Synthesis of Eburnamine, Isoeburnamine, and Eburnamonine via a Spirocyclic Intermediate

by Tse-Lok Ho* and Chun-Kuei Chen

Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan, Republic of China (e-mail: tlho@cc.nctu.edu.tw)

Racemic eburnamonine (1) was synthesized *via* **6**, an intermediate possessing local symmetry. Cleavage of the cyclopentene subunit led to pentacyclic aldehydes **8a/8b** which on subsequent borohydride and *Wolff–Kish-ner* reductions gave **12**. The final steps included a RuCl₃-catalyzed periodate oxidation and pyridinium chlorochromate (PCC) oxidation. The penultimate intermediates were racemic eburnamine (2) and racemic isoeburnamine (3).

The pentacyclic indole alkaloids represented by eburnamonine (1), eburnamine (2), and isoeburnamine (3) have been isolated from numerous species of the plant family Apocyanaceae [1] (an extensive tabulation of isolation of these alkaloids from numerous plants is found in [2d]). Interestingly, dextrorotatory, levorotatory, and racemic forms of eburnamonine exist in nature. The (-)-form, also known as vincamone (isolated from *Vinca minor*), is a drug that possesses a stimulating activity for muscle and is used as cerebrotonic, whereas both enantiomers have hypotensive effects. The interesting pharmacological activities triggered much effort for the synthesis of this type of compounds [2–4] (for an extensive compilation of eburnamonine syntheses from 1960–1991, see [3a]; for pharmacological aspects, see [2d] and ref. cit. therein). It is the synthetic work of *Wenkert* and *Wickberg* [5] that established the *cis* D/E-ring junction of the *Eburna* alkaloids.

With molecular symmetry or hidden symmetry as a guide for synthetic design [6] for natural products [7], our attention was turned to the possibility of elaborating some of the *Eburna* alkaloids from a precursor with local symmetry. Our analysis focused on the racemic spirocyclic intermediate **6** (*Scheme*¹)) which on oxidative cleavage (at the iso-

¹) Throughout this report, racemates are described; for convenience, only the formula of one enantiomer is depicted. The absolute configuration of the corresponding stereoparent 'eburnamenine' is (3β,16β), cf. names in the *Exper. Part.*

© 2005 Verlag Helvetica Chimica Acta AG, Zürich

lated double bond) would release two functionalized C-chains necessary for completing the ring system as well as the erection of the angular ethyl group. As the stereochemical issue is concerned, we believed that adjustment is possible even if the E-ring formation led to the epimeric series.

Aldehyde **5c** was identified as a component for combining with tryptamine by a *Pic-tet–Spengler* reaction [8]. Access to **5c** from methyl cyclopent-3-enecarboxylate **4** [9] in 3 steps *via* **5a**,**b** was straightforward: alkylation with 1-bromo-3-chloropropane, reduction with *Dibal-H* (diisopropylaluminium hydride), and PCC (pyridinium chlorochro-

mate) oxidation. Initially, we attempted to convert the ester group into a formyl group with *Dibal-H* but only the alcohol was obtained. Probably due to the steric hindrance of **5c**, we observed its optimal transformation into **6** by a CF₃COOH-promoted *Pictet–Spengler* reaction to the extent of only 50% completion. Concomitant formation of the D-ring was observed. Next, we carried out a vicinal-dihydroxylation with a catalytic amount of OsO₄ and 4-methylmorpholine 4-oxide as the reoxidant. Only one product, diol **7**, was isolated (66% yield). On treatment of the diol with NaIO₄, a mixture of pentacyclic hydroxyladehydes (later identified as **8a** and **8b** which are epimeric at the alcohol center) was isolated. To establish the identity of these hydroxyladehydes, particularly the nature of the ring junction, the mixture was oxidized with PDC (pyridinium dichromate). Production of a single product confirmed the presence of epimers in the cyclization product and showed that the cyclization was selective. Dithioacetalization of the hydroxyladehyde mixture followed by desulfurization with *Raney*-Ni led to 3-epieburnamonine (**10**) [3g][5]. Therefore, our objective was yet to be reached.

Further identification of the pentacyclic hydroxyaldehydes proved rather trivial since **8b** readily underwent cyclization to lactol **13** upon column chromatography. Exposure of **8a** and **13** to NaBH₄ delivered **11a** and **11b** [3b], respectively. Deoxygenation of **11a/11b** to **12** by a *Wolff–Kishner* reduction under *Huang–Minlon* conditions proceeded smoothly. Alcohol **12** is a known compound, and its conversion to eburnamonine has been described [3b][10]. However, we were not able to repeat the transformation, using either BF₃·OEt₂/PCC [3b][10] or the perrhenate protocols [3d][3g]. We had to carry out a RuCl₃-catalyzed periodate oxidation [11] to obtain a 1:1 mixture of eburnamine (**2**) and isoeburnamine (**3**) [12], before treatment with PCC to afford eburnamonine (**1**) [12b]¹).

