a2piPz(Qz -I)&, 

a{Pz(Qz - 1)pz + (p2 - p;Pl)'} > - p;p: - Q1. 

Given matrix relations (21), since QZ 2 I, we have 

0 5 (1 - a&){a{Pz(Qz - I ) &  + (Pz - P ; S ) ~ }  + & I  - p i p ? }  

2 t2[(l - ad)1 + aPc1P21[(1 - a & ) I +  apzp;'] (40) = (1 - ap;){a(pz  - p;pl )z  + Q1 - + &(Q2 - I )p2 ,  
= -a2p;P,2 - apg(1- a p ; ) ( p 2 ~ 1  + ~ 1 ~ 2 )  - pi(1 - a p ; ) ' ~ ?  which is rearranged to be 

( 1  - ap;)[pT - (1  - ap;)E2]1 + a(1 - ap)P;'P2PZP;1 
+ (1 - a&)Q1 + u P z Q ~ P z ,  

= (1 - ap;)Ql+ UPZQZPZ - &[(I - ap;)P1 + aP212. (52) 
2 a( l  - ap;)EZ[Pr1P2 + P2PF1]. (41) 

By definitions of matrices X1 and Y1 given in (26) and (27), relation 
(52) becomes Since it is known that (1 - a t Z )  2 (1 - up;) ,  condition (41) is 

sufficiently justified if 
Yl 2 pix? (53) 

umin(XTIYiXF1) 2 pi. (54) 

[p: - (1 - a p ; ) t 2 ] 1  - aEZ(P;lP2 + P2P;') 
or +aPl-lPzPzP;l 2 0 (42) 

which is equivalently expressed by 
On the other hand, it has been shown in the proof of Lemma 2 that 

+[p? - (1 - a p i ) ~ ~  - a t 4 ] 1  2 0. (43a) cmin(Y1) 2 1. (33b) 

Thus, followed from the definition of the interpolated QRBM given 
in (30), relations (33) and (54) are combined to provide 

a(P;'P, - E21)(PzP;l - ( 2 1 )  

Thus, V I  2 is sufficiently justified if 

V; = ami,(X;'YlX,')emin(Yl) 2 pi- (55) 

0 
Utilizing these lemmas, the following procedure is devised to 

interpolate Lyapunov equations and to extract the improved QRBM 

p: - (1 - - at4 2 0 (43b) 

which is always fulfilled, for all a E (0, l/pz), since 

p? - (1 - .&)E2 - at4 = (& - t2 )  + - t2 )  2 0. (4) 

0 (clcl. 
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Algorithm I: 
1) Assigning Q1 = QZ = I. 
2) Equate Lyapunov equations (14) and (15), and acquire the 

QRBMSs p1 and pz from (18) and (19). 
3) Compute amin and bmin from relations (48) and (49) and make 

the following adjustments: if amin < 0, we make amin = 0; 
and if amin > l/pz, we make amin = 1/&; if bmin < 0, we 
make bmin = 0; and if bmin > l /pf ,  we make b ~ n  = l / p f .  

4) Selecting U = 0.5(1/& + amin) and b = 0.5(1/p: + bmin), 

the interpolated matrices YI and YZ are obtained from (27) and 
(29). 

5) Normalize matrices YI and YZ to form new matrices QI and 
Q2 that fulfil (20), and repeat from Step 2 until a convergent 
condition is detected. 

We note that, in each iteration, two robustness measures (p1 and 
112) are obtained in Step 2 of the proposed algorithm. To make 
appropriate use of Lemmas 2 and 3, the qualitative property of 
interpolating Lyapunov equations is investigated in Step 3. There 
are only two cases: 

amin E [0, l/p;), then both Lemma 2 and Lemma 3 are applied 
in Step 4 such that the magnitudes of both max(p1, p2} and 
min(p1, pz} are improved in the next iteration. 

ii) If amin = 0 and bmin = l/p:, or if bmin = 0 and amin = l/p;, 
then only Lemma 2 is applied in Step 4 such that the magnitude of 
min (p1, pz}  is improved in the next iteration. Since Lemma 3 is not 
applicable in this case, the process attempts to preserve the magnitude 
of max {pl , pz}.  Nevertheless, it is still possible that the magnitude 
of max {PI, p2} is improved in the next iteration. 

Obviously, the iterative process persistently improves the mag- 
nitude of max(p1, p2) until it is found that the magnitude of 
max{pl, p2} is trivially affected by further interpolations. 

Example 1: Consider the system given in [2], the nominal matrix 
is given by 

i) If amin = 0 and bmin E [0, l /pf) ,  oc if bmin = 0 and 

-3 -2 
A =  [ 1 01. 

The bound pr in Theorem 2 is known to be 0.3820. By use of the 
proposed procedure, the result is 

pc = 0.4495 

where matrices in the Lyapunov equation (3) are given by 

5.2361 2.6180 2.1817 1.3090 
= [2.6180 2.61801 and = [1.3090 3.0544]. 

An improvement of 18% in QRBM is observed. 

the nominal matrix is 
Example 2: Consider the stabilized STOL aircraft given in [2], 

1 

1 

-0.201 0.755 0.351 -0.075 0.033 
-0.149 -0.696 -0.160 0.110 -0.048 

A = 0.081 0.004 -0.189 -0.003 0.001 . 
-0.173 0.802 0.251 -0.804 0.056 

0.092 -0.467 -0.127 0.075 -1.162 

pc = 0.0929 

i 
The bound 
proposed procedure, the result is 

in Theorem 2 is known to be 0.0774. By use of the 

where matrices in the Lyapunov equation (3) are given by 
2.2744 -1.7412 -1.7071 1.0771 -1.0905 

-1.7412 23.9420 7.2540 -11.8002 10.3020 
-1.7071 7.2540 4.7158 -3.1945 2.5491 

1.0771 -11.8002 -3.1945 12.3753 -0.8221 
-1.0905 10.3020 2.5491 -0.8221 27.1638 

and 

9.2069 2.1312 -0.6771 0.0540 -0.4574 
2.1312 26.6291 8.3456 -6.0982 4.6249 

P = -0.6771 8.3456 14.9825 -0.8588 0.7625 
0.0540 -6.0982 -0.8588 14.6391 0.8907 I -0.4574 4.6249 0.7625 0.8907 23.2163 

An improvement of 20% in QRBM is observed. 

v. CONCLUDING &MARKS 

The main theme of this correspondence is to derive a less conser- 
vative QRBM for the unstructurally perturbed systems. In this regard, 
interpolated Lyapunov equations have been examined, and an iterative 
computational procedure has been proposed. The two examples show 
that, with a handful of iterations, our method achieves a considerable 
improvement over old results. 
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