In summary, we have completed a synthesis of eburnamine, isoeburnamine, and eburnamonine utilizing racemic $\mathbf{6}$ that possesses local symmetry as a pivotal intermediate.

We thank the National Science Council of ROC for financial support.

Experimental Part

General. All reactions were conducted under N₂. For drying org. solns. during workup, Na₂SO₄ was used. Column chromatography (CC): *Merck* silica gel (63–200 mesh). TLC: *Merck* silica gel 60 F 254 plates. M.p.: *Laboratory Devices*; uncorrected. IR Spectra: *Bio-Rad FTS* 165; $\tilde{\nu}$ in cm⁻¹. ¹H- and ¹³C-NMR Spectra: *Varian Unity-300*; CDCl₃ unless otherwise indicated; δ in ppm, J in Hz. EI-MS: *Trio-2000* and *Jeol SX-102A*; ionization potential 70 eV unless otherwise indicated.

Methyl Cyclopent-3-enecarboxylate (**4**). According to [9], from dimethyl malonate and (2*Z*)-1,4-dichlorobut-2-ene: **4** (*ca.* 50%). ¹H-NMR: 2.63 (*d*, J = 8.4, 4 H); 3.05–3.15 (*m*, 1 H); 3.68 (*s*, 3 H); 5.64 (*s*, 2 H).

Methyl 1-(3-Chloropropyl)cyclopent-3-enecarboxylate (**5a**). To a stirred soln. of lithium diisopropylamide (LDA; 28 mmol; prepared from BuLi and ⁱPr₂NH in anh. THF (20 ml)) was added a soln. of **4** (3.0 g, 23.7 mmol) in THF (5 ml) during 5 min, while the temp. was maintained at -78° . After 30 min, a soln. of 1-bromo-3-chloropropane (3.78 g, 24 mmol) in THF (5 ml) was added dropwise. After an additional hour, the mixture was allowed to gradually warm up to r.t. and then kept overnight. After quenching with sat. aq. NH₄Cl soln. (20 ml), the product was extracted into Et₂O, the combined org. phase washed with brine, dried, and evaporated, and the residue subjected to CC (AcOEt/hexane 1:9): **5a** (4.22 g, 88%). Colorless liquid. R_f 0.4 (AcOEt/hexane 1:9). IR: 1723 (C=O). ¹H-NMR: 1.67–1.72 (m, 2 H); 1.76–1.80 (m, 2 H); 2.28 (d, J=15, 2 H); 2.88 (d, J=15, 2 H); 3.48 (t, J=6, 2 H); 3.67 (s, 3 H); 5.58 (s, 2 H). ¹³C-NMR: 28.58 (t); 36.55 (t); 42.34 (t); 45.04 (t); 51.83 (s);

51.95 (*q*); 128.33 (*d*); 177.59 (*s*). EI-MS (30 eV): 204 (0.40), 202 (1.05, *M*⁺), 187 (2.13), 145 (35.95), 143 (100), 125 (16.83). Anal. calc. for C₁₀H₁₅ClO₂: C 59.26, H 7.46; found: C 59.12, H 7.86.

1-(3-Chloropropyl)cyclopent-3-ene-1-methanol (**5b**). A soln. of **5a** (3.55 g, 17.5 mmol) in anh. THF (25 ml) was cooled to -78° and treated with *Dibal-H* (38.5 mmol, 32 ml; 20% (*w/w*) in PhMe) during 10 min. The resulting soln. was stirred for 30 min at -78° and for 2 h at 0°, and then cautiously quenched by MeOH (5 ml). After dilution with H₂O (15 ml) while warming up to r.t. during an additional 2 h, the mixture was poured into 5% HCl soln. (50 ml) and extracted with Et₂O. The extract was washed with aq. NaHCO₃ soln. and brine, dried, and evaporated and the residue subjected to CC (AcOEt/hexane 15:85): **5b** (2.99 g, 98%). Colorless liquid. *R*_f 0.15 (AcOEt/hexane 1:9). IR: 3385 (OH). ¹H-NMR: 1.52–1.58 (*m*, 2 H); 1.67–1.76 (*m*, 2 H); 1.83 (br., 1 H); 2.21 (*d*, *J*=15, 2 H); 2.09 (*d*, *J*=15, 2 H); 3.42 (*s*, 2 H); 3.50 (*t*, *J*=6.6, 2 H); 5.56 (*s*, 2 H). ¹³C-NMR: 28.07 (*t*); 34.62 (*t*); 41.07 (*t*); 45.69 (*s*); 45.74 (*t*); 69.02 (*t*); 129.12 (*d*). Anal. calc. for C₉H₁₅CIO: C 61.89, H 8.66; found: C 61.79, H 8.90.

1-(3-Chloropropyl)cyclopent-3-ene-1-carboxaldehyde (**5c**). PCC (6.47 g, 30 mmol) was added in portions within 10 min to a mixture of **5b** (2.62 g, 15 mmol), Na₂CO₃ (5.24 g, 49.5 mmol), and powdered 4-Å molecular sieves (7.67 g) in anh. CH₂Cl₂ (60 ml) at r.t. After 1 h, the mixture was diluted with Et₂O (25 ml) and passed through a pad of *Florisil*. The *Florisil* bed was thoroughly rinsed with Et₂O the combined soln. evaporated, and the residue subjected to CC (AcOEt/hexane 5:95): **5c** (2.04 g, 79%). Colorless liquid. R_t 0.4 (AcOEt/hexane 1:9). IR: 1724 (C=O). ¹H-NMR: 1.64–1.70 (*m*, 2 H); 1.77–1.83 (*m*, 2 H); 2.23 (*d*, *J*=15, 2 H); 2.71 (*d*, *J*=15, 2 H); 3.51 (*t*, *J*=6.3, 2 H); 5.61 (*s*, 2 H); 9.49 (*s*, 1 H). ¹³C-NMR: 28.24 (*t*); 32.66 (*t*); 38.82 (*t*); 45.11 (*t*); 56.05 (*t*); 128.68 (*d*); 203.42 (*d*). EI-MS (30 eV): 174 (0.91), 172 (2.29, M^+), 145 (2.48), 143 (9.28). Anal. calc. for C₉H₁₃-CIO: C 62.61, H 7.59; found: C 62.75, H 7.88.

(12'bRS)-3', 4', 6', 7', 12', 12'b-Hexahydro-spiro[cyclopent-3-ene-1,1'(2'H)-indolo[2,3-a]quinolizine] (6). A soln. of **5c** (1.85 g, 10.7 mmol) in anh. CH₂Cl₂ (30 ml) was mixed with a soln. of tryptamine (=1H-indole-3-ethanamine; 1.88 g, 11.8 mmol) in CH₂Cl₂ (30 ml) at r.t. and stirred for 2 h. The mixture was cooled to 0° and treated with CF₃ COOH (45.0 mmol, 3.45 ml) in CH₂Cl₂ (5 ml) during 10 min. After 1 h, the ice bath was removed and the mixture kept at r.t. overnight and then poured into an ice-cold 5% aq. NaHCO₃ soln. (50 ml). The mixture was extracted with CH₂Cl₂, washed with aq. NaHCO₃ soln. and brine, dried, and evaporated, and the residue subjected to CC (AcOEt/hexane 10:90 \rightarrow 50:50): recovered **5c** (0.68 g) and **6** (0.68 g, 36% based on reacted **5c**). Pale yellow solid. R_f 0.25 (AcOEt/hexane 1:1). M.p. 101–103°. IR: 2803, 2849, 2919 (CH), 3439 (NH). ¹H-NMR: 1.47–1.69 (m, 2 H); 1.79–1.63 (m, 2 H); 2.16–2.45 (m, 4 H); 2.62–2.73 (m, 2 H); 2.98–3.13 (m, 4 H); 3.34 (s, 1 H); 5.71–5.74 (m, 1 H); 5.80–5.84 (m, 1 H); 7.04–7.15 (m, 2 H); 7.24 (d, J =7.2, 1 H); 7.46 (d, J =7.2, 1 H); 7.90 (s, 1 H). ¹¹C-NMR: 21.38 (l); 22.60 (l); 40.05 (l); 40.83 (l); 43.14 (s); 47.94 (l); 54.56 (l); 56.10 (l); 69.15 (d); 110.63 (s); 110.78 (d); 117.74 (d); 119.08 (d); 121.31 (d); 126.69 (d); 126.86 (s); 134.07(d); 134.58(s); 136.02 (s). EI-MS: 279 (5.88), 278 (31.66, M^+), 211 (2.79), 198 (5.37), 197 (4.11), 184 (3.19), 171 (6.25), 170 (14.95), 168 (10.60). HR-MS: 278.1777 (C₁₉H₂₂N₂⁺; calc. 278.1785).

(12'bRS)-3', 4', 6', 7', 12', 12'b-Hexahydrospiro[cyclopentane-1,1'-(2'H)-indolo[2,3-a]quinolizine]-3,4-diol (7).A soln. of **6** (0.38 g, 1.37 mmol), 2.5% OsO₄ in *t*-BuOH (2 drops), and 4-methylmorpholine 4-oxide monohydrate (NMO; 0.54 g, 4.0 mmol) in THF (9.0 ml), H₂O (0.45 ml), and *t*-BuOH 0.90 ml) was stirred at r.t. overnight. Addition of CH₂Cl₂ (25 ml) was followed by washing with H₂O and brine. The org. soln. was dried and evaporated and the residue subjected to CC (AcOEt): **7** (0.28 g, 66%). Very light yellow solid. R_f 0.15 (AcOEt). M.p. 122–124°. IR: 2807, 2850, 2931 (CH), 3342 (NH, OH). ¹H-NMR: 1.53–1.79 (*m*, 4 H); 1.93–2.03 (*m*, 1 H); 2.34–2.64 (*m*, 6 H); 2.85–2.92 (*m*, 3 H); 3.32 (br., 1 H); 3.78 (br., 1 H); 4.12 (br., 1 H); 7.02–7.12 (*m*, 2 H); 7.31 (*d*, J=7.8, 1 H); 7.42 (*d*, J=7.8, 1 H); 8.29 (*s*, 1 H). ¹³C-NMR: 21.07 (*t*); 22.20 (*t*); 36.00 (*t*); 40.78 (*t*); 42.81 (*t*); 43.30 (*s*); 52.23 (*t*); 55.43 (*t*); 68.16 (*d*); 72.59 (*d*); 72.76 (*d*); 110.32 (*d*); 110.93 (*s*); 116.50 (*d*); 117.90 (*d*); 120.11 (*d*); 125.94 (*s*); 132.79 (*s*); 135.89 (*s*). EI-MS: 312 (39, *M*⁺), 311 (100), 310 (79), 295 (3), 185 (4), 170 (15). HR-MS: 312.1833 (C₁₉H₂₄N₂O₂⁺; calc. 312.1839).

rac- $(14\beta,16\alpha)$ -14,15-Dihydro-14-hydroxyeburnamenin-21-al¹) (**8a**). To a soln. of **7** (0.30 g, 0.97 mmol) in 50% THF/H₂O (16.0 ml) was added NaIO₄ (1.28 g, 5.98 mmol). The mixture was stirred for 30 min at r.t. when CH₂ Cl₂ (50 ml) was added. The org. layer was washed with H₂O and brine, dried, and evaporated: crude **8a/8b** ca. 2.5 :1.0 (by ¹H-NMR). CC (10% \rightarrow 100% AcOEt/hexane): gave **8a** (0.18 g, 0.58 mmol) and **13** (80 mg, 0.26 mmol), the latter being formed from **8b** on CC. Combined yield 87%. Attempts to purify **13** failed; its identity was confirmed by NaBH₄ reduction to **11b** (*vide infra*).

1 H); 7.57–7.60 (m, 1 H); 9.56 (t, J = 2.4, 1 H). ¹³C-NMR: 21.22 (t); 32.79 (s); 37.75 (s); 42.10 (t); 43.00 (t); 52.14 (t); 55.17 (t); 66.40 (d); 76.44 (d); 106.79 (s); 111.76 (d); 118.28 (d); 120.30 (d); 121.51 (d); 128.29 (s); 133.07 (s); 137.61 (s); 202.61 (d). EI-MS: 310 (20, M^+), 309 (30), 308 (16), 282 (72), 281 (100), 280 (52), 266 (20), 248 (14), 238 (63). HR-MS: 310.1676 ($C_{19}H_{22}N_2O_2^+$; calc. 310.1683).

rac-(*16a*)-*14*,15-*Dihydro-14-oxoeburnamenin-21-al* (**9**). PDC (0.11 g, 0.29 mmol) was added to crude **8a/8b** (70 mg, 0.23 mmol) in anh. CH₂Cl₂ (5 ml), and the mixture was stirred at r.t. overnight. The oxidation product was diluted with AcOEt (20 ml) and passed through *Celite*. The *Celite* pad was further rinsed, the combined filtrate evaporated, and the residue subjected to CC (AcOEt/hexane 1:1): **9** (30 mg, 43%). Thick oil. R_f 0.50 (AcOEt/hexane 3:1). IR: 1656, 1707 (C=O), 2943 (CH). ¹H-NMR: 1.31 (*ddt*, J=13.4, 4.3, 1.5, 1 H); 1.59–1.70 (*m*, 1 H); 1.79–1.93 (*m*, 3 H); 2.11 (*td*, J=13.5, 3.3, 1 H); 2.28 (*dt*, J=11.7, 3.6, 1 H); 2.44–2.53 (*m*, 2 H); 2.56–2.64 (*m*, 1 H); 2.74–2.86 (*m*, 1 H); 2.92 (*td*, J=14.1, 2.4, 1 H); 2.98–3.08 (*m*, 3 H); 7.20–7.28 (*m*, 2 H); 7.35–7.38 (*m*, 1 H); 8.26–8.29 (*m*, 1 H); 9.66 (*t*, J=2.1, 1 H). ¹³C-NMR: 21.08 (*t*); 21.43 (*t*); 32.92 (*t*); 39.12 (*s*); 43.16 (*t*); 44.62 (*s*); 51.86 (*t*); 55.00 (*t*); 65.07 (*d*); 113.72 (*s*); 116.27 (*d*); 118.27 (*d*); 124.04 (*d*); 124.45 (*d*); 129.62 (*s*); 131.92 (*s*); 136.49 (*s*); 126.52 (*s*); 200.99 (*d*). EI-MS: 308 (3.53, *M*⁺), 307 (14.73), 282 (10.45), 281 (56.79), 279 (100), 263 (15.54), 237 (22.77). HR-MS: 308.1529 (C₁₉H₂₀N₂O⁺₂; calc. 308.1526).

3-*Epieburnamonine*¹) (= rac-(*16a*)-*Eburnamenin-14*(*1*5H)-*one*¹); **10**). A mixture of **9** (30 mg, 0.098 mmol), ethane-1,2-dithiol (0.03 ml, 0.35 mmol) and BF₃·Et₂O (0.02 ml, 0.16 mmol) in CH₂Cl₂ (5 ml) was stirred at 0° for 1 h, then at r.t. for 8 h. It was diluted with CH₂Cl₂ (15 ml), washed with 5% aq. NaHCO₃ soln. and, brine, dried, and evaporated. The residue was dissolved in EtOH (8 ml), treated with *Raney*-Ni (50% aq. slurry, *ca*. 0.5 ml) and refluxed for 8 h. The cooled mixture was filtered through *Celite*, the latter washed with CH₂Cl₂ (15 ml), the filtrate evaporated, and the residue subjected to CC (AcOEt/hexane 1:1): **10** (20 mg, 69%). White solid. *R*₁0.40 (AcOEt/hexane 1:1). M.p. 135–137° ([5]: 138–139°). IR: 1654, 1708 (C=O), 2854, 2926 (CH). ¹H-NMR: 0.73–0.87 (*m*, 4 H); 1.12–1.23 (*m*, 2 H); 1.57–1.63 (*m*, 2 H); 1.79–1.86 (*m*, 2 H); 2.29 (*d*, *J* = 14.4, 3.3, 1 H); 2.33 (*dd*, *J* = 16.8, 1.8, 1 H); 2.54 (*dt*, *J* = 11.2, 4.2, 1 H); 2.58–2.68 (*m*, 1 H); 2.78 (*d*, *J* = 17.1, 1 H); 2.78–2.92 (*m*, 1 H); 3.01–3.11 (*m*, 2 H); 7.22–7.30 (*m*, 2 H); 7.37–7.40 (*m*, 1 H); 8.29–8.32 (*m*, 1 H). ¹³C-NMR: 7.36 (*q*); 20.66 (*t*); 20.95 (*t*); 21.25 (*t*); 31.51 (*t*); 39.42 (*s*), 44.09 (*t*), 52.30 (*t*), 55.22 (*t*), 65.71 (*d*), 112.95 (*s*), 116.12 (*d*), 118.20 (*d*), 123.86 (*d*), 124.22 (*d*), 129.69 (*s*), 133.60 (*s*), 135.00 (*s*), 167.34 (*s*). EI-MS: 294 (64.6, *M*⁺), 293 (100), 265 (12.94), 237 (32.96). HR-MS: 294.1729 (C₁₉H₂₂N₂O⁺; calc. 294.17336).

rac- $(14\beta,16\alpha)$ -14,15-Dihydroeburnamenine-14,21- $diol^1$) (**11a**). To a soln. of **8a** (0.12 g, 0.39 mmol) in EtOH (5 ml) was added at r.t. NaBH₄ (0.10 g, 2.64 mmol) in portions during 5 min. The resulting mixture was stirred for 1 h. Then H₂O/CH₂Cl₂ 1:5 (30 ml) was added, the org. layer washed with H₂O and brine, dried, and evaporated, and the residue subjected to CC (MeOH/CH₂Cl₂ 5:95): **11a** (0.10 g, 82%). White solid. $R_{\rm f}$ 0.15 (MeOH/CH₂Cl₂ 5:95). M.p. 100–102° ([3b]: 102–103°). IR: 2809, 2852, 2928 (CH), 3303 (OH). ¹H-NMR: 0.96–1.04 (*m*, 1 H); 1.12–1.24 (*m*, 1 H); 1.41–1.60 (*m*, 3 H); 1.74 (*d*, J = 13.5, 1 H); 1.85–2.04 (*m*, 1 H); 2.15–2.27 (*m*, 2 H); 2.44 (*dt*, J = 11.1, 4.2, 1 H); 2.63 (*dd*, J = 14.4, 2.4, 1 H); 2.81 (*s*, 1 H); 2.81–3.00 (*m*, 3 H); 3.22–3.30 (*m*, 1 H); 3.52–3.60 (*m*, 1 H); 5.58 (*dd*, J = 9.0, 5.7, 1 H); 7.08–7.15 (*m*, 2 H); 7.40–7.43 (*m*, 1 H); 7.55–7.58 (*m*, 1 H). ¹³C-NMR: 21.06 (*t*); 21.97 (*t*); 33.29 (*t*); 33.55 (*t*); 38.26 (*s*); 47.03 (*t*); 52.29 (*t*); 55.21 (*t*); 58.41 (*t*); 66.08 (*d*); 76.84(*d*); 106.31 (*s*); 111.54 (*d*); 118.30 (*d*); 120.23 (*d*); 121.40 (*d*); 128.32 (*s*); 133.05 (*s*); 137.59 (*s*). EI-MS: 312 (80, M^+), 311 (100), 310 (30), 294 (44), 293 (67), 267 (34), 249 (21), 237 (14). HR-MS: 312.1840 (C₁₉ H₂₄N₂O₂⁺; calc. 312.1839).

rac-(*14a*,16*a*)-*14*,15-*Dihydroeburnamenin*-*14*,21-*diol*¹) (**11b**). As described for **11a**, with **13** (70 mg, 0.23 mmol), EtOH (5 ml), and NaBH₄ (70 mg, 2.59 mmol): **11b** (60 mg, 83%). White solid. R_t 0.33 (5% MeOH/ CH₂Cl₂). M.p. 168–170° ([3b]: 172–174°). IR: 2803, 2852, 2935 (CH), 3292 (OH). ¹H-NMR: 1.08–1.16 (*m*, 1 H); 1.44–1.58 (*m*, 2 H); 1.78–1.89 (*m*, 3 H); 2.07 (*d*, *J*=16.5, 1 H); 2.20 (*dt*, *J*=16.5, 3.3, 1 H); 2.35 (*d*, *J*=15, 1 H); 2.43 (*dt*, *J*=11.1, 4.5, 1 H); 2.67 (*dd*, *J*=15, 4.2, 1 H); 2.77 (*s*, 1 H); 2.86–2.92 (*m*, 1 H); 2.99–3.08 (*m*, 2 H); 3.60–3.70 (*m*, 2 H); 5.84 (*d*, *J*=5.1, 1 H); 7.05–7.15 (*m*, 2 H); 7.45 (*dd*, *J*=10.5, 7.5, 2 H). ¹³C-NMR: 21.10 (*d*); 118.04 (*d*); 119.56 (*d*); 120.80 (*d*); 128.16 (*s*); 131.25 (*s*); 135.73 (*s*). EI-MS: 312 (18, *M*⁺), 311 (33), 310 (22), 294 (29), 293 (100), 265 (8), 249 (7). HR-MS: 312.1836 (C₁₉H₂₄N₂O⁺₂; calc. 312.1839).

[(1RS,12bRS)-1-Ethyl-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizine-1-ethanol (12). According to a modified literature procedure [3b], a mixture 11a/11b (60 mg, 0.19 mmol), KOH (30 mg, 0.52 mmol), and hydrazine hydrate (0.32 ml, 6.6 mmol) in ethylene glycol (1.0 ml) was heated at 130° for 2 h and then refluxed for 8 h. After cooling to r.t., the mixture was diluted with H₂O, and extracted with CH₂Cl₂, the org. soln. washed with H₂O and, brine, dried, and evaporated, and the residue subjected to CC (MeOH/CH₂Cl₂ 5:95) 12 (30 mg, 53%). M.p. 168–170° ([3b]: 173–174°). IR: 2758, 2808, 2852, 2929 (CH), 3317, 3480 (NH, OH). ¹H-NMR: 1.08 (*t*, J=7.5, 3 H); 1.29 (*td*, J=14.7, 3.3, 1 H); 1.55–1.82 (*m*, 6 H); 2.00–2.12 (*m*, 1 H); 2.41; (*dt*, J=12.0, 3.0, 1 H);

 $\begin{array}{l} 2.60-2.70\ (m,1\ {\rm H}); 2.66\ (d,J\!=\!12.6,1\ {\rm H}); 2.94\!-\!3.08\ (m,3\ {\rm H}); 3.32\ (s,1\ {\rm H}); 3.41\ (td,J\!=\!11.7,4.5,1\ {\rm H}); 3.73\ (dt,J\!=\!11.7,3.0,1\ {\rm H}); 7.04\!-\!7.15\ (m,2\ {\rm H}); 7.29\ (d,J\!=\!7.5,1\ {\rm H}); 7.45\ (d,J\!=\!7.5,1\ {\rm H}); 7.89\ (s,1\ {\rm H}). {}^{13}\mbox{C-NMR}: 8.43\ (q); 21.27\ (t); 22.91\ (t); 32.22\ (t); 35.46\ (t); 38.58\ (t); 40.73\ (s); 53.94\ (t); 58.56\ (t); 67.10\ (d); 110.61\ (d); 111.71\ (d); 118.06\ (d); 119.33\ (d); 121.62\ (d); 126.61\ (s); 132.19\ (s); 136.04\ (s). EI-MS: 299\ (8.09), 298\ (100,M^+), 297\ (48.42), 283\ (6.25), 267\ (19.47), 253\ (10.13), 237\ (8.62). \ {\rm HR-MS}: 298.2048\ (C_{19}{\rm H}_{26}{\rm N}_{2}{\rm O}^+; {\rm calc}. 298.20488. \end{array}$

Eburnamine¹) (=rac-(14 β)-14,15-Dihydroeburnamenin-14-el¹); **2**) and Isoeburnamine (=rac-(14 α)-14,15-Dihydroeburnamenin-14-ol¹); **3**). A mixture of **12** (40 mg, 0.13 mmol), RuCl₃·xH₂O (5 mg, 0.02 mmol), and NaIO₄ (80 mg, 0.37 mmol) in CH₂Cl₂ (1.0 ml), MeCN (1.0 ml), and H₂O (1.5 ml) was stirred at 0° for 6 h. The mixture was diluted with CH₂Cl₂(15 ml), the org. phase washed with H₂O and brine, dried, and evaporated, and the residue subjected to CC (1 \rightarrow 5% MeOH/CH₂Cl₂ containing 0.25% Et₃N): **2** [12] (10 mg, 26%) and **3** [12] (10 mg, 26%).

Data of **2**: IR: 2933 (CH), 3346 (OH). ¹H-NMR: 0.80–0.94 (*m*, 4 H); 1.23–1.70 (*m*, 5 H); 1.95–2.06 (*m*, 1 H); 2.26–2.39 (*m*, 2 H); 2.45–2.67 (*m*, 2 H); 2.88–3.10 (*m*, 2 H); 3.15–3.25 (*m*, 2 H); 3.76 (*s*, 1 H); 5.53 (*m*, 1 H); 7.06–7.19 (*m*, 2 H); 7.43 (*d*, J = 6.9, 1 H); 7.72 (*d*, J = 6.9, 1 H). ¹³C-NMR: 7.5 (*q*); 16.7 (*t*); 20.4 (*t*); 25.0 (*t*); 28.5 (*t*); 36.8 (*s*); 43.4 (*t*); 44.3 (*t*); 50.8 (*t*); 58.7 (*d*); 76.7 (*d*); 105.5 (*s*); 112.2 (*d*); 118.0 (*d*); 120.0 (*d*); 121.2 (*d*); 128.6 (*s*); 132.6 (*s*); 136.6 (*s*). EI-MS: 296 (40, M^+), 295 (31), 278 (25), 249 (90), 208 (100). HR-MS: 296.1886 (C₁₉H₂₄-N₂O⁺; calc. 296.1890).

Data of **3**: IR: 2929 (CH), 3310 (OH). ¹H-NMR: 0.91 (t, J = 7.5, 3 H); 1.40–1.83 (m, 5 H); 1.99 (d, J = 7.8, 1 H); 2.17–2.25 (m, 2 H); 2.57–2.75 (m, 3 H); 2.98–3.03 (m, 1 H); 3.25–3.38 (m, 2 H); 3.91 (s, 1 H); 6.06 (s, 1 H); 7.13–7.23 (m, 2 H); 7.43 (d, J = 7.8, 1 H); 7.48 (d, J = 7.8, 1 H). ¹³C-NMR: 7.5 (q); 16.5 (t); 20.2 (t); 25.8 (t); 29.0 (t); 34.8 (s); 39.7 (t); 44.8 (t); 51.4 (t); 59.5 (d); 74.3 (d); 105.2 (s); 110.1 (d); 118.5 (d); 120.4 (d); 121.7 (d); 128.4 (s); 129.3 (s); 135.0 (s). EI-MS: 296 (81, M^+), 295 (100), 278 (20), 267 (38), 249 (50), 208 (36). HR-MS: 296.1888 ($C_{19}H_{24}N_2O^+$; calc. 296.1890).

*Eburnamonine*¹) (rac-*Eburnamenin-14(15*H)-*one*; **1**). A mixture of **2/3** (35 mg, 0.12 mmol) in anh. CH₂Cl₂ (4 ml) and PDC (60 mg, 0.16 mmol) was stirred at r.t. for 3 h. Then the mixture was diluted with AcOEt (20 ml) and passed through a short column of *Celite*. The filtrate was evaporated, and the residue subjected to CC (AcOEt/hexane 1 : 1): **1** (15 mg, 42%). White solid. $R_{\rm f}$ 0.40 (AcOEt/hexane 1 : 1). M.p. 195–197° ([5]: 199.5–200.5°). IR: 1703 (C=O), 2855, 2931 (CH). ¹H-NMR: 0.91 (t, J=7.5, 3 H); 1.01 (dt, J=13.8, 3.9, 1 H); 1.39–1.49 (m, 1 H); 1.58–1.80 (m, 3 H); 2.02 (m, 1 H); 2.35–2.71 (m, 5 H); 2.80–3.00 (m, 1 H); 3.18–3.35 (m, 2 H); 3.96 (s, 1 H); 7.24–7.32 (m, 2 H); 7.40–7.43 (m, 1 H); 8.33–8.36 (m, 1 H). ¹³C-NMR: 7.63 (q); 16.52 (t); 20.59 (t); 26.91 (t); 28.32 (t); 38.43 (s); 44.29 (t); 44.33 (t); 50.62 (t); 57.67 (d); 112.59 (s); 116.23 (d); 118.07 (d); 123.82 (d); 124.31 (d); 130.07 (s); 131.95 (s); 134.18 (s); 167.64 (s). EI-MS: 294 (100, M^+), 293 (63.87), 278 (2.78), 265 (57.42), 237 (67.10), 224 (20.81). HR-MS: 294.1722 (C₁₉H₂₂N₂O⁺; calc. 294.17336).

REFERENCES

- I. Kompiš, M. Hesse, H. Schmid, *Lloydia* 1971, 34, 269; M. F. Bartlett, W. I. Taylor, Raymond-Hamet, C. R. Hebd. Séances Acad. Sci. 1959, 249, 1259; J. Mokrý, I. Kompiš, G. Spiteller, *Collect. Czech. Chem. Commun.* 1967, 32, 2523
- [2] a) W. I. Taylor, in 'The Alkaloids', Ed. R. H. F. Manske, Academic Press, New York, 1965, Vol. 8, p. 249; b)
 W. I. Taylor, in 'The Alkaloids', Ed. R. H. F. Manske, Academic Press, New York, 1968, Vol. 11, p. 125; c)
 W. Döpke, in 'The Alkaloids', Eds. R. H. F. Manske and R. G. A. Rodrigo, Academic Press, New York, 1981, Vol. 20, p. 297; d) M. Lounasmaa, A. Tolvanen, in 'The Alkaloids', Ed. G. A. Cordell, Academic Press, New York, 1992, Vol. 42, p. 1; e) J. E. Saxton, in 'Indoles: The Monoterpenoid Indole Alkaloids', Ed. J. E. Saxton, John Wiley & Sons, New York, 1983, p. 439; f) C. Szántay, A. Nemes, in 'Monoterpenoid Indole Alkaloids: Supplement to Part 4', Ed. J. E. Saxton, in 'The Chemistry of Heterocyclic Compounds', Series Ed. E. C. Taylor, Wiley-Interscience, Chichester, 1994, p. 437.
- [3] a) M. D. Kaufmann, P. A. Grieco, J. Org. Chem. 1994, 59, 7197; b) E. Karvinen, M. Lounasmaa, Heterocycles 1992, 34, 1773; c) G. Palmisano, P. D'Anniballa, M. Santagostino, Tetrahedron 1994, 50, 9487; d) A. G. Schultz, L. Pettus, J. Org. Chem. 1997, 62, 6855; e) P. A. Grieco, M. D. Kaufman, J. Org. Chem. 1999, 64, 7586; f) A. K. Ghosh, R. Kawahama, J. Org. Chem. 2000, 65, 5433; g) A. G. H. Wee, Q. Yu, J. Org. Chem. 2001, 66, 8935; h) R. Lavilla, O. Coll, J. Bosch, M. Orozco, F. J. Luque, Eur. J. Org. Chem. 2001, 3719.
 [4] 'Dictionary of Natural Products', Chapman and Hall, London, 1994.
- [4] Dictionary of Natural Floudets, Chapman and Han, Eondon,
- [5] E. Wenkert, B. Wickberg, J. Am. Chem. Soc. 1965, 87, 1580.
- [6] T.-L. Ho, 'Symmetry. A Basis for Synthesis Design', John Wiley & Sons, New York, 1995.

- T.-L. Ho, M.-H, Chang, Can. J. Chem. 1997, 75, 621; T.-L. Ho, Y.-J. Lin, J. Chem. Soc., Perkin Trans. 1 1999, 1207; T.-L. Ho, M.-F. Ho, J. Chem. Soc., Perkin Trans. 1 1999, 1823; T.-L. Ho, M.-H. Chang, J. Chem. Soc., Perkin Trans. 1 1999, 2479; T.-L. Ho, G. H. Jana, J. Org. Chem. 1999, 64, 8965; T.-L. Ho, C.-Y. Su, Tetrahedron 2001, 57, 507; T.-L. Ho, E. Gorobets, Tetrahedron, 2002, 58, 4969; T.-L. Ho, E. V. Kuzakov, Helv. Chim. Acta, 2004, 87, 2712.
- [8] E. D. Cox, J. M. Cook, Chem. Rev. 1995, 95, 1797.
- [9] J. P. Deprés, A. E. Greene, J. Org. Chem. 1984, 49, 928; K. E. Lizotte, P. E. Marecki, M. P. Mertes, J. Org. Chem. 1983, 48, 3594.
- [10] M. Node, H. Nagasawa, K. Fuji, J. Org. Chem. 1990, 55, 517.
- [11] P. H. J. Carlsen, T. Katsuki, V. S. Martin, K. B. Sharpless, J. Org. Chem. 1981, 46, 3936.
- [12] a) K. H. Gibson, J. E. Saxton, J. Chem. Soc., Perkin Trans. 1 1972, 2776; b) S. Takano, M. Yonaga, M. Morimoto, K. Ogasawara, J. Chem. Soc., Perkin Trans. 1 1985, 305; c) T. S. Kam, P. S. Tan, C. H. Chuah, Phytochemistry 1992, 31, 2936; d) T. S. Kam, P. S. Tan, C. Wei, Phytochemistry 1993, 33, 921; e) K. Awang, M. Païs, T. Sévenet, H. Schaller, A. M. Nasir, H. A. Hadi, Phytochemistry 1991, 30, 3164.

Received May 16, 2